MURVÆRKSPROJEKTERING VER. 4.0 SBI - MUC DOKUMENTATION Side 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "MURVÆRKSPROJEKTERING VER. 4.0 SBI - MUC 01.10.06 DOKUMENTATION Side 1"

Transkript

1 DOKUMENTATION Side 1 Beregning af murbuer Indledning. Dette notat beskriver den numeriske model til beregning af stik og skjulte buer. Indhold Forkortelser Definitioner Forudsætninger Beregningsforløb Inddata Grundparametre Check af inputdata Iterativ proces Udnyttelsesgrad Forkortelser us : understøtning sb : skjult bue tb : udstrækning af buen ved lysningskanterne (tykkelse bue) Definitioner Tryklinie Trykzone Mur/Murbue Begrænsningsflade : Kraftens forløb mellem de to understøtninger : Symmetrisk zone omkring tryklinien : Murværk mellem nedre og øvre begrænsningsflade : Afslutning/pap o.lign i muren. Murbuen defineres ved området mellem øvre- og nedre begrænsningsflade. Forudsætninger Bæreevneeftervisningen foretages på grundlag af en trecharniers tryklinie som indlægges i murværket. Tryklinien opdeles i et antal (fx. 50) tryklinieelementer, der skal opfylde de sædvanlige statiske og geometriske betingelser. Øvre og nedre begrænsningsflade af murværket antages parabelformet (ver 2.0) eller vandret afhængig af geometrien. us regnes placeret på en lodret linie ved lysningskanterne. Ved stik regnes liggefugeretningen at være vinkelret på nedre begrænsningsflade. Ved stik regnes tb i liggefugens retning. Ved sb i lodret retning. tb angives ved us.

2 DOKUMENTATION Side 2 Er tb<h for sb regnes den vandrette komposant af tryklinien at skulle optages i liggefugen overalt indenfor trykzonen. Mest gunstigste placering af us og topcharnier bestemmes ved iteration. Dette er en plasticitetsteoretisk nedreværdiløsning, der skønnes acceptabel. Trykzonens udstrækning omkring tryklinien i hele bueforløbet bestemmes som 2 minimumsafstanden fra tryklinien til begrænsningsfladerne. Bæreevnekriterier overalt i trykzonen. (fx 50 snit): For sb : σ < 0.5 f cnd For sb hvor tb<h : σ < 0.5 f cnd samt τ < µ d σ liggefuge + c d For stik : σ < f cnd samt τ < µ d σ liggefuge + c d Beregningsforløb Selve beregningsforløbet er vist nedenstående. De enkelte modulers funktion er beskrevet i det følgende. INDDATA GRUNDPARAMETRE CHECK AF INPUTDATA ITERATIV PROCES Max. udnyttelsesgrad UDNGRAD Plac. af charnier

3 DOKUMENTATION Side 3 Inddata For hver bue der ønskes beregnet inddateres nedenstående parametre. Betydningen af de geometriske parametre er vist på skitsen. Til højre er forsøgt optegnet et stik. Til venstre, en skjult bue nær et vindue og over en åbning med overkragning. Benævnelse Beskrivelse Enhed L : Lysningsvidde mm h : Højde af det aktuelle vægplan mm p : Pilhøjde mm tb : Buens udstrækning ved us mm tm : Tykkelse af buen i vægplanen mm stik [ ] : Ja/nej spørgsmål. Nej betyder sb. Q1..Qi : Et vilkårlig antal enkeltkræfter kn lq1..lqi : Plac. målt fra venstre lyskant mm q : Ensfordelt last kn/m f cnk : Karak. basistrækstyrke MPa µ k : Karak. friktion c k : Karak. kohæsion MPa lqi lq1 Q1 Qi q Y tb x L p h tb tl

4 DOKUMENTATION Side 4 Grundparametre Følgende funktioner udføres: Buens lodrette udstrækning ved us beregnes. Højden og pilhøjden reduceres med den elastisk bestemte udbøjning (Indspændt bjælke, mindste højde anvendes). Kipningsmomentet udregnes (Indspændt bjælke, mindste højde anvendes). Initial placering af 3 charnier bestemmes. Koordinater til øvre og nedre begrænsningsflade bestemmes. Check af inputdata Her checkes om: pilhøjden > den totale højde den elastiske udbøjning er markant stor (flere grænser) kipmomentet > faktiske moment enkeltkræfterne ligger indenfor buen alle inputdata ligger indenfor rimelighedens grænser. Iterativ proces Den iterative proces er en ren matematisk funktion og er i statisk henseende knap så interessant. Iterationen består i at variere placeringen af charniererne (dvs. midtercharnieret og de 2 understøtninger) i lodret retning, således at udnyttelsesgraden bliver mindst mulig. Dvs udnyttelsesgraden udregnes for hver placering. Iterationen starter ved den understøtning, hvor den lodrette reaktion er størst. Placeringen øges skridtvis opad (eller nedad), indtil udnyttelsesgraden begynder at stige. Herefter reduceres skridtlængden og iterationsretningen vendes. Således fortsættes indtil forbedringen er tilstrækkelig lille. Der foretages et antal vendinger før udnyttelsesgraden sammenlignes med den tidligere bestemte udnyttelsesgrad. "Tvangsvendingerne" er indført for at undgå, at iterationen afsluttes, fordi placeringer med samme udnyttelsesgrad på hver side af et optimum sammenlignes (se efterfølgende figur).

5 DOKUMENTATION Side 5 Udnyttelsesgrad 0,900 0,800 Placering charnier Antallet af "tvangsvendinger" kan inddateres/ændres i dialogboksen, der fremkommer hvis knappen "Iteration" aktiveres (Min. antal vendinger) Herefter fortsættes med de øvrige charnier. Et eksempel på forløbet af gennemregningerne er angivet nedenstående: 1. Gennemregning: Iteration af: Venstre charnier, midtercharnier, højre charnier, midtercharnier 2. Gennemregning: Iteration af: Venstre charnier, midtercharnier, højre charnier, midtercharnier 3. Etc. For de mere edb-interesseret er skridtlængden (s) angivet nedenstående: s = 0.03 Interval Num(fite fpre) /(fite fpre) (1.4) n (Gteller vende) Hvor Interval er området mellem øvre og nedre begrænsningsflade fite er udnyttelsesgraden fpre udnyttelsesgraden ved den tidligere placering Gteller antallet af gennemregninger. vende antallet af vendinger ved den aktuelle iteration n antallet af gange hvor iterationen springer kraftigt. Det er som før nævnt muligt for brugeren at rette på minimumsantallet af vendinger og gennemregninger i modulet. Det numeriske led i tælleren sikrer, at der ikke sker en vending i det øjeblik tryklinien kommer indenfor murbuen og udnyttelsesgraden skifter fortegn.

