Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet

Størrelse: px
Starte visningen fra side:

Download "Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet"

Transkript

1 Klassisk kaos 11.1 Deterministiske bevægelsesligninger kan under visse omstændigheder udvise løsninger som er uforudsigelige, dvs. løsninger der opfører sig kaotisk: Faserum Forudsigelige Integrable systemer +mindre perturbationer Deterministiske Kaotiske systemer Visse regulariteter universalitet Uforudsigelige Ikke-deterministiske Stokastiske systemer q 2 q 1 p 2 t =0 d(t) t p 1 Banen i faserummet er (deterministisk) fastlagt ud fra begyndelsesbetingelserne, men bliver uforudsigelig, dvs. reelt uberegnelig (i et begrænset område af faserummet η η max )hvis: d(t) d(0)e λt, λ > 0 (gældende så længed(t) η max ). λ: Liapunov eksponenten Et system er integrabelt, hvis bevægelsesligningerne kan løses eksakt ( den harmoniske oscillator ). Ikke-integrable ligninger kan løses tilnærmelsesvis vha. perturbationsregning, hvis de ikke-lineære afvigelser fra et eksakt tilfælde er små. Eksempler på kaotiske systemer: Dryppende vandhane. Tvungen svigning af pendul med gnidning: θ + ν θ +sinθ = g sin(ωt)

2 Periodisk bevægelse 11.2 Et Hamiltonsk system (ingen dissipation, H = T + V = E), som er bundet til et begrænset område af det 2n dimensionale faserum kan (til 1. tilnærmelse) beskrives som et system af n ukoblede harmoniske oscillatorer (Taylor-rækkeudvikling til 2. orden i små svingninger ). Evt. (lineære) koblinger kan transformeres væk ved et passende valg af koordinater ( egenvektorer ). Vedenskala-transformation(q i,p i ) 7 (q i ( 1 m 2 i ω2 i ) 1/2,p i (2m i ) 1/2 ) bliver banen for den ite harmoniske oscillator en cirkel, q i = p E i sin(ω i t + α i ), p i = p E i cos(ω i t + α i ). Det ite bidrag til faserumsvolumnet er πe i, eller virkningsintegralet J i H p i dq i = π E i. Eksempel med n =2: Banen er bundet til en 2-dimensional (E 1,E 2 ) torus-overflade i det 4-dimensionale faserum. Figuren til venstre viser tilfældet E 1 >E 2, ω 2 > ω 1. (q 1,q 2 ) i tilfældene ω 1 /ω 2 = 6 og Figuren i første tilfælde er et eksempel på enlissajous figur. Hvis de to frekvenser er kommensurable, dvs. at forholdet ω 1 /ω 2 er et rationalt tal r/s, gentages banen periodisk, T =2πr/ω 1 =2πs/ω 2, hvor r og s er hele tal uden fælles faktorer. Er frekvensforholdet irrationalt fås en kvasiperiodisk bane, dvs. banen vil på senere tidspunkter komme vilkårligt tæt på startpunktet.

3 Perturbationer og KAM-teoremet 11.3 Hamiltonfunktionen er ikke-integrabel: H = H 0 + H, hvorh 0 er integrabel. Benyt Hamilton-Jacobi teorien til at transformere til koordinater (Q, P), hvor H 0 7 K 0 =0og H 7 K(Q, P). Antag Q(t) =Q(0)+ Q(t) og tilsvarende for P(t) og løs bevægelsesligninger til 1. orden i de små tidsafhængige korrektioner (1. ordens perturbationsregning). Processen kan evt. gentages eller man kan løse bevægelseligningerne til højere orden, hvis man ønsker at forbedre løsningen. Poincaré analyserede tre-legeme problemet. Det er ikke integrabelt og kan udvise kaotisk opførsel. På trods af dette kan et ikke integrabelt system, som f.eks. vores planet-system, have stabile, regulære bevægelser. Betingelserne for at dette er tilfældet blev opstillet af A. Kolmogorov, V.I. Arnold og J. Moser, i det såkaldte KAM teorem: a) Perturbationen H skal være lille. b) Systemets egenfrekvenser ω i skal være inkommensurable. Betingelserne er opfyldt for Jorden men ikke for asteroiderne i asteroidebæltet mellem Saturn og Jupiter. At betingelse b) er vigtig fremgår af at der er ingen asteroider i områder, hvor omløbstiden resonerer med Jupiters omløbstid, dvs. hvor ω(asteroide) er kommensurabel med ω(jupiter), de såkaldte Kirkwood-gab. Minimumsbetingelse for kaos: Ulineære første ordens differentialligninger med tre uafhængige variable. Bemærk at en anden ordens differentialligning i en uafhængig variabel kan altid omskrives til to første ordens differentialligninger med to uafhængige variable (sammenlign med Lagrange og Hamiltonligningerne).

