Julestjerner af karton Design Beregning Konstruktion

Størrelse: px
Starte visningen fra side:

Download "Julestjerner af karton Design Beregning Konstruktion"

Transkript

1 Julestjene af katon Julestjene af katon Design Beegning Konstuktion Et vilkåligt antal takke En vilkålig afstand fa entum ud til spidsene En vilkålig afstand fa entum ud til toppunktene i "indakkene" En vilkålig tykkelse Fofatte: Cand. Sient Jon Andesen Lekto i Matematik Læeuddannelsen i Åus, VIAUC Spøgsmål, kommentae mm. e velkomne. Matematik 10. deembe 006 Side 1 af 18 Jon Andesen

2 Julestjene af katon Læsevejledning: Intoduktion... 3 Foskellige didaktiske ovevejelse og poblemstillinge som optakt til abejdet. umlige stjene en undesøgende aktivitet... På side lægges de op til at aktiviteten igangsættes som en undesøgende og ekspeimenteende aktivitet med så lidt vejledning som muligt. umlige stjene en opskift... 5 I dette afsnit gives en fædig opskift på julestjenepoduktionen. Som ved madopskifte skal man ave fat på mateiale og edskabe fo at fostå opskiften. Opskiften skal udføes fo at man kan fostå den. Du skal buge katon, lim (skolelim, limstift, tape - elle limpistol), saks, tegneedskabe - og evt. et geometipogam. Gå du diekte til opskiften miste du væsentlige side af læepoessen - så vent med det til du enten e køt ujælpeligt fast - elle til du vil se andes bud på femstillingspoessen. Femstilling af en julestjene ekspeimente med mateiale og edskabe He e en appoteing (pæsentatiosnpotefølje kan man måske kalde det) fa en ekspeimenteende udfoskning af poblemstillingen. Bemæk at det e meget vanskelig at dokumentee den slags abejdspoesse uden billede. Måske ville det væe endnu bede med en p-baseet femstilling, vo også videoklip kunne indgå. Femstilling af en julestjene ud fa bestemte ønskede mål He fobedes metoden fa foegående afsnit ved at inddage geometiske beegninge i konstuktionen. Baggunden fo at kunne gøe dette e at man a væet gennem en foegående mateialebaseet undesøgelse af poblemstillingen (som f.eks. i foegående afsnit). Julestjenedesign en matematisk undesøgelse Dette og de næste te afsnit e et kævende vad angå matematikken. Fomålet med dem e at påvise, vilke matematiske udfoldelsesmuligede de faktisk gemme sig i emnet. Det skal ikke misfostås deen, at det kæve en masse avaneet matematik at konstuee julestjene. Det kan selv bøn klae. Sidene skal vise at de e mee end bøneavestof i emnet. Det e ikke emnet i sig selv, de e afgøende fo, vilke matematiske poblemstillinge de kan dukke op. Det e de spøgsmål man stille sig undevejs, de kan fempovokee endog et så komplieet matematik. Den omvendte poes... 1 He komme vi bl.a. andet ud fo at skulle løse te andengadsligninge med te ubekendte. En ikke elt banal anvendelse af andengadsligningens løsningsfomel foekomme. Julestjene af to ele stykke He opstilles en uliged de fotælle, vonå stjenens to alvdele kan femstilles uden slidse og de udledes en fomel fo tykkelsen af en sådan stjene. En næmee undesøgelse af foldepoessen I dette afsnit foekomme flee anvendelse af andengadsligninge, funktione og umligt koodinatsystem. Matematik 10. deembe 006 Side af 18 Jon Andesen