6 DOKUMENTATION Side 6 I de tilfælde hvor iterationsværdierne springer kraftigt på grund af instabilitet i beregningerne reduceres skridtlængden vha. n, for at undgå at det optimale punkt overspringes. Efterhånden som antallet af gennemregninger og vendinger stiger reduceres skridtlængden med kvadratroden af de pågældende parametre. Beregningen stopper når udnyttelsesgraden ikke forbedres mærkbart ved en gennemregning. Der foretages et antal tvangsgennemregninger før udnyttelsesgraden sammenlignes med den tidligere bestemte udnyttelsesgrad, for at undgå at beregningen stopper ved et falsk optima. Fænomenet er illustreret nedenstående. Udnyttelsesgrad 0,900 0, Antal gennemregninger (Antallet af "tvangsgennemregninger" kan inddateres/ændres i dialogboksen, der fremkommer hvis knappen "Iteration" aktiveres (Min. antal gennemregninger)

7 DOKUMENTATION Side 7 Stopkriteriet er angivet nedenstående: Num(fGstart-fite)<(( (Gteller-Gtellermin))/(exact 100)) hvor fgstart er udnyttelsesgraden før den i'te gennemregning fite er udnyttelsesgraden efter den i'te gennemregning Gteller antallet af gennemregninger. Gtellermin minimums-antallet af gennemregninger. exact Parameter til angivelse af nøjagtigheden.. Det ses, at nøjagtighedskravet falder ved et stigende antal gennemregninger. Dette er indført for at muliggøre en gennemregning af de mere ustabile tilfælde (fx når tryklinien ligger tæt på en af begrænsningsfladerne). Nøjagtighedskravet kan dog øges ved at ændre parameteren "exact" i den før omtalte dialogboks (Nøjagtighed). Udnyttelsesgrad Ved hver placering af charnieret kaldes funktionen "UdnGrad", der bestemmer den maksimale udnyttelsesgrad af buen. Funktionen anvender 4 procedurer: Vandret reaktion Trykliniens forløb Minimum afstand Stresses (Her bestemmes reaktionerne) (Koordinater samt kræfternes størrelse) (Min. afstand mellem tryklinie og afgrænsningsflader bestemmes) (Spændinger og udnyttelsesgrad udregnes) Procedurerne er beskrevet i det følgende: Vandret reaktion Reaktionerne beregnes ved iteration efter følgende model: Den vandrette reaktion bestemmes ud fra skønnede værdier af de lodrette reaktioner. De lodrette reaktioner bestemmes ud fra den beregnede vandrette reaktion Etc. indtil der er overensstemmelse.

8 DOKUMENTATION Side 8 Trykliniens forløb Koordinaterne til tryklinien og kræfternes størrelse bestemmes efter følgende model: Start ved venstre understøtning. Gennemgå alle elementer (fx 25) indtil midtercharnier. De lodrette snitkræfter i venstre og højre knudepunkt skal være i ligevægt med de ydre belastninger (dvs. ensfordelt last og enkeltlaster der er beliggende på delelementet. Koordinattilvæksten i y-retningen af højre knudepunkt bestemmes som forholdet mellem den lodrette kraft i midten af delelementet og den vandrette kraft multipliceret med elementets længde i x-retningen. Samme procedure udføres med start i højre understøtning. Justering således at tryklinien rent faktisk rammer midtercharnieret. Herefter er trykliniens koordinater og kraftforhold bestemt. Minimum afstand For hver punkt på tryklinien udregnes den vinkelrette afstand til nedre og øvre begrænsningsflade. Herved bestemmes en minimumsafstand (zmin), der antages at udgøre trykzonens udstrækning på begge sider af tryklinien. Igennem hele trykzonen regnes derfor med et areal på : 2 tm zmin, hvor tm er murtykkelsen vinkelret på murplanet. Denne antagelse er på den sikre side. Skulle der i beregningerne tages hensyn til en trykzone med varierende højde, svarende til den geometrisk aktuelle, vil det være nødvendigt at indregne de heraf fremkomne sekundære trækkræfter vinkelret på tryklinien, hvilket nok er lidt langt ude. Er tryklinien udenfor buen, regnes den vinkelrette minimumsafstand til begrænsningsfladen blot negativ. Dvs spændinger, udnyttelsesgrader mm bliver negative. Dette er kun en formel beregningsmetode og en negativ spænding er ikke ækvivalent med trækspændinger i buen. Den negative udnyttelsesgrad anvendes kun i forbindelse med iterationen, hvor det gælder om at minimere udnyttelsesgraden. For negative udnyttelsesgrader er en retning mod - uendelig i den "rigtige" retning. Dvs når tryklinien nærmer sig begrænsningsfladen udefra og zmin < -0, hvilket medfører at: Areal < -0 og F < -

9 DOKUMENTATION Side 9 Stresses Herefter kan de aktuelle spændinger udregnes. Trykzonens areal, trykliniens koordinater og kræfternes størrelse kendes. Udnyttelsesgraden (fite) defineres som: For sb : max(σ/0.5 f cnd ) For sb hvor tb<h : max(σ/0.5 f cnd og τ/(µ d σ liggefuge +c d )) For stik : max(σ/f cnd og τ/(µ d σ liggefuge +c d )) Hvor max betyder, at det er den største, af de fundne værdier i det antal snit buen er opdelt i. For stik tages hensyn til, at retningscos for trykbuen og liggefugen ikke er sammenfaldende. Endvidere undersøges den lodrette forskydningskapacitet ved understøtningerne. Stenklassen udregnes som en forsigtig værdi af basistrykstyrken og for sb forudsættes at hver 2. studsfuge er placeret på en lodret linie. Der tages hensyn til den vandrette reaktions friktionsbidrag på en del af strækningen. Er dette bidrag større end reaktionerne ved enderne angives udnyttelsesgraden til 0. Er udnyttelsesgraden mht. til forskydning ved understøtningerne større end den i buens trykzone bestemte, anvendes denne værdi i iterationen, således at placeringen af charniererne ligeledes bliver optimeret mht. understøtningsforholdene.

Modulet kan både beregne skjulte buer og stik (illustreret på efterfølgende figur).