4 Attractors Hvis bevægelsesligningerne indeholde dissipative led vil banerne i faserummet bevæger sig hen mod en attractor, som kan være et punkt, fix-punkt, eller en d A -dimensional overflade, limit cycle, i faserummet. Et fix-punkt kan betragtes som en limit cycle med dimensionen d A =0. θ 1) 1) Dæmpet pendulsvingning: θ + ν θ +sinθ =0 Eksempel θ(0) = 1, θ(0) = 0, ν =0.1 2) Van der Pol: mẍ ²(1 x 2 )ẋ + x =0. θ For små ²<0.1 er limit cycle en cirkel med radius 2 (ikke 1 som antydet i lærebogen). For store ² deformeres cirklen. ẋ 3) Strange attractors er attractors med en ikke-heltallig fraktal dimension. 2) ẋ Et eksempel er Lorenz strange attractor. z ẋ = σ(y x) x ẏ = x(r z) y ż = y bz 11.4 x Ex.: σ =10 r =28 b =8/3 y x ² =0.05 ² =2 Fractal dimension: d A ' 2.06

5 Poincaré afbildning 11.5 Poincaré afbildning: Skæringspunkterne mellem en banekurve og et plan i faserummet (f.eks. x p x planet). For en periodisk bevægelse vil det blive en lukket kurve. Eksemplet nedenfor (bogen) viser en planetbane med en periodisk præcession (pga. påvirkning fra andre planeter). Ellipsebaner i konfigurationsrummet. Poincaré afbildning: Skæringspunkter mellem banekurven i faserummet og x p x planet.

6 Bifurkation (periodefordobling) 11.6 Tvungen svigning af pendul med gnidning: θ + ν θ +sinθ = g sin(ωt) Opfylder minimumsbetingelserne for kaos: 3 uafhængige første-ordens variable θ, θ, φ = ωt og ligningen er ulineær pga. sin θ. Eksempel: ν =0.5, ω = 1 (resonans), θ(0) = 0, θ(0) = 1.5 θ θ min θ g =2.31 g =2.34 g =2.38 g =2.5 periodisk fordoblet periode firedoblet periode kaotisk Bifurkationsdiagram θ(t) g =2.34 t

7 Bifurkation (ii) Den logistiske ligning x n+1 = a(1 x n )x n, 0 x Fix-punkt: x n+1 = x n = x x = a(1 x )x x = a 1 a, a 1 Stabilitet: x n = a 1 + δ x a n+1 = a 1 +(2 a)δ + O(δ 2 ) 2 a < 1 eller 1 <a<3 a a>3 : a =3.2: (for n À 1) : x n = , x n+1 = (x =0.6875) a =3.5: x n =0.5009, x n+1 = x n+2 =0.3828, x n+3 = Feigenbaum punkt (kritiske værdi for kaotisk løsning): a = Liapunov eksponenten: λ 0fora<a λ = 0 i bifurkationspunkterne. λ > 0fora>a Bifurkationsdiagram: Feigenbaum træ

8 Bifurkation (iii) Feigenbaum træ x 11.8 a Universalitet: Vejen til kaos Bifurkationspunkter: (a b,x b ) δ = lim b a b a b 1 a b+1 a b = α = lim b x b x b 1 x b+1 x b = Feigenbaumtræet udviser en fraktal struktur, dvs. selv-ligedannethed eller Selvsimilaritet.