3 Julestjene af katon Intoduktion Med enblik på at motivee eleve til at beskæftige sig med foskellige omåde af matematikken lede vi efte fasineende emne og aktivitete. At bygge stjenefomede polyede e et bud på en sådan aktivitet. Det e en udfoding fo læee at åbne eleves øjne fo matematikken i dette. Som læe kan du væe fistet til at jælpe elevene fo meget, voved du fatage dem ejeskab ove poesse og podukte. Du få beov fo at støtte og opmunte såvel psykologisk som matematisk. Metafoe så som "stilladseing" elle "zone fo næmeste udvikling" a væet bugt i litteatuen. Aktivitet "Tag denne stjene. Lav en kopi af den i katon. Lav ande stjene i foskellige støelse, med foskellige antal ståle, tykkelse elle vad du nu finde på." Sto foviing "Hvad a det med matematik at gøe?" "Hvo e de stykke vi skal egne?" "Dille du os?" "Det e e jo noget de gø i bøneaven op til jul!" Pointe "Ja, på begyndetinnet kan de abejde med julestjene i matematiktimene, men de kan også væe matematiske udfodinge på såvel mellemtin som sluttin. Selv gymnasieeleve og studeende endnu længee femme i uddannelsessystemet kan få dees sag fo. Det afænge ikke af emnet alene, men af de poblemstillinge man sætte dig fo at løse." Ingen "fast food" tak. Elevene skal ikke se fo mange detalje i begyndelsen af pojektet. Fædiglavede udklipsak vo de bae skal klippes, foldes og limes kan findes mange stede. I denne sammenæng skal den slags kun buges i begænset omfang og kun som inspiationsmateiale. Matematikken findes i abejdet med at beskive de geometiske foold ved stjenene og i at konstuee sine udklipsak. Design af udklipsak Mange geometiske begebe optæde i poessen, de føe fa en konket ide til udklipsak. Identifikation af fome, udtænkning af jælpefigue, konstuktion af tekante og kombinatione af dem via spejlinge og otatione. Designet af limkante udgø et kapitel fo sig selv afængigt af ambitionsniveauet. Dynamisk geometi Compute kan væe til sto jælp nå stjenenes design skal udfoskes og udklipsak med limkante mm. konstuees. Afsluttende bemækninge Fotolk ikke det foegående deen at "klippe og kliste" e minde vigtigt end beegning og geometisk konstuktion. Poessen skal føes elt til ende, fo at man få fuldt udbytte af anstengelsene. Det give sto tilfedsstillelse, såvel intellektuelt som æstetisk, at se på sin stjene vel vidende at man kende det geometiske design og abejdspoessene, de ligge bag det fædige podukt. Man komme til at se på matematik med ande øjne og give sig i kast med nye udfodinge. Matematik 10. deembe 006 Side 3 af 18 Jon Andesen

4 Julestjene af katon umlige stjene en undesøgende aktivitet Du kan gibe sagen an som en undesøgende aktivitet, vo du selv pøve at udvikle en stategi fo at konstuee umlige stjene. Det kan du f.eks. gøe ved føste at lave en kopi af en konket stjene som f.eks. denne: Du kan så eftefølgende udvikle en metode fo, voledes man kan konstuee stjene af foskellige støelse og med foskellige tykkelse og foskellige antal takke. Denne metode e nok den du i længden læe mest af foudsat at du ikke give op undevejs. Den anden muliged e at du få en mee elle minde udfølig opskift udleveet. En gylden middelvej kan væe at buge dine medstudeende og din læe som støtte til at komme videe, vis du køe elt fast. En opskift kan også buges på denne måde vis du lade væe med at følge den slavisk men blot kikke i den nå det gå elt i stå fo dig. Denne måde at abejde på e nok det psykologen Vygotsky beskive nå an tale om "zonen fo næmeste udvikling". Mait Høines 1 nævne i fobindelse med en poblemstilling som un a pæsenteet fo foskellige aldesguppe:»[oppgaven] a væet abeidet med av 5. klassinge, av læestudente og av foelde. E det oveaskende at vi a oplevd det som om alle guppene statet med næ sagt like foudsætninge? Det så ut til at elevene tengte me tid, de adde støe tålmodiget, og de ville ikke øe løsninge. De ville finne ut selv. Voksne e ofte svafiksete, de vil a jælp og ønske en gennemgang av stoffet tidligee. Hos elevene fikk poblemet ligge i flee daga. En annan foskjell va at esultatene elevene kom fam til ikke ble gitt i fomelt spåk. De foetog imidletid fomaliseinge og de beabeidet spåket sitt fo at svaet skulle bli så pesist som mulig. De fomulete egle elle oppskifte.«hvad med dig selv? Vil du ave en løsningsmetode foæet? Elle vil du pøve selv? Mit foslag e at du stoppe læsningen e og gå i gang med at finde ud af, vodan stjene kan konstuees og bygges. Hvis du gå i stå og slet ikke kan komme videe, så pøv at se på nogle af de følgende side. Måske beøve du ikke at læse et meget af det fo at komme videe med din egen poes. 1 Mait Jonsen Høines: Begynneopplæingen, Caspa Folag 1998/001 Matematik 10. deembe 006 Side af 18 Jon Andesen