Modulet kan både beregne skjulte buer og stik (illustreret på efterfølgende figur). Murbue En murbue beregnes generelt ved, at der indlægges en statisk tilladelig tryklinje/trykzone i den geometriske afgrænsning af buen. Spændingerne i trykzonen betragtes i liggefugen, hvor forskydnings-

Læs mere

Kom godt i gang Bestem styrkeparametrene for murværket. Faneblad: Murværk Gem, Beregn Gem

Kom godt i gang Bestem styrkeparametrene for murværket. Faneblad: Murværk Gem, Beregn Gem Kom godt i gang Bestem styrkeparametrene for murværket. Faneblad: Murværk Deklarerede styrkeparametre: Enkelte producenter har deklareret styrkeparametre for bestemte kombinationer af sten og mørtel. Disse

Læs mere

BEREGNING AF MURVÆRK EFTER EC6

BEREGNING AF MURVÆRK EFTER EC6 BEREGNING AF MURVÆRK EFTER EC6 KOGEBOG BILAG Copyright Teknologisk Institut, Byggeri Byggeri Kongsvang Allé 29 8000 Aarhus C Tlf. 72 20 38 00 poul.christiansen@teknologisk.dk Bilag 1 Teknologisk Institut

Læs mere

Murprojekteringsrapport

Murprojekteringsrapport Side 1 af 6 Dato: Specifikke forudsætninger Væggen er udført af: Murværk Væggens (regningsmæssige) dimensioner: Længde = 6,000 m Højde = 2,800 m Tykkelse = 108 mm Understøtningsforhold og evt. randmomenter

Læs mere

Deformation af stålbjælker

Deformation af stålbjælker Deformation af stålbjælker Af Jimmy Lauridsen Indhold 1 Nedbøjning af bjælker... 1 1.1 Elasticitetsmodulet... 2 1.2 Inertimomentet... 4 2 Formelsamling for typiske systemer... 8 1 Nedbøjning af bjælker

Læs mere

Et vindue har lysningsvidden 3,252 m. Lasten fra den overliggende etage er 12.1 kn/m.

Et vindue har lysningsvidden 3,252 m. Lasten fra den overliggende etage er 12.1 kn/m. Teglbjælke Et vindue har lysningsvidden 3,252 m. Lasten fra den overliggende etage er 12.1 kn/m. Teglbjælken kan udføres: som en præfabrikeret teglbjælke, som minimum er 3 skifter høj eller en kompositbjælke

Læs mere

BEREGNING AF O-TVÆRSNIT SOM ET KOMPLEKST TVÆRSNIT

BEREGNING AF O-TVÆRSNIT SOM ET KOMPLEKST TVÆRSNIT Indledning BEREGNING AF O-TVÆRSNIT SOM ET KOMPLEKST TVÆRSNIT Teknologiparken Kongsvang Allé 29 8000 Aarhus C 72 20 20 00 info@teknologisk.dk www.teknologisk.dk I dette notat gennemregnes som eksempel et

Læs mere

TUNGE SKILLEVÆGGE PÅ TRYKFAST ISOLERING BEREGNINGSMODELLER

TUNGE SKILLEVÆGGE PÅ TRYKFAST ISOLERING BEREGNINGSMODELLER pdc/sol TUNGE SKILLEVÆGGE PÅ TRYKFAST ISOLERING BEREGNINGSMODELLER Indledning Teknologisk Institut, byggeri har for EPS sektionen under Plastindustrien udført dette projekt vedrørende anvendelse af trykfast

Læs mere

Eftervisning af bygningens stabilitet

Eftervisning af bygningens stabilitet Bilag A Eftervisning af bygningens stabilitet I det følgende afsnit eftervises, hvorvidt bygningens bærende konstruktioner har tilstrækkelig stabilitet til at optage de laster, der påvirker bygningen.

Læs mere

Lodret belastet muret væg efter EC6

Lodret belastet muret væg efter EC6 Notat Lodret belastet muret væg efter EC6 EC6 er den europæiske murværksnorm også benævnt DS/EN 1996-1-1:006 Programmodulet "Lodret belastet muret væg efter EC6" kan beregne en bærende væg som enten kan

Læs mere

Eksempel på anvendelse af efterspændt system.

Eksempel på anvendelse af efterspændt system. Eksempel på anvendelse af efterspændt system. Formur: Bagmur: Efterspændingsstang: Muret VægElementer Placeret 45 mm fra centerlinie mod formuren Nedenstående er angivet en række eksempler på kombinationsvægge

Læs mere

Centralt belastede søjler med konstant tværsnit

Centralt belastede søjler med konstant tværsnit Centralt belastede søjler med konstant tværsnit Af Jimmy Lauridsen Indhold 1 Den kritiske bærevene... 1 1.1 Elasticitetsmodulet... 2 1.2 Inertimomentet... 4 1.3 Søjlelængde... 8 1 Den kritiske bæreevne

Læs mere

NOTAT BEREGNING AF JORDTRYK VHA EC6DESIGN.COM. ÆKVIVALENT ENSFORDELT LAST

NOTAT BEREGNING AF JORDTRYK VHA EC6DESIGN.COM. ÆKVIVALENT ENSFORDELT LAST pdc/sol NOTAT BEREGNING AF JORDTRYK VHA EC6DESIGN.COM. ÆKVIVALENT ENSFORDELT LAST Teknologiparken Kongsvang Allé 29 8000 Aarhus C 72 20 20 00 info@teknologisk.dk www.teknologisk.dk Indledning I dette notat

Læs mere

TUNGE SKILLEVÆGGE PÅ FLERE LAG TRYKFAST ISOLERING. Input Betondæk Her angives tykkelsen på dækket samt den aktuelle karakteristiske trykstyrke.

TUNGE SKILLEVÆGGE PÅ FLERE LAG TRYKFAST ISOLERING. Input Betondæk Her angives tykkelsen på dækket samt den aktuelle karakteristiske trykstyrke. pdc/jnk/sol TUNGE SKILLEVÆGGE PÅ FLERE LAG TRYKFAST ISOLERING Indledning Teknologisk Institut, byggeri har for Plastindustrien i Danmark udført dette projekt vedrørende bestemmelse af bæreevne for tunge

Læs mere

I den gældende udgave af EN (6.17) angives det, at søjlevirkning kan optræde

I den gældende udgave af EN (6.17) angives det, at søjlevirkning kan optræde Lodret belastet muret væg Indledning Modulet anvender beregningsmodellen angivet i EN 1996-1-1, anneks G. Modulet anvendes, når der i et vægfelt er mulighed for (risiko for) 2. ordens effekter (dvs. søjlevirkning).

Læs mere

MURVÆRKSPROJEKTERING VER. 4.0 SBI - MUC DOKUMENTATION Side 1

MURVÆRKSPROJEKTERING VER. 4.0 SBI - MUC DOKUMENTATION Side 1 DOKUMENTATION Side 1 Modulet Kombinationsvægge Indledning Modulet arbejder på et vægfelt uden åbninger, og modulets opgave er At fordele vandret last samt topmomenter mellem bagvæg og formur At bestemme

Læs mere

A2.05/A2.06 Stabiliserende vægge

A2.05/A2.06 Stabiliserende vægge A2.05/A2.06 Stabiliserende vægge Anvendelsesområde Denne håndbog gælder både for A2.05win og A2.06win. Med A2.05win beregner man kun system af enkelte separate vægge. Man får som resultat horisontalkraftsfordelingen

Læs mere

Køretøjernes dimensioner angives i afsnit 2. Placeringen på tværs er positiv til højre og negativ til venstre, og er kaldt placering til højre.