9 Målestok med længden a: Fraktaler og dimensionalitet 11.9 (i) Et liniestykke (d =1)medlængdenL opdeles i N(a) = L a bokse. µ 2 L (ii) Et kvadrat (d =2)medsidelængderneL opdeles i N(a) = bokse. a osv, eller generelt N(a) = µ L a d log N(a) d =(lim) a 0 log(l/a) Fraktal eller Hausdorff dimension d F (a) Cantor-sæt: Den midterste trediedel af hvert liniestykke fjernes: a = L, N(a) =2n 3n log 2n d F = log 3 = log 2 n log 3 = (b) Sierpinski tæppe: Siderne i hvert kvadrat tredeles og det midterste fjernes: n =0 n =1 n =2 n =3 a = L, N(a) =8n 3n log 8n d F = log 3 = log 8 n log 3 =1.8928

10 Fraktaler og dimensionalitet (ii) Von Koch s snefnug: Dimensionalitet: a = L, N(a) =4n 3n log N(a) d F = log(l/a) eller d F = log 4n log 3 = log 4 n log 3 = Eksempelvis: Norges kystlinie: d F ' 1.4, Englands kystlinie: d F ' 1.2

11 Mandelbrot sæt z(0) = z, z(n +1)=z 2 (n)+z(0), n =0, 1,... z tilhører Mandelbrot sættet, hvis z(n) <Bfor alle n. Farverne, uden for Mandelbrot-sættet, er afstemt af for hvilket værdi af n, z(n) >B= 5

12 Mandelbrot sæt II 11.12

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet Klassisk kaos Deterministiske bevægelsesligninger kan under visse omstændigheder udvise løsninger som er uforudsigelige, dvs. løsninger der opfører sig kaotisk: Faserum Forudsigelige Integrable systemer

Læs mere

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU)

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) Kaos og fraktaler i dynamiske systemer Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) UNF Matematik Camp 2010 Oversigt tre simple eksempler på klassiske fraktaler deterministiske

Læs mere

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2004

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2004 Fononiske Båndgab Køreplan 01005 Matematik 1 - FORÅR 2004 1 Baggrund Bølgeudbredelse i materialer og medier (som f.eks. luft) er et fænomen, der kendes af alle og som observeres i forskellige former i

Læs mere

Fraktaler. Vejledning. Et snefnug

Fraktaler. Vejledning. Et snefnug Fraktaler Vejledning Denne note kan benyttes i gymnasieundervisningen i matematik i 1g, eventuelt efter gennemgangen af emnet logaritmer. Min hensigt har været at give en lille introduktion til en anderledes

Læs mere

Kaotisk kuglebevægelse En dynamisk analyse

Kaotisk kuglebevægelse En dynamisk analyse Kaotisk kuglebevægelse En dynamisk analyse Ole Witt-Hansen 08 Kaotisk kuglebevægelse Kaotisk bevægelse Kaotiske bevægelser opstår, når bevægelsesligningerne ikke er lineære. Interessen for kaotiske bevægelser

Læs mere

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2005

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2005 Fononiske Båndgab Køreplan 01005 Matematik 1 - FORÅR 2005 1 Baggrund Bølgeudbredelse i materialer og medier (som f.eks. luft) er et fænomen, der kendes af alle og som observeres i forskellige former i

Læs mere

Formelsamling Kaos 2005

Formelsamling Kaos 2005 Formelsamling Kaos 2005 Lykke Pedersen Indhold 1 En dimension 2 1.1 Fixpunkter og stabiliet...................... 2 1.2 Bifurkationer........................... 3 2 To dimensioner 4 2.1 Lineære systemer.........................

Læs mere

Minikaos - må ikke bruges til noget. Henrik Dahl

Minikaos - må ikke bruges til noget. Henrik Dahl Minikaos - må ikke bruges til noget. Henrik Dahl hdahl@tdc-broadband.dḳ. 1 DEFINITIONER 2 1 Definitioner Aperiodisk adfærd Attraktor Der findes baner, der ikke lander i FP eller i periodiske baner eller

Læs mere

Fysik 2 - Den Harmoniske Oscillator

Fysik 2 - Den Harmoniske Oscillator Fysik 2 - Den Harmoniske Oscillator Esben Bork Hansen, Amanda Larssen, Martin Qvistgaard Christensen, Maria Cavallius 5. januar 2009 Indhold 1 Formål 1 2 Forsøget 2 3 Resultater 3 4 Teori 4 4.1 simpel

Læs mere

1 Indledning 1. 4 Eksperimentet Opstilling Begrænsninger Valg af parametre... 8

1 Indledning 1. 4 Eksperimentet Opstilling Begrænsninger Valg af parametre... 8 Indhold 1 Indledning 1 2 Introduktion til kaos 1 2.1 Begrebet kaos.................................. 1 2.2 Den kvadratiske map.............................. 1 2.3 Feigenbaums delta...............................