5 Julestjene af katon umlige stjene en opskift He følge den ultimative opskift på stjenedesign. Du skal konstuee umlige stjene som den viste. Sådan at du a fuld kontol ove antallet af takke, adius af såvel omskeven som indskeven ikel samt stjenens tykkelse på midten. Føst skal du beslutte dig fo, vo mange takke stjenen skal ave samt vad adius i enoldsvis indskevne og omskevne ikel skal væe. Så kan du konstuee en plan stjene, de ligge i den umlige stjenes symmetiplan. Denne plane stjene skal du buge til at lime den umlige stjenes to alvdele sammen på. Den umlige stjene bestå af en øve og en nede alvdel. Udfoldningsnettene til disse to alvdele konstuees ve fo sig og de to alvdele klæbes på den plane stjene konstueet ovenfo. Nettet til en alv stjene bestå af konguente tekante som TBS Poblemet e at bestemme sidene i disse tekante. Men de kan findes ved jælp af nøjagtig konstuktion med passe, lineal og vinkelmåle elle beegnes ved jælp af Pytagoas sætning og osinuselationen. Et dynamiske geometipogam som Geomete kan buges med sto fodel. Matematik 10. deembe 006 Side 5 af 18 Jon Andesen

6 Julestjene af katon Konstuktionsmetode: Konstue de to lodette etvinklede tekante TCS og TCB og depå den vandette tekant CBS. (Lodet og vandet efeee til den situation, vo stjenens symmetiplan ligge vandet). Nu kan du omyggeligt måle a, b og. I f.eks. Geomete e denne metode så nøjagtig som det kan blive fodi Geometes målefunktione jo e baseet på fomle og omputeens egnenøjagtiged. Beegningsmetode: Du kan også selv beegne a, b og ud fa følgende fomle Depå kan udfoldningsnettet konstuees: Det kan væe en fodel at beegne vinklen v = BTS ud fa fomlen til øje. Bemækes at punkte som B og S ligge på konentiske ikle med adie v. a og kan vinkel v nu buges til at måle sig fem til B- ene og S-ene ele vejen undt. Elle deje i Geomete. Matematik 10. deembe 006 Side 6 af 18 Jon Andesen

7 Julestjene af katon Som et kuiosum kan nævnes at foudsat og opfylde uligeden til øje kan man konstuee en stjene, vo udfoldningsnettet ingen "slids" a: Den alve tykkelse på denne stjene vil ave vædien Man kan eventuelt pøve sig fem med foskellige vædie af og, vis man ønske at konstuee en sådan stjene med en bestemt tykkelse. Det kæve nok ompute elle en god egnemaskine. På de næste side kan du læse en beskivelse af en ekspeimenteende tilgang til poblemstillingen. Føst fosøges med så lidt matematik som muligt. De bakses med mateialene og de gøes efainge gennem abejdspoessen. Nogen kalde dette en æstetisk læepoes. De læes gennem sansene. (Det komme af det gæske od 'aistesis de bl.a.betyde fonemmelse elle følelse). Efte at ave podueet en stjene på denne måde vudees esultatet og en fobedet femstillingspoes udvikles. He buges matematik til at fastlægge stjenens fom. Det kan nu kaldes en designpoes: Vi ønske bestemte mål på den fædige stjene og det kan vi opnå ved bl.a. matematikkens jælp. Matematik 10. deembe 006 Side 7 af 18 Jon Andesen