Køretøjernes dimensioner angives i afsnit 2. Placeringen på tværs er positiv til højre og negativ til venstre, og er kaldt placering til højre. Et regneark til beregning af luminans af vejtavler Kai Sørensen, 29. april 2015 Forord Regnearket erstatter det regneark, der er omtalt i notatet Et regneark til beregning af luminans af vejtavler af 27.

Læs mere

NemStatik. Stabilitet - Programdokumentation. Anvendte betegnelser. Beregningsmodel. Make IT simple

NemStatik. Stabilitet - Programdokumentation. Anvendte betegnelser. Beregningsmodel. Make IT simple Stabilitet - Programdokumentation Anvendte betegnelser Vægskive Et rektangulært vægstykke/vægelement i den enkelte etage, som indgår i det lodret bærende og stabiliserende system af vægge N Ed M Ed e l

Læs mere

PRAKTISK PROJEKTERING EKSEMPEL

PRAKTISK PROJEKTERING EKSEMPEL PRAKTISK PROJEKTERING EKSEMPEL FORUDSÆTNINGER Dette eksempel er tilrettet fra et kursus afholdt i 2014: Fra arkitekten fås: Plantegning, opstalt, snit (og detaljer). Tegninger fra HusCompagniet anvendes

Læs mere

Murskive. En stabiliserende muret væg har dimensionerne: H: 2,8 m. L: 3,5 m. t: 108 mm. og er påvirket af en vandret og lodret last på.

Murskive. En stabiliserende muret væg har dimensionerne: H: 2,8 m. L: 3,5 m. t: 108 mm. og er påvirket af en vandret og lodret last på. Murskive En stabiliserende muret væg har dimensionerne: H: 2,8 m L: 3,5 m t: 108 mm og er påvirket af en vandret og lodret last på P v: 22 kn P L: 0 kn Figur 1. Illustration af stabiliserende skive 1 Bemærk,

Læs mere

Eksempel på inddatering i Dæk.

Eksempel på inddatering i Dæk. Brugervejledning til programmerne Dæk&Bjælker samt Stabilitet Nærværende brugervejledning er udarbejdet i forbindelse med et konkret projekt, og gennemgår således ikke alle muligheder i programmerne; men

Læs mere

Betonkonstruktioner, 3 (Dimensionering af bjælker)

Betonkonstruktioner, 3 (Dimensionering af bjælker) Betonkonstruktioner, 3 (Dimensionering af bjælker) Bøjningsdimensionering af bjælker - Statisk bestemte bjælker - Forankrings og stødlængder - Forankring af endearmering - Statisk ubestemte bjælker Forskydningsdimensionering

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Konstruktion af SEGMENTBUE I MURVÆRK.

Konstruktion af SEGMENTBUE I MURVÆRK. Konstruktion af SEGMENTBUE I MURVÆRK. Murerviden.dk - 1 - RE Forudsætninger. Segmentbuens endepunkt i overkant sten Stander Overkant segmentbue i lejefuge Vederlag Pilhøjde Det er nødvendigt at kende visse

Læs mere

11/3/2002. Statik og bygningskonstruktion Program lektion Understøtninger og reaktioner. Kræfter og ligevægt.

11/3/2002. Statik og bygningskonstruktion Program lektion Understøtninger og reaktioner. Kræfter og ligevægt. Statik og bygningskonstruktion Program lektion 6 8.30-9.15 Understøtninger og reaktioner. Kræfter og ligevægt 9.15 9.30 Pause 9.30 10.15. 10.15 10.45 Pause 10.45 12.00 Opgaveregning Kursusholder Poul Henning

Læs mere

Betonkonstruktioner, 4 (Deformationsberegninger og søjler)

Betonkonstruktioner, 4 (Deformationsberegninger og søjler) Christian Frier Aalborg Universitet 006 Betonkonstruktioner, 4 (Deformationsberegninger og søjler) Deformationsberegning af bjælker - Urevnet tværsnit - Revnet tværsnit - Deformationsberegninger i praksis

Læs mere

Det Teknisk Naturvidenskabelige Fakultet

Det Teknisk Naturvidenskabelige Fakultet Det Teknisk Naturvidenskabelige Fakultet Aalborg Universitet Titel: Virkelighedens teori eller teoriens virkelighed? Tema: Analyse og design af bærende konstruktioner Synopsis: Projektperiode: B7 2. september

Læs mere

Betonkonstruktioner, 5 (Jernbetonplader)

Betonkonstruktioner, 5 (Jernbetonplader) Christian Frier Aalborg Universitet 006 Betonkonstrktioner, 5 (Jernbetonplader) Virkemåde / dformninger / nderstøtninger Enkeltspændte plader Dobbeltspændte plader Deformationsberegninger 1 Christian Frier

Læs mere

BEREGNING AF VANDRET- OG LODRET BELASTEDE, MUREDE VÆGFELTER MED ÅBNINGER

BEREGNING AF VANDRET- OG LODRET BELASTEDE, MUREDE VÆGFELTER MED ÅBNINGER BEREGNING AF VANDRET- OG LODRET BELASTEDE, MUREDE VÆGFELTER MED ÅBNINGER 1. Indledning Murværksnormen DS 414:005 giver ikke specifikke beregningsmetoder for en række praktisk forekomne konstruktioner som

Læs mere

3/4/2003. Tektonik Program lektion Understøtninger og reaktioner. Kræfter og ligevægt Ligevægtsbetingelser.

3/4/2003. Tektonik Program lektion Understøtninger og reaktioner. Kræfter og ligevægt Ligevægtsbetingelser. Tektonik Program lektion 3 8.15-9.00 Understøtninger og reaktioner. Kræfter og ligevægt. 9.00 9.15 Pause 9.15 10.00 Bestemmelse af stangkræfter Løsskæring af knuder. Rittersnit 10.00 10.30 Pause 10.30

Læs mere

Betonkonstruktioner, 1 (Formgivning af trykpåvirkede betonkonstruktioner) Hvad er beton?, kemiske og mekaniske egenskaber

Betonkonstruktioner, 1 (Formgivning af trykpåvirkede betonkonstruktioner) Hvad er beton?, kemiske og mekaniske egenskaber Betonkonstruktioner, 1 (Formgivning af trykpåvirkede betonkonstruktioner) Hvad er beton?, kemiske og mekaniske egenskaber Materialeparametre ved dimensionering Lidt historie Jernbeton (kort introduktion)

Læs mere

Afstand mellem konsoller/understøtning ved opmuring på tegloverliggere

Afstand mellem konsoller/understøtning ved opmuring på tegloverliggere Afstand mellem konsoller/understøtning ved opmuring på tegloverliggere Rekvirent: Kalk og Teglværksforeningen af 1893 Nørre Voldgade 48 1358 København K Att.: Tommy Bisgaard Udført af civilingeniør Poul

Læs mere

Athena DIMENSION Plan ramme 3, Eksempler

Athena DIMENSION Plan ramme 3, Eksempler Athena DIMENSION Plan ramme 3, Eksempler November 2007 Indhold 1 Eksempel 1: Stålramme i halkonstruktion... 3 1.1 Introduktion... 3 1.2 Opsætning... 3 1.3 Knuder og stænger... 5 1.4 Understøtninger...