Læs mere

En sumformel eller to - om interferens

En sumformel eller to - om interferens En sumformel eller to - om interferens - fra borgeleo.dk Vi ønsker - af en eller anden grund - at beregne summen og A x = cos(0) + cos(φ) + cos(φ) + + cos ((n 1)φ) A y = sin (0) + sin(φ) + sin(φ) + + sin

Læs mere

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler

Lektion 12. højere ordens lineære differentiallininger. homogene. inhomogene. eksempler Lektion 12 2. ordens lineære differentialligninger homogene inhomogene eksempler højere ordens lineære differentiallininger 1 Anden ordens lineære differentialligninger med konstante koefficienter A. Homogene

Læs mere

Fysik 2 - Oscillator. Amalie Christensen 7. januar 2009

Fysik 2 - Oscillator. Amalie Christensen 7. januar 2009 Fysik 2 - Oscillator Amalie Christensen 7. januar 2009 1 Indhold 1 Forsøgsopstilling 3 2 Forsøgsdata 3 3 Teori 4 3.1 Den udæmpede svingning.................... 4 3.2 Dæmpning vha. luftmodstand..................

Læs mere

Gamle eksamensopgaver (DOK)

Gamle eksamensopgaver (DOK) EO 1 Gamle eksamensopgaver ) Opgave 1. sommer 1994, opgave 1) a) Find den fuldstændige løsning til differentialligningen x 6x + 9x =. b) Find den fuldstændige løsning til differentialligningen Opgave 2.

Læs mere

Fra tilfældighed over fraktaler til uendelighed

Fra tilfældighed over fraktaler til uendelighed Fra tilfældighed over fraktaler til uendelighed Tilfældighed Hvor tilfældige kan vi være? I skemaet ved siden af skal du sætte 0 er og 1-taller, ét tal i hvert felt. Der er 50 felter. Du skal prøve at

Læs mere

Fraktaler en helt ny form for matematik

Fraktaler en helt ny form for matematik Manus: Math 4 / Fraktal Manusark nr. 1 Fraktaler en helt ny form for matematik 5 10 15 20 25 30 35 Det var en sensation, da den polskfødte matematiker og filosof Benoit Mandelbrot i 1975 præsenterede sine

Læs mere

Matematisk modellering og numeriske metoder. Lektion 6

Matematisk modellering og numeriske metoder. Lektion 6 Matematisk modellering og numeriske metoder Lektion 6 Morten Grud Rasmussen 24. september, 2013 1 Forcerede oscillationer [Bogens afsnit 2.8, side 85] 1.1 Et forstyrret masse-fjeder-system I udledningen

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

Skriftlig eksamen BioMatI (MM503)

Skriftlig eksamen BioMatI (MM503) INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen BioMatI (MM503) 14. januar 2009 2 timer med alle sædvanlige hjælpemidler, inklusive brug af lommeregner/computer. OPGAVESÆTTET

Læs mere

Smuk matematik eller hvorfor vejrudsigten aldrig passer?

Smuk matematik eller hvorfor vejrudsigten aldrig passer? Smuk matematik eller hvorfor vejrudsigten aldrig passer? Indhold 1. Vejrudsigter 2. Solsystemet 3. Lemminger 4. Fraktaler Overordnet handler det hele om kaos. Vejrudsigter Matematikken der beskriver vejret

Læs mere

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator øvelse Formål Øvelse med oscillator, hvor frekvensen bestemmes, for den frie og dæmpede svingning. Vi vil tilnærme data fra

Læs mere

Anden grads polynomier og populations dynamik

Anden grads polynomier og populations dynamik matkt@imf.au.dk Institut for Matematiske Fag Det Naturvidenskabelige Fakultet Aarhus Universitet 23. marts 2007 P = antal individer i en population Mennesker, mider, blomster, bakterier eller noget helt

Læs mere

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

Almen Matematisk Dannelse

Almen Matematisk Dannelse Almen Matematisk Dannelse af De Studerende ved kurset Almen Matematisk Dannelse Foråret 2002 Matematisk Afdeling KU Foråret 2002 Indledning Disse noter er skrevet af de studerende på et kursus med titlen