8 Julestjene af katon Femstilling af en julestjene ekspeimente med mateiale og edskabe. Føst en metode med et minimum af matematik. Denne metode e ikke den mest nøjagtige men til gengæld få man føling med, vad de e det gundlæggende i stjenens opbygning. Man udvikle sin fonemmelse fo stjene og få et bede gundlag fo at fostå den mee pæise men også mee matematiske konstuktion de følge længee nede på de sidste side. En stjene e bygget af tekante, så jeg tegne en tekant (TBS)og klippe den ud. og buge den som skabelon til at tegne nettet til den udfoldede stjene. Ved at flytte undet på tekanten femkomme dette: Bemæk at de ikke e plads til takkene i samme figu, så de må tegnes selvstændigt og klistes på bagefte. Husk limflappe. Da de skal buges to udgave at samme net til stjenens to alvdele oveføes nettet til et andet stykke katon ved at pikke ulle i jønene med en passe. Husk tykt undelag så bodet ikke ødelægges. Matematik 10. deembe 006 Side 8 af 18 Jon Andesen

9 Julestjene af katon Udfoldningene klippes ud og de kan foldes ("dale" og "tagygge"). Foldestegene (falsene) e tukket op ved ådt tyk med en kuglepen fo at det skal væe lettee at folde. De kan også idses elle skæes i papiet fo at opnå dette. Elle man kan købe en speiel falsepen. Deefte skal de to "løse" ame limes på: Nå limen e tøet fumles stjenen på plads på et plant undelag. Efte nogle fosøg komme den til at stå fladt ned. Det va genealpøven. Så skal de smøes lim på limflappene og nu gælde det fo alvo om at få stjenen til at stå igtigt på et stykke katon så den blive limet fast i den igtige faon. Deefte kan den skæes (elle klippes) fi langs kanten. (Pas igen på undelaget). og man a en alv stjene, de e flad på den ene side: Matematik 10. deembe 006 Side 9 af 18 Jon Andesen

10 Julestjene af katon Den anden alve stjene limes på den flade side og jeg a en el stjene: Men jeg e ikke tilfeds: Selv små unøjagtigede i konstuktionspoessen slå kaftigt igennem i det fædige esultat. Defo vælge jeg at vende lidt om på poessen. Matematik 10. deembe 006 Side 10 af 18 Jon Andesen

11 Julestjene af katon Femstilling af en julestjene ud fa bestemte ønskede mål Ved denne metode tages de udgangspunkt i stjenens omskevne og indskevne ikel: Selve femstillingspoessen ovenfo gø det vanskeligt at plaee stjenen elt symmetisk på gundplanen. Defo ænde jeg poessen og begynde med at tegne indskeven og omskeven ikel som to konentiske ikle. Jeg a målt mig til at de skal væe = 3,5 m og = 10 m fo at få samme udstækning som stjenen ovenfo. Da jeg jo ved at spidsene og amulene skal dele ve af iklene i 6 lige stoe bue og at de e foskudt en alv bue i foold til inanden kan jeg nu konstuee stjenens gundplan. C S B I stedet fo at state med en tekant TBS som i føste fosøg vil jeg konstuee mig fem til denne tekant. Stykket BS ligge i samme plan som de to ikle, så det kan jeg faktisk måle mig fem til og nå fem til at det e 7, m. Fo at finde de to ande stykke gå jeg således fem: Jeg foestille mig at den alve stjene e en pyamide med stjenefomet gundflade og med T som toppunktet i denne pyamide: Matematik 10. deembe 006 Side 11 af 18 Jon Andesen

12 Julestjene af katon De to ikle fa fø a entum i punktet C som også femkomme, vis man nedfælde den vinkelette fa T til pyamidens stjenefomede gundflade. Deved opstå de to etvinklede tekante inde i "pyamiden", nemlig TCB og TCS, begge med C som den ette vinkel. Man kan ikke se disse tekante fodi de ligge inde i pyamiden/stjenen, men pøv om du kan se dem fo dit inde blik. Foestil dig f.eks. at du gå undt inden i stjenen(altså den øveste alvdel som vi se på nu). Så e T oppe i toppen og C e nede på gulvet lige unde T. B og S ligge i to jøne ude vo de skå vægge møde gulvet. TB og TS kan nu beegnes ved at buge Pytagoas sætning idet TC = = 3 m, vo betegne den alve tykkelse af stjenen på midten. Samtidig ved vi at CB = og CS =. TB TS 3, m,5m 3 m 10,m (I øvigt kunne vi også ave beegnet BS ved at buge osinuselationen 180 BS os 3,5 10 3,5 10 os30 m 7,19 m 7, m n Så konstuktionen og målingen ovenfo va ikke elt inge.) Nu e det så bae med at komme i gang med at femstille en ny udfoldning baseet på denne tekant: TBS vo TS = 10, m, TB =,5 m og BS = 7, m. Lige som i føste udgave lave jeg to udfoldede stjenenet. Denne gang e konstuktionen udføt ud fa de beegnede mål fo tekant TBS (og fo at øge pæisionen a jeg bugt Geomete... men nøjagtigt udføt abejde med passe og lineal gå også an). Matematik 10. deembe 006 Side 1 af 18 Jon Andesen