Læs mere

Beregningsopgave om bærende konstruktioner

Beregningsopgave om bærende konstruktioner OPGAVEEKSEMPEL Indledning: Beregningsopgave om bærende konstruktioner Et mindre advokatfirma, Juhl & Partner, ønsker at gennemføre ændringer i de bærende konstruktioner i forbindelse med indretningen af

Læs mere

UDVALGTE STATISKE BEREGNINGER IFM. GYVELVEJ 7 - NORDBORG

UDVALGTE STATISKE BEREGNINGER IFM. GYVELVEJ 7 - NORDBORG UDVALGTE STATISKE BEREGNINGER IFM. GYVELVEJ 7 - NORDBORG UDARBEJDET AF: SINE VILLEMOS DATO: 29. OKTOBER 2008 Sag: 888 Gyvelvej 7, Nordborg Emne: Udvalgte beregninger, enfamiliehus Sign: SV Dato: 29.0.08

Læs mere

KRYDSBOR. Procedure for måling af indbankningslængden ses i afsnittet Praktisk anvendelse. Forsøgsresultater er vedlagt i bilag 1.

KRYDSBOR. Procedure for måling af indbankningslængden ses i afsnittet Praktisk anvendelse. Forsøgsresultater er vedlagt i bilag 1. pdc/sol KRYDSBOR Indledning I dette afsnit beskrives udviklingen af et enkelt værktøj til bestemmelse af estimerede værdier for mørtlens trykstyrke. Værktøjet er et krydsbor, som er inspireret af et vingebor,

Læs mere

Nyt generaliseret beregningsmodul efter EC2 til vægge, søjler og bjælker. Juni 2012.

Nyt generaliseret beregningsmodul efter EC2 til vægge, søjler og bjælker. Juni 2012. Nyt generaliseret beregningsmodul efter EC2 til vægge, søjler og bjælker. Juni 2012. Betonelement-Foreningen tilbyder nu på hjemmesiden et nyt beregningsmodul til fri afbenyttelse. Modulet er et effektivt

Læs mere

Redegørelse for den statiske dokumentation

Redegørelse for den statiske dokumentation KART Rådgivende Ingeniører ApS Korskildelund 6 2670 Greve Redegørelse for den statiske dokumentation Privatejendom Dybbølsgade 27. 4th. 1760 København V Matr. nr. 1211 Side 2 INDHOLD Contents A1 Projektgrundlag...

Læs mere

4. Husets totale stabilitet

4. Husets totale stabilitet 4. Husets totale stabilitet 4.1 Indledning Husets totale stabilitet sikres af det statiske system, der optager den samlede, vandrette kraft vha. afstivende vægge. Et system er illustreret på efterfølgende

Læs mere

Noter om Bærende konstruktioner. Membraner. Finn Bach, december 2009. Institut for Teknologi Kunstakademiets Arkitektskole

Noter om Bærende konstruktioner. Membraner. Finn Bach, december 2009. Institut for Teknologi Kunstakademiets Arkitektskole Noter om Bærende konstruktioner Membraner Finn Bach, december 2009 Institut for Teknologi Kunstakademiets Arkitektskole Statisk virkemåde En membran er et fladedannende konstruktionselement, der i lighed

Læs mere

Konstruktion IIIb, gang 13 (Jernbetonplader)

Konstruktion IIIb, gang 13 (Jernbetonplader) Christian Frier Aalborg Universitet 003 Konstrktion IIIb, gang 13 (Jernbetonplader) Virkemåde / dformninger / nderstøtninger Overslagsregler fra Teknisk Ståbi Enkeltspændte plader Dobbeltspændte plader

Læs mere

Konstruktion IIIb, gang 9 (Formgivning af trykpåvirkede betonkonstruktioner)

Konstruktion IIIb, gang 9 (Formgivning af trykpåvirkede betonkonstruktioner) Konstruktion IIIb, gang 9 (Formgivning af trykpåvirkede betonkonstruktioner) Hvad er beton?, kemiske og mekaniske egenskaber Materialeparametre ved dimensionering Lidt historie Jernbeton (kort introduktion)

Læs mere

BEREGNING AF MURVÆRK EFTER EC6

BEREGNING AF MURVÆRK EFTER EC6 BEREGNING AF MURVÆRK EFTER EC6 KOGEBOG Copyright Teknologisk Institut, Byggeri Byggeri Kongsvang Allé 29 8000 Århus C Tlf. 72 20 38 00 poul.christiansen@teknologisk.dk KOGEBOG TIL BEREGNING AF MURVÆRK

Læs mere

For en grundlæggende teoretisk beskrivelse af metoden henvises bl.a. til M.P. Nielsen [69.1] og [99.3].

For en grundlæggende teoretisk beskrivelse af metoden henvises bl.a. til M.P. Nielsen [69.1] og [99.3]. A Stringermetoden A1 A2 A3 A4 A5 A6 A7 A8 A2 Indholdsfortegnelse Generelt Beregningsmodel Statisk ubestemthed Beregningsprocedure Bestemmelse af kræfter, spændinger og reaktioner Specialtilfælde Armeringsregler

Læs mere

Beregningstabel - juni 2009. - en verden af limtræ

Beregningstabel - juni 2009. - en verden af limtræ Beregningstabel - juni 2009 - en verden af limtræ Facadebjælke for gitterspær / fladt tag Facadebjælke for hanebåndspær Facadebjælke for hanebåndspær side 4 u/ midterbjælke, side 6 m/ midterbjælke, side

Læs mere

Beregningsopgave 2 om bærende konstruktioner

Beregningsopgave 2 om bærende konstruktioner OPGAVEEKSEMPEL Beregningsopgave 2 om bærende konstruktioner Indledning: Familien Jensen har netop købt nyt hus. Huset skal moderniseres, og familien ønsker i den forbindelse at ændre på nogle af de bærende

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Forskydning og lidt forankring. Per Goltermann

Forskydning og lidt forankring. Per Goltermann Forskydning og lidt forankring Per Goltermann Lektionens indhold 1. Belastninger, spændinger og revner i bjælker 2. Forskydningsbrudtyper 3. Generaliseret forskydningsspænding 4. Bjælker uden forskydningsarmering

Læs mere

Athena DIMENSION Tværsnit 2

Athena DIMENSION Tværsnit 2 Athena DIMENSION Tværsnit 2 Januar 2002 Indhold 1 Introduktion.................................. 2 2 Programmets opbygning........................... 2 2.1 Menuer og værktøjslinier............................