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Note om Laplace-transformationen

Note om Laplace-transformationen Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Keplers Love. Om Kinematik og Dynamik i Renæssancens Astronomi. Folkeuniversitetet 9. oktober 2007

Keplers Love. Om Kinematik og Dynamik i Renæssancens Astronomi. Folkeuniversitetet 9. oktober 2007 Keplers Love Om Kinematik og Dynamik i Renæssancens Astronomi Folkeuniversitetet 9. oktober 2007 Poul Hjorth Institut for Matematik Danmarke Tekniske Universitet Middelalderens astronomi var en fortsættelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Kofi Mensah 7Ama1S15

Læs mere

- I, OM OG MED MATEMATIK OG FYSIK

- I, OM OG MED MATEMATIK OG FYSIK - I, OM OG MED MATEMATIK OG FYSIK Der er en hestesko i dynamikken Pernille Hviid Petersen September 2010 nr. 473-2010 Roskilde University, Department of Science, Systems and Models, IMFUFA P.O. Box 260,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2018 Institution HF & VUC Nordsjælland Hillerød afdeling Uddannelse Fag og niveau Lærer(e) Hold stx

Læs mere

LiA 2 Side 0. Lineær algebra 3. kursusgang

LiA 2 Side 0. Lineær algebra 3. kursusgang LiA 2 Side 0 Lineær algebra 3. kursusgang LiA 2 Side 1 Højdeforskelle. D C 0.7 0.7 0.8 E LiA 2 Side 2 Vi har tre punkter C, D og E. Højderne er h C, h D, h E. (I det følgende benævnes disse også x, y,

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

Matematik 1 Semesteruge 5 6 (30. september oktober 2002) side 1. Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (30. september oktober 2002) side 1. Komplekse tal Arbejdsplan Matematik Semesteruge 5 6 (30. september -. oktober 2002) side Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med opgaveregning

Læs mere

Matematisk modellering og numeriske metoder

Matematisk modellering og numeriske metoder Matematisk modellering og numeriske metoder Morten Grud Rasmussen 5. september 2016 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger

Flemmings Maplekursus 1. Løsning af ligninger Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 Sættet består af 3 opgaver med ialt 15 delopgaver. Besvarelsen vil blive forkastet, medmindre der er gjort et

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

Keplers love og Epicykler

Keplers love og Epicykler Keplers love og Epicykler Jacob Nielsen Keplers love Johannes Kepler (57-60) blev i år 600 elev hos Tyge Brahe (546-60) i Pragh, og ved sidstnævntes død i 60 kejserlig astronom. Kepler stiftede således

Læs mere

Lineær algebra 4. kursusgang

Lineær algebra 4. kursusgang Lineær algebra 4. kursusgang Vi betragter et lineært ligningssystem (af m ligninger med n ubekendte) Ax = b. Ligningssystemet antages at være inkonsistent (ingen løsninger) fordi tallene er fremkommet

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Differentialligninger med TI Nspire CAS version 3.1

Differentialligninger med TI Nspire CAS version 3.1 Differentialligninger med TI Nspire CAS version 3.1 Der er tilføjet en ny graftype til Graf værkstedet kaldet Diff lign. Denne nye graftype er en implementering af differentialligningerne som vi kender

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Fraktaler Mandelbrots Mængde

Fraktaler Mandelbrots Mængde Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................

Læs mere

Førsteordens lineære differentialligninger

Førsteordens lineære differentialligninger enote 16 1 enote 16 Førsteordens lineære differentialligninger I denne enote gives først en kort introduktion til differentialligninger i almindelighed, hvorefter hovedemnet er en særlig type af differentialligninger,

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

Sådan kommer du i gang med GeomeTricks

Sådan kommer du i gang med GeomeTricks Sådan kommer du i gang med GeomeTricks Ved hjælp af programmet GeomeTricks kan du tegne figurer i geometri. Når du tegner en figur, så skal du opbygge din figur ved hjælp af geometriske objekter. Geometriske

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

Theory Danish (Denmark) Ikke-lineær dynamik i elektriske kredsløb (10 point)