13 Julestjene af katon Julestjenedesign en matematisk undesøgelse En dag stod jeg i en obbyfoetning med en papmaestjene i ånden. Jeg gav mig til at se lidt næmee på den. Hvodan va den mon bygget? Mon ikke det va muligt at aflue designet? Med geometibillene på konstateede jeg, at den i stoe tæk va opbygget af tekante og at de va en øj gad af symmeti. Såvel otationssymmeti som symmeti om planen gennem amenes spidse. Afstanden fa stjenens entum C til toppunktet T kaldes (det e demed den alve tykkelse af stjenen på midten). Afstanden fa C til "amulen" B 1 kaldes a, afstanden fa B 1 til spidsen S 1 kaldes b og afstanden fa toppunktet T til spidsen S 1 kaldes. Inde i stjenen se jeg fo mig to etvinklede tekante CTB 1 og CTS 1 og en tekant (ikke etvinklet) CB 1 S 1. Pytagoas sætning bugt på de to etvinklede tekante give: (1.1) (1.) a a b Cosinuselationen bugt på den tedje tekant give 180 (1.3) b os n Matematik 10. deembe 006 Side 13 af 18 Jon Andesen

14 Julestjene af katon Ud fa givne vædie fo, og kan vi depå konstuee tekantene, de indgå i bygningen af stjenen. Nå man skal konstuee den udfoldede stjene e entevinklen givet ved v, vo v findes af a b (1.) os v a Ovenstående beegninge e tilstækkeligt til at man kan komme i gang med at konstuee julestjene på samlebånd. F.eks. kan man i et pogam som Geomete lave et dokument delt op i flee side med stjene med foskellige antal takke. Det e nemlig et let at lave f.eks. femstjene vo paametene, og kan ændes. Det blive lidt mee komplieet vis også n, skal kunne ændes dynamisk. He e det lettee at lave en side fo ve vædi af n (inden fo det antal muligede som man a bug fo). Det vil kæve et pogam med flee pogammeingsmuligede en Geomete a, vis man ønske at lave det ultimative stjenepogam. En alv udfoldet julestjene kan nu femstilles ved bug af passende jælpemidle alt lige fa sædvanlige tegneedskabe til et elle andet geometi- elle konstuktionspogam. Ovenstående e femstillet ved jælp af det dynamiske geometipogam Geomete. Netop bugen af et dynamisk geometipogam give stoe fodele, vis man konstuee den udfoldede stjene unde bug af symmetiegenskabene og pogammets tansfomationsfunktione. Heved kan modellen blive dynamisk og let at ænde på. Ovenstående udfoldede stjene skal jo bl.a. limes sammen ved slidsen. Lidt vaiation af f.eks. -paameteen vise at det e muligt at femstille en stjene som, vo den udklippede model ænge sammen ele vejen undt. Nedenfo findes en gundigee undesøgelse af denne situation, vo en el del matematiske begebe og metode komme i anvendelse. Den omvendte poes I poblemstillingen ovenfo gik vi ud fa, og og beegnede sidene i de tekante som stjenen bygges af. Kan man gå den anden vej? Mee pæist: Givet en tekant med sidene a, b og. Kan man da konstuee en julestjene, vo den pågældende tekant e det gundelementet, som stjenen e opbygget af? Andeledes fomuleet kan vi løse ligningssystemet bestående af ligningene (1.1), (1.) og (1.3) med ensyn til, og? Da < vise (1.1) og (1.) at en nødvendig betingelse e at a <. Tækkes ligning (1.1) fa ligning (1.) få man (.1) = a + (1.3) kan omskives til (.) b 180, vo os n de efte kvadeing give Matematik 10. deembe 006 Side 1 af 18 Jon Andesen