Læs mere

STATISKE BEREGNINGER AF ÆLDRE MURVÆRK

STATISKE BEREGNINGER AF ÆLDRE MURVÆRK pdc/sol STATISKE BEREGNINGER AF ÆLDRE MURVÆRK 1. Indledning En stor del af den gamle bygningsmasse i Danmark er opført af teglstenmurværk, hvor den anvendte opmuringsmørtel er kalkmørtel. I byggerier fra

Læs mere

Sandergraven. Vejle Bygning 10

Sandergraven. Vejle Bygning 10 Sandergraven. Vejle Bygning 10 Side : 1 af 52 Indhold Indhold for tabeller 2 Indhold for figur 3 A2.1 Statiske beregninger bygværk Længe 1 4 1. Beregning af kvasistatisk vindlast. 4 1.1 Forudsætninger:

Læs mere

Athena DIMENSION Kontinuerlige betonbjælker 4

Athena DIMENSION Kontinuerlige betonbjælker 4 Athena DIMENSION Kontinuerlige betonbjælker 4 December 1999 Indhold Betydning af genvejsknapper og ikoner.................... 2 1 Anvendelse................................... 2 2 Opbygning af program............................

Læs mere

Murværksprojektering\Version 7.04 Eksempel 1. Kombinationsvæg

Murværksprojektering\Version 7.04 Eksempel 1. Kombinationsvæg Kombinationsvæg Modulet beregner lastfordelingen mellem for- og bagmur for vindlasten og momentet hidrørende fra topexcentriciteten i henhold til de indgående vægges stivheder (dvs. en elastisk beregning)

Læs mere

Løsning, Bygningskonstruktion og Arkitektur, opgave 6

Løsning, Bygningskonstruktion og Arkitektur, opgave 6 Løsning, Bygningskonstruktion og Arkitektur, opgave 6 For en excentrisk og tværbelastet søjle skal det vises, at normalkraften i søjlen er under den kritiske værdi mht. søjlevirkning og at momentet i søjlen

Læs mere

BEF-PCSTATIK. PC-Statik Lodret lastnedføring efter EC0+EC1 Version 2.0. Dokumentationsrapport 2009-03-20 ALECTIA A/S

BEF-PCSTATIK. PC-Statik Lodret lastnedføring efter EC0+EC1 Version 2.0. Dokumentationsrapport 2009-03-20 ALECTIA A/S U D V I K L I N G K O N S T R U K T I O N E R Version.0 Dokumentationsrapport 009-03-0 Teknikerbyen 34 830 Virum Denmark Tlf.: +45 88 19 10 00 Fax: +45 88 19 10 01 CVR nr. 7 89 16 www.alectia.com U D V

Læs mere

Lastkombinationer (renskrevet): Strøybergs Palæ

Lastkombinationer (renskrevet): Strøybergs Palæ Lastkobinationer (renskrevet): Strøybergs Palæ Nu er henholdsvis den karakteristiske egenlast, last, vindlast, snelast nyttelast bestet for bygningens tre dele,, eedækkene kælderen. Derfor opstilles der

Læs mere

BEREGNING AF MURVÆRK EFTER EC6

BEREGNING AF MURVÆRK EFTER EC6 BEREGNING AF MURVÆRK EFTER EC6 KOGEBOG Copyright Teknologisk Institut, Byggeri Byggeri Kongsvang Allé 29 8000 Aarhus C Tlf. 72 20 38 00 poul.christiansen@teknologisk.dk KOGEBOG TIL BEREGNING AF MURVÆRK

Læs mere

Stabilitet af rammer - Deformationsmetoden

Stabilitet af rammer - Deformationsmetoden Stabilitet af rammer - Deformationsmetoden Lars Damkilde Institut for Bærende Konstruktioner og Materialer Danmarks Tekniske Universitet DK-2800 Lyngby September 1998 Resumé Rapporten omhandler beregning

Læs mere

4 HOVEDSTABILITET 1. 4.1 Generelt 2

4 HOVEDSTABILITET 1. 4.1 Generelt 2 4 HOVEDSTABILITET 4 HOVEDSTABILITET 1 4.1 Generelt 2 4.2 Vandret lastfordeling 4 4.2.1.1 Eksempel - Hal efter kassesystemet 7 4.2.2 Lokale vindkræfter 10 4.2.2.1 Eksempel Hal efter skeletsystemet 11 4.2.2.2

Læs mere

Dimension Plan Ramme 4

Dimension Plan Ramme 4 Dimension Plan Ramme 4 Eksempler August 2013 Strusoft DK Salg Udvikling Filial af Structural Design Software Diplomvej 373 2. Rum 247 Marsallé 38 info.dimension@strusoft.com in Europe AB, Sverige DK-2800

Læs mere

Dimensionering af samling

Dimensionering af samling Bilag A Dimensionering af samling I det efterfølgende afsnit redegøres for dimensioneringen af en lodret støbeskelssamling mellem to betonelementer i tværvæggen. På nedenstående gur ses, hvorledes tværvæggene

Læs mere

STATISKE BEREGNINGER AF ÆLDRE MURVÆRK

STATISKE BEREGNINGER AF ÆLDRE MURVÆRK 2013-06-28 pdc/sol STATISKE BEREGNINGER AF ÆLDRE MURVÆRK 1. Indledning Dette notat omhandler forskellige forhold relevant for beregninger af ældre murværk ifm renoveringer/ombygninger Notatet er således

Læs mere

Parameterkurver. Et eksempel på en rapport

Parameterkurver. Et eksempel på en rapport x Parameterkurver Et eksempel på en rapport Parameterkurver 0x MA side af 7 Hypocykloiden A B Idet vi anvender startværdierne for A og B som angivet, er en generel parameterfremstilling for hypocykloiden

Læs mere

Dilatationsfuger En nødvendighed

Dilatationsfuger En nødvendighed Dilatationsfuger En nødvendighed En bekymrende stor del af Teknologisk instituts besigtigelser handler om revner i formuren, der opstår, fordi muren ikke har tilstrækkelig mulighed for at arbejde (dilatationsrevner).