Theory Danish (Denmark) Ikke-lineær dynamik i elektriske kredsløb (10 point) Q2-1 Ikke-lineær dynamik i elektriske kredsløb (10 point) Læs venligst de generelle instruktioner i den separate konvolut før du starter på opgaven. Introduktion Bi-stabile ikke-lineære halvlederkomponenter

Læs mere

Projekt 3.5 Når en population kollapser

Projekt 3.5 Når en population kollapser Projekt 3.5 Når en population kollapser Logistisk vækst beskrives af en langstrakt S-formet graf, der blødt bevæger sig op mod en øvre grænse, som vi kalder for bæreevnen. Virkeligheden er ofte betydeligt

Læs mere

Teori og opgaver med udgangspunkt i udvalgte områder i Køge Bugt regionen

Teori og opgaver med udgangspunkt i udvalgte områder i Køge Bugt regionen Modeller af befolkningsudvikling Teori og opgaver med udgangspunkt i udvalgte områder i Køge Bugt regionen Af Mikkel Rønne, Brøndby Gymnasium Forord. Data er udtrukket fra Danmarks Statistiks interaktive

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Nihal Günaydin 1maA03

Læs mere

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...

Læs mere

Parameterkurver. Et eksempel på en rapport

Parameterkurver. Et eksempel på en rapport x Parameterkurver Et eksempel på en rapport Parameterkurver 0x MA side af 7 Hypocykloiden A B Idet vi anvender startværdierne for A og B som angivet, er en generel parameterfremstilling for hypocykloiden

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Kan formler overraske?

Kan formler overraske? Kan formler overraske? Af Neli Demitrova Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1 Introduktion I vore dage kan man se computerfremstillede fraktale mønstre alle vegne, lige

Læs mere

FRAKTALER. Hans Fogedby Institut for fysik og astronomi

FRAKTALER. Hans Fogedby Institut for fysik og astronomi FRAKTALER Hans Fogedby Institut for fysik og astronomi OVERSIGT Hvad er en fraktal Lidt historie Fraktaler i matematikken Den fraktale dimension Fraktaler i fysikken Fraktaler i biologien Fraktaler som

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Gert Friis Nielsen

Læs mere

Løsningsforslag til opgavesæt 5

Løsningsforslag til opgavesæt 5 Matematik F Matematik F Løsningsforslag til opgavesæt 5 Opgave : Se kursushjemmesiden. Opgave : a) π dθ 5 + 4 sin θ = e iθ, = ie iθ dθ, dθ = i sin θ = eiθ e iθ i = i(5 + 4( / )) = i = + 5i Integranden

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Modellering og styring af mobile robotter

Modellering og styring af mobile robotter Modellering og styring af mobile robotter Dina Friesel Kongens Lyngby 2007 IMM-PHD-2007-70 Technical University of Denmark Informatics and Mathematical Modelling Building 321, DK-2800 Kongens Lyngby, Denmark

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold December 2015 vinter VUC Vestegnen stx Mat A Gert Friis

Læs mere

Udledning af Keplers love

Udledning af Keplers love Udledning af Keplers love Kristian Jerslev 8. december 009 Resumé Her præsenteres en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. Begyndende med en analyse af et to-legeme problem vil jeg

Læs mere

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2019

Besvarelser til Calculus Ordinær Eksamen Juni 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Projekt 5.9. Geometriske fraktaler og fraktale dimensioner

Projekt 5.9. Geometriske fraktaler og fraktale dimensioner Projekt 5.9. Geometriske fraktaler og fraktale dimensioner Indhold 1. Fraktaler og vækstmodeller... 2 2. Kløverøen... 2 3. Fraktal dimension... 4 3.1 Skridtlængdemetoden... 4 3.2 Netmaskemetoden... 7 3.3

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 12. Oktober, 2007 Kontinuerte fordelinger Vi har hidtil set på fordelinger af stokastiske variable der højst kan antage tælleligt mange værdier (diskrete stokastiske

Læs mere

Matematik A. Højere handelseksamen. Gammel ordning. Mandag den 17. december 2018 kl gl-hhx183-mat/a

Matematik A. Højere handelseksamen. Gammel ordning. Mandag den 17. december 2018 kl gl-hhx183-mat/a Matematik A Højere handelseksamen Gammel ordning gl-hhx183-mat/a-17122018 Mandag den 17. december 2018 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Lektion ordens lineære differentialligninger