15 Julestjene af katon (.3) b b b Indsættes (.1) i (.3) få man efte en del manipulation (.) a b a b 180 0, vo sin n Diskiminanten til denne skjulte andengadsligning i vise sig at kunne eduees til (.5) D 16 b ( a ) Heaf kan man bl.a. aflæse endnu en nødvendig betingelse fo at det kan lade sig gøe. Nemlig (.6) b a Såfemt denne betingelse e opfyldt kan bestemmes ud fa ligningen b a b a (.7) Den/de vædie fo de findes e kan eftefølgende indsættes i (.1) og bestemmes. Endelig kan bestemmes af (1.1). Bemæk at kun løsninge fa.7 som sike at a > kan buges. Hvis man f.eks. lægge ud med n = 5, a = 3 m, b = m og = 6 m give.7 muligedene 7,7 1.0 voaf kun den mindste kan buges (da a = 9) og stjenen kan konstuees ud fa =,70 m, = 5,85 m og = 1,31 m. Julestjene af to ele stykke 180 Det deje sig om situationen, vo v de svae til at den alve, udfoldede stjene e lavet af n et stykke uden gennemklipninge. Spøgsmålet e om den kan løses. Sæt 180 os. Det deje sig om at løse ligningen: n (3.1) a b a vo a, b og e bestemt ved ligningene (1.1), (1.) og (1.3). Indsættes de få man Matematik 10. deembe 006 Side 15 af 18 Jon Andesen

16 Julestjene af katon Matematik 10. deembe 006 Side 16 af 18 Jon Andesen (3.) de omskives til (3.3) De ved kvadeing give (3.) (3.5) (3.6) 1, vo n 180 sin Heaf fås (3.7) n 180 sin n 180 tan n 180 tan Betingelsen fo at ovenstående od e et eelt tal e (3.8) 0 1 x x x 1 x, vo x Andengadspolynomiet i den sidste uliged a diskiminant (3.9) 1 D øddene e demed (3.10) 1 Kavet til fooldet mellem og blive demed (idet fooldet jo ikke kan ovestige 1 da < ): (3.11) n 180 os n 180 sin 1 Ovenstående fomle vise sammenængen mellem, og vis man ønske stjene de kan limes sammen af to ele stykke. I paksis e det muligt af femstille den slags stjene blot ved at vaiee paametene i det dynamiske geometipogam. Dvs. det e ikke nødvendigt med de mange algebaiske omskivninge. Det man få ud af disse e pæise fomle samt et kiteium fo, vonå det oveovedet e muligt at lave en sådan stjene. Det kom i vet fald bag på mig, at de findes en

17 Julestjene af katon sådan begænsning. Faktisk avde jeg ikke foestillet mig at det va muligt at lave stjene af to ele stykke. Det de opindeligt bagte mig på spoet af denne muliged va en metaljulestjene som jeg så os en isenkæmme fo nogle å siden. Jeg avde lige væet i gang med at lime stjene sammen af katon. Da jeg så metalstjenen gav jeg mig til at lede efte de svejsninge som jeg foventede de ville væe. Men jeg fandt kun en langs kanten. Det fik mig til at spøge: E det muligt med stjene af to ele stykke uden slidse. Og det vise ovenstående udledning. I næste sektion fosøge jeg at se næmee på, vad de ent fysisk ske, nå man give sig til at folde en stjene af et stykke. Jeg se på en konket 5-stjene, fo at få en gafisk femstilling af situationen i dette tilfælde. En næmee undesøgelse af foldepoessen. Jeg vil undesøge vad de ske med punktet C nå punktet T føes op ad en akse gennem oigo vinkelet på x- og y-aksene medens punktene S 1 og S bevæge sig adialt i x-y-planen ind mod oigo. Koodinatsæt unde bevægelsen fo de elevante punkte e T(0,0,z), C(u,0,w) og S 1 z os v, z sin v, 0 og tilsvaende fo S (symmeti om x-aksen). CT= a, CS 1 = b og TS 1 = give følgende ligninge: (.1) u z w a (.) z z os v u sin v w b Det de isæ inteessee mig e e at udtykke u og w som funktione af z fo at kunne følge vaiationen af disse to støelse de beskive bevægelsen af punktet C. Af (1) få man (.3) u w a z zw og () omskives til (.) z u u z os v w b Matematik 10. deembe 006 Side 17 af 18 Jon Andesen