Læs mere

for en indvendig søjle er beta = 1.15, for en randsøjle er beta = 1.4 og for en hjørnesøjle er beta = 1.5.

for en indvendig søjle er beta = 1.15, for en randsøjle er beta = 1.4 og for en hjørnesøjle er beta = 1.5. Gennemlokning af plader iht. DS/EN 1992-1-1_2005 Anvendelsesområde for programmet Programmet beregner bæreevnen for gennemlokning af betonplader med punktlaster eller plader understøttet af søjler iht.

Læs mere

Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Lysbrovej 13

Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Lysbrovej 13 Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Lysbrovej 13 Dato: 22. Januar 2015 Byggepladsens adresse: Lysbrovej 13 Matr. nr. 6af AB Clausen A/S STATISK DUMENTATION Adresse: Lysbrovej

Læs mere

Plan Ramme 4. Eksempler. Januar 2012

Plan Ramme 4. Eksempler. Januar 2012 Plan Ramme 4 Eksempler Januar 2012 Indhold 1. Eksempel 1: Stålramme i halkonstruktion... 3 1.1. Introduktion... 3 1.2. Opsætning... 3 1.3. Knuder og stænger... 4 1.4. Understøtninger... 7 1.5. Charnier...

Læs mere

Forspændt bjælke. A.1 Anvendelsesgrænsetilstanden. Bilag A. 14. april 2004 Gr.A-104 A. Forspændt bjælke

Forspændt bjælke. A.1 Anvendelsesgrænsetilstanden. Bilag A. 14. april 2004 Gr.A-104 A. Forspændt bjælke Bilag A Forspændt bjælke I dette afsnit vil bjælken placeret under facadevæggen (modullinie D) blive dimensioneret, se gur A.1. Figur A.1 Placering af bjælkei kælder. Bjælken dimensioneres ud fra, at den

Læs mere

DIPLOM PROJEKT AF KASPER NIELSEN

DIPLOM PROJEKT AF KASPER NIELSEN DIPLOM PROJEKT AF KASPER NIELSEN Titelblad Tema: Afgangsprojekt. Projektperiode: 27/10 2008-8/1 2009. Studerende: Fagvejleder: Kasper Nielsen. Sven Krabbenhøft. Kasper Nielsen Synopsis Dette projekt omhandler

Læs mere

Kom-i-gang vejledning opmålingsprogram

Kom-i-gang vejledning opmålingsprogram Kom-i-gang vejledning opmålingsprogram Billedprislisten Udarbejdet af EG Byg & Installation den 12. marts 2010 Opdateret den 18. februar 2011 Indholdsfortegnelse 1 Gulve... 3 1.1 Opmåling af gulvflade...

Læs mere

Projekteringsprincipper for Betonelementer

Projekteringsprincipper for Betonelementer CRH Concrete Vestergade 25 DK-4130 Viby Sjælland T. + 45 7010 3510 F. +45 7637 7001 info@crhconcrete.dk www.crhconcrete.dk Projekteringsprincipper for Betonelementer Dato: 08.09.2014 Udarbejdet af: TMA

Læs mere

Schöck Isokorb type Q, QP, Q+Q, QP+QP,

Schöck Isokorb type Q, QP, Q+Q, QP+QP, Schöck Isokorb type, P, +, P+P, Schöck Isokorb type 10 Armeret armeret Indhold Side Eksempler på elementplacering/tværsnit 60 Produktbeskrivelse/bæreevnetabeller og tværsnit type 61 Planvisninger type

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Tullinsgade 6 3.th

Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Tullinsgade 6 3.th Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Tullinsgade 6 3.th Dato: 10. april 2014 Byggepladsens adresse: Tullinsgade 6, 3.th 1618 København V. Matr. nr. 667 AB Clausen A/S

Læs mere

Introduktion til programmet CoRotate

Introduktion til programmet CoRotate Side 1 Introduktion til programmet CoRotate Programmet CoRotate.exe bestemmer ikke-lineære, tredimensionelle flytninger af en bjælkekonstruktion. Dermed kan store flytninger bestemmes, og fænomener som

Læs mere

Forudsætninger Decimaltegnet i de indtastede værdier skal være punktum (.) og ikke komma (,).

Forudsætninger Decimaltegnet i de indtastede værdier skal være punktum (.) og ikke komma (,). Indledning Anvendelsesområde Programmet behandler terrændæk ifølge FEM (Finite Element Metoden). Terrændækket kan belastes med fladelast (kn/m 2 ), linjelaster (kn/m) og punktlaster (kn) med valgfri placering.

Læs mere

Styring af revner i beton. Bent Feddersen, Rambøll

Styring af revner i beton. Bent Feddersen, Rambøll Styring af revner i beton Bent Feddersen, Rambøll 1 Årsag Statisk betingede revner dannes pga. ydre last og/eller tvangsdeformationer. Eksempler : Trækkræfter fra ydre last (fx bøjning, forskydning, vridning

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Geostatisk pæleberegning

Geostatisk pæleberegning Geostatisk pæleberegning Anvendelsesområde Programmet beregner træk- og trykbelastede pæle i henholdsvis brudgrænse- og ækvivalent brudgrænsetilstand i vilkårlig lagdelt jord. Derved kan hensyn tages til

Læs mere

Selv om websites er yderst forskellige i deres fremtræden, så kan de stort set alle sammen passes ind i den skabelon som er illustreret herunder:

Selv om websites er yderst forskellige i deres fremtræden, så kan de stort set alle sammen passes ind i den skabelon som er illustreret herunder: Design en praktisk guide. Et design udtrykker dit websites grafiske udseende, lige fra hvilke skrifttyper der anvendes op til hvor navigationen er placeret og hvilke interaktive elementer der skal benyttes.

Læs mere

Praktisk design. Per Goltermann. Det er ikke pensum men rart at vide senere

Praktisk design. Per Goltermann. Det er ikke pensum men rart at vide senere Praktisk design Per Goltermann Det er ikke pensum men rart at vide senere Lektionens indhold 1. STATUS: Hvad har vi lært? 2. Hvad mangler vi? 3. Klassisk projekteringsforløb 4. Overordnet statisk system

Læs mere

Deformationsmetoden. for rammekonstruktioner

Deformationsmetoden. for rammekonstruktioner Deformationsmetoden for rammekonstruktioner Lars Damkilde og Peter Noe Poulsen BYG DTU Januar 2002 Resumé Rapporten omhandler anvendelse af deformationsmetoden til beregning af statisk ubestemte rammer.