Lektion ordens lineære differentialligninger Lektion 11 1. ordens lineære differentialligninger Lineære differentialligninger Lineære differentialligninger af 1. orden 1. homogene 2. inhomogene Lineære differentialligninger af 1. orden med konstante

Læs mere

Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )

Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( ) Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

Den klassiske oscillatormodel

Den klassiske oscillatormodel Kvantemekanik 6 Side af 8 n meget central model inden for KM er den såkaldte harmoniske oscillatormodel, som historisk set spillede en afgørende rolle i de banebrydende beskrivelser af bla. sortlegemestråling

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Lineære 2. ordens differentialligninger med konstante koefficienter

Lineære 2. ordens differentialligninger med konstante koefficienter enote 13 1 enote 13 Lineære 2. ordens differentialligninger med konstante koefficienter I forlængelse af enote 11 og enote 12 om differentialligninger, kommer nu denne enote omkring 2. ordens differentialligninger.

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan Matematik 1 Semesteruge 5 6 (1. oktober - 12. oktober 2001) side 1 Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med

Læs mere

Øvelse 1. bygges op, modellen

Øvelse 1. bygges op, modellen Johannes Kepler (1571-1630) var på mange måder en overgangsfigur i videnskabshistorien. Han ydede et stort bidrag til at matematisere naturvidenskaberne, og han søgte hele sit liv at finde de fysiske love,

Læs mere

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning

Læs mere

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET H.A. NIELSEN INDHOLD. Lineær ligning 2 2. Lineært system 8 3. Generel ligning 6 4. Stabilitet 8 Litteratur 2 Noterne er til 4 timers forelæsninger

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Lineær beamoptik 1. Koordinatsystem

Lineær beamoptik 1. Koordinatsystem Lineær beamoptik 1 1 Wille kapitel 3.1 til og med 3.6 (undtagen 3.3) Koordinatsystem Indledning / overblik Rækkeudvikling af feltet Bevægelsesligningen Løsning af bevægelsesligningen Transfermatricer og

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Lineær Beamoptik 3. Først lidt repetition fra sidste gang

Lineær Beamoptik 3. Først lidt repetition fra sidste gang Lineær Beamoptik 3 Først lidt repetition fra sidste gang 1 2 3 Lineær beamoptik 3.14-3.17 Tune Optiske resonanser Fejl i de optiske elementer Kromaticitet 4 Optisk resonans Vi snakker i dag kun om cirkulære

Læs mere

Kometer. Af Mie Ibsen & Marcus Guldager Nordsjællands Grundskole & Gymnasium. http://esamultimedia.esa.int/images/science/rosetta2.

Kometer. Af Mie Ibsen & Marcus Guldager Nordsjællands Grundskole & Gymnasium. http://esamultimedia.esa.int/images/science/rosetta2. Kometer Af Mie Ibsen & Marcus Guldager Nordsjællands Grundskole & Gymnasium http://esamultimedia.esa.int/images/science/rosetta2.jpg Indholdsfortegnelse side Introduktion... 2 Problemformulering... 2 Baggrund...

Læs mere

Eulers metode. Tom Pedersen //Palle Andersen. Aalborg University. Eulers metode p. 1/2

Eulers metode. Tom Pedersen //Palle Andersen. Aalborg University. Eulers metode p. 1/2 Eulers metode Tom Pedersen //Palle Andersen pa,tom@es.aau.dk Aalborg University Eulers metode p. 1/2 Differentialligninger m(t) H(t) d(h(t)) dt = 0.0125m(t) 0.001772 H(t) hvor m(t) er kendt og H(t) skal

Læs mere

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6. Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.

Læs mere

David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1

David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1 1 Pendul David Kallestrup, Aarhus School of Engineering, SRP-forløb ved Maskinteknisk retning 1 1.1 Hvad er et pendul? En matematiker og en ingeniør ser tit ens på mange ting, men ofte er der forskelle

Læs mere

Vektorfunktioner. Frank Villa. 23. april 2013

Vektorfunktioner. Frank Villa. 23. april 2013 Vektorfunktioner Frank Villa 23. april 2013 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Jørgen Erichsen På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Hvad er en fraktal? Noget forenklet kan man sige, at en fraktal er en geometrisk figur, der udmærker sig ved

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Nihal Günaydin 1maA04

Læs mere