18 Julestjene af katon Indsættes (3) i () få man (.5) a b z zw u z os v Heaf fås u = f(z) + g(z)w, vo (.7) a b z f (z) og z os v g(z) z z os v Indsættes (.6) i (.3) få man (.8) f (z) g(z) w f (z)g(z)w w a z zw de omskives til A(z)w + B(z)w + C(z) = 0, vo A(z) = 1 + g(z), B(z) = (f(z)g(z)-z) og C(z) = f(z) + z a Endelig sættes D(z) = B(z) A(z)C(z) og vaiationen af andenkoodinaten w til punktet C kan beskives med funktionene B(z) D(z) (.10) 1(z) A(z) og (z) B(z) D(z) A(z) 1 vise voledes C i begyndelsen bevæge sig ned unde det vandette plan fo depå at byde op igennem (netop ved den vædi af z de svae til stjenes øjde). Funktionen 1 svae til den situation, vo stjenen komme til at folde den fokete vej. Tallene de svae til den viste situation e =,5m og = 6m. He blive = 3,1 m og tekantens side e a =,0 m, b =, m og = 6,8 m. Matematik 10. deembe 006 Side 18 af 18 Jon Andesen

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

Projekt 1.8 Design en optimal flaske

Projekt 1.8 Design en optimal flaske ISBN 978-87-7066-9- Pojekte: Kapitel Vaiabelsammenænge. Pojekt.8 Design en optimal flaske Pojekt.8 Design en optimal flaske Fimaet PatyKids ønske at elancee dees enegidik Enegize. Den skal ave et nyt navn

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Pivatøkonomi og kvotientække KLADDE Thomas Heide-Jøgensen, Rosbog Gymnasium & HF, 2017 Indhold 1 Endelige kvotientække 3 1.1 Hvad e en ække?............................ 3 1.2 Kvotientække..............................

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.

Læs mere

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00 1 Fomål 1. At bestemme acceleationen fo et legeme med et kendt inetimoment, nå det ulle ned ad et skåplan - i teoi og paksis.. I teoi og paksis at bestemme acceleationen fo et legeme med kendt inetimoment,

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal Mike Auebach Odense, 2010 1 OPSPARING OG LÅN Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen.

Læs mere

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud TC A/S Nøegade 21 0900 København C Afgøelse om fastsættelse af WACC i fobindelse med omkostningsdokumentation af pisene i TC s standadtilbud Sagsfemstilling en 29. juni 2006 modtog TC s notat om den beegningsmæssige

Læs mere

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber. - 4 - Kap. : Logaitme-, eksponential- og potensfunktione. Gundlæggende egenskabe... Logaitmefunktione. Definition... Ved en logaitmefunktion fostå vi en funktion f, som opfylde følgende te kav: ) Dm(f)

Læs mere

Projekt 0.5 Euklids algoritme og primiske tal

Projekt 0.5 Euklids algoritme og primiske tal Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele

Læs mere

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år.

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år. 16. septembe 8 Afdagsfie lån og pisstigninge på boligmakedet Den stigende populaitet af de afdagsfie lån ha ad flee omgange fået skylden fo de kaftigt stigende boligpise de senee å. Set ove en længee peiode

Læs mere

TEORETISK OPGAVE 3. Hvorfor er stjerner så store?