Læs mere

Schöck Isokorb type Q, QP, Q+Q, QP+QP,

Schöck Isokorb type Q, QP, Q+Q, QP+QP, Schöck Isokorb type, P, +, P+P, Schöck Isokorb type Indhold Side Eksempler på elementplacering/tværsnit 60 Produktbeskrivelse/bæreevnetabeller og tværsnit type 61 Planvisninger type 62-63 Beregningseksempel

Læs mere

En introduktion til beregning af rammekonstruktioner med lineært-elastisk/ideal-plastisk materialeopførsel

En introduktion til beregning af rammekonstruktioner med lineært-elastisk/ideal-plastisk materialeopførsel En introduktion til beregning af rammekonstruktioner med lineært-elastisk/ideal-plastisk materialeopførsel Lars Damkilde Institut for Bærende Konstruktioner og Materialer Danmarks Tekniske Højskole DK-2800

Læs mere

BEREGNING AF MURVÆRK EFTER EC6

BEREGNING AF MURVÆRK EFTER EC6 BEREGNING AF MURVÆRK EFTER EC6 KOGEBOG - BILAG Copyright Teknologisk Institut, Byggeri Byggeri Kongsvang Allé 29 8000 Århus C Tlf. 72 20 38 00 poul.christiansen@teknologisk.dk Bilag 1 Teknologisk Institut

Læs mere

5 SKIVESTATIK 1. 5.1 Dækskiver 2 5.1.1 Homogen huldækskive 4 5.1.2 Huldækskive beregnet ved stringermetoden 8 5.1.2.1 Eksempel 15

5 SKIVESTATIK 1. 5.1 Dækskiver 2 5.1.1 Homogen huldækskive 4 5.1.2 Huldækskive beregnet ved stringermetoden 8 5.1.2.1 Eksempel 15 5 Skivestatik 5 SKIVESTATIK 1 5.1 Dækskiver 2 5.1.1 Homogen huldækskive 4 5.1.2 Huldækskive beregnet ved stringermetoden 8 5.1.2.1 Eksempel 15 5.2 Vægskiver 21 5.2.1 Vægopstalter 22 5.2.2 Enkeltelementers

Læs mere

Geometrisk skæring. Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter

Geometrisk skæring. Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter Planfejning 1 Skæring 2 Geometrisk skæring Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter Løsningsmetoder: Rå kraft Planfejning (eng. plane sweep)

Læs mere

Betonkonstruktioner, 6 (Spændbetonkonstruktioner)

Betonkonstruktioner, 6 (Spændbetonkonstruktioner) Betonkonstruktioner, 6 (Spændbetonkonstruktioner) Førspændt/efterspændt beton Statisk virkning af spændarmeringen Beregning i anvendelsesgrænsetilstanden Beregning i brudgrænsetilstanden Kabelkrafttab

Læs mere

LÆGTE/METAL/STRØM DETEKTOR

LÆGTE/METAL/STRØM DETEKTOR LÆGTE/METAL/STRØM DETEKTOR Brugsanvisning Læs denne brugsanvisning grundigt før brug INTRODUKTION Dette er en avanceret detektor med multifunktion. Den kan finde og lokalisere metal, strøm og lægter. Figur

Læs mere

I dette kapitel behandles udvalgte dele af bygningens bærende konstruktioner. Følgende emner behandles

I dette kapitel behandles udvalgte dele af bygningens bærende konstruktioner. Følgende emner behandles 2. Skitseprojektering af bygningens statiske system KONSTRUKTION I dette kapitel behandles udvalgte dele af bygningens bærende konstruktioner. Følgende emner behandles : Totalstabilitet af bygningen i

Læs mere

Elementsamlinger med Pfeifer-boxe Beregningseksempler

Elementsamlinger med Pfeifer-boxe Beregningseksempler M. P. Nielsen Thomas Hansen Lars Z. Hansen Elementsamlinger med Pfeifer-boxe Beregningseksempler DANMARKS TEKNISKE UNIVERSITET Rapport BYG DTU R-113 005 ISSN 1601-917 ISBN 87-7877-180-3 Forord Nærværende

Læs mere

Laster. A.1 Brohuset. Nyttelast (N) Snelast (S) Bilag A. 18. marts 2004 Gr.A-104 A. Laster

Laster. A.1 Brohuset. Nyttelast (N) Snelast (S) Bilag A. 18. marts 2004 Gr.A-104 A. Laster Bilag A Laster Følgende er en gennemgang af de laster, som konstruktionen påvirkes af. Disse bestemmes i henhold til DS 410: Norm for last på konstruktioner, hvor de konkrete laster er: Nyttelast (N) Snelast

Læs mere

ELEMENTÆR STATIK. Karl Terpager Andersen 2. udgave POLYTEKNISK FORLAG

ELEMENTÆR STATIK. Karl Terpager Andersen 2. udgave POLYTEKNISK FORLAG ELEMENTÆR STATIK Karl Terpager Andersen 2. udgave POLYTEKNISK FORLAG Elementær statik Af Karl Terpager Andersen 1986 og 1992 Polyteknisk Forlag 2. udgave 1992, 4. fotografiske oplag 1998 1. udgave, digital

Læs mere

Binært LAS-format Denne indstilling import Laser scan datafiler, i LAS format.

Binært LAS-format Denne indstilling import Laser scan datafiler, i LAS format. Kvadratnetsmodel - Import af Laser Scan Datafiler Funktionen til at oprette kvadratnetsmodeller er nu blevet udvidet og omfatter nu også en funktion til at importere laser scanning datafiler. Metoden bag

Læs mere

3 LODRETTE LASTVIRKNINGER 1

3 LODRETTE LASTVIRKNINGER 1 3 LODRETTE LASTVIRKNINGER 3 LODRETTE LASTVIRKNINGER 1 3.1 Lodrette laster 3.1.1 Nyttelast 6 3.1. Sne- og vindlast 6 3.1.3 Brand og ulykke 6 3. Lastkombinationer 7 3..1 Vedvarende eller midlertidige dimensioneringstilfælde

Læs mere

Statik og jernbeton. Lars Pedersen Institut for Byggeri & Anlæg Aalborg Universitet. Okt. 2016

Statik og jernbeton. Lars Pedersen Institut for Byggeri & Anlæg Aalborg Universitet. Okt. 2016 Statik og jernbeton Lars Pedersen Institut for Byggeri & Anlæg Aalborg Universitet Okt. 2016 Hvad kan gå galt? Hvordan undgår vi, at det går galt? Brud Betontværsnit Armeringsbehov? Antal jern og diameter

Læs mere

Statik og jernbeton. Lars Pedersen Institut for Byggeri & Anlæg Aalborg Universitet. Hvad kan gå galt? Hvordan undgår vi, at det går galt? Okt.

Statik og jernbeton. Lars Pedersen Institut for Byggeri & Anlæg Aalborg Universitet. Hvad kan gå galt? Hvordan undgår vi, at det går galt? Okt. Statik og jernbeton Lars Pedersen Institut for Byggeri & Anlæg Aalborg Universitet Okt. 2017 Hvad kan gå galt? Hvordan undgår vi, at det går galt? Brud 1 Betontværsnit Armeringsbehov? Antal jern og diameter

Læs mere