TEORETISK OPGAVE 3. Hvorfor er stjerner så store? TEORETISK OPGAVE 3 Hvofo e stjene så stoe? En stjene e en kuglefomet samling vam gas De fleste stjene skinne pga fusion af hydogen til helium i dees entale omåde I denne opgave skal vi anvende klassisk

Læs mere

Gravitationsfeltet. r i

Gravitationsfeltet. r i Gavitationsfeltet Den stoe bitiske fysike Isaac Newton opdagede i 600-tallet massetiltækningsloven, som sige, at to masse m og i den indbydes afstand påvike hinanden med en kaft af følgende støelse, hvo

Læs mere

Erhvervs- og Selskabsstyrelsen

Erhvervs- og Selskabsstyrelsen Ehvevs- og Selskabsstyelsen Måling af viksomhedenes administative byde ved afegning af moms, enegiafgifte og udvalgte miljøafgifte Novembe 2004 Rambøll Management Nøegade 7A DK-1165 København K Danmak

Læs mere

Etiske dilemmaer i fysioterapeutisk praksis

Etiske dilemmaer i fysioterapeutisk praksis side 06 fysioteapeuten n. 06 apil 2008 AF: FYSIOTERAPEUT, PH.D.-STUDERENDE JEANETTE PRÆSTEGAARD j.paestegaad@oncable.dk Foto: GITTE SKOV fafo.fysio.dk Etiske dilemmae i fysioteapeutisk paksis Hvis vi ikke

Læs mere

p o drama vesterdal idræt musik kunst design

p o drama vesterdal idræt musik kunst design musik dama kunst design filmedie idæt pojektpocespobieenpos itpoblempovokationpodu kt p on to p ot estpobablypogessivpodu ktionpovinspomotionp otesepologpoevefipofil Vestedal Efteskole // Gl. Assensvej

Læs mere

Trivselsundersøgelse 2010

Trivselsundersøgelse 2010 Tivselsundesøgelse, byggeteknike, kot-og landmålingseknike, psteknolog og bygni (Intenatal) Pinsesse Chalottes Gade 8 København N T: Indhold Indledning... Metode... Tivselsanalyse fo bygni... Styke og

Læs mere

OPGAVE 3. A Hvilken opbevaringskasse har det største rumfang?

OPGAVE 3. A Hvilken opbevaringskasse har det største rumfang? Rumgeometi OPGAVE 2 Matildes lillebo og lillesøste a ve fundet en I kassene skal de 3 cm 39 3 cm sto sten på standen, og de kan ikke blive enige opbevaes skumteninge, I dette kapitel skal du abejde med

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Sabatiers princip (elevvejledning)

Sabatiers princip (elevvejledning) Sabaties pincip (elevvejledning) Væ på toppen af vulkanen Sammenligning af katalysatoe Fomål I skal måle hvo godt foskellige stoffe vike som katalysato fo udvikling af oxygen fa hydogenpeoxid. I skal sammenligne

Læs mere

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen HTX Næstved Matematik A 8 2 Indholdsfotegnelse Indholdsfotegnelse... 2 Indledning... 3 Poblemstilling... 4 Teoi... 5 Vektoe i planet... 5 Vektobestemmelse... 5 Vinkel mellem to vektoe... 6 Vektokoodinate...

Læs mere

Beregningsprocedure for de energimæssige forhold for forsatsvinduer

Beregningsprocedure for de energimæssige forhold for forsatsvinduer Beeninspocedue fo de eneimæssie fohold fo fosatsvindue Nævæende dokument beskive en pocedue til bestemmelse, af de eneimæssie fohold fo fosatsvindue. Det skal notees, at beeninen e baseet på en foeløbi

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Dimittendundersøgelse, 2009 Dato: 3. juni 2009

Dimittendundersøgelse, 2009 Dato: 3. juni 2009 Dimittendundesøgelse 2008-2009 Afspændingspædagoguddannelsen Dimittendundesøgelse, 2009 Dato: 3. juni 2009 Opsummeing af undesøgelse foetaget blandt dimittende fa Afspændingspædagoguddannelsen Datagundlag

Læs mere

MATEMATIK på Søværnets officerskole

MATEMATIK på Søværnets officerskole MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt

Læs mere

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016 Regional Udvikling, Miljø og Råstoffe Jodfouening - Offentlig høing Foslag til nye foueningsundesøgelse og opensninge 2016 Decembe 2015 Food En jodfouening kan skade voes fælles gundvand, voes sundhed

Læs mere

Wear&Care Brugervejledning. A change for the better

Wear&Care Brugervejledning. A change for the better A change fo the bette Intoduktion Wea&Cae e en smat løsning, de give mulighed fo at følge fugtniveauet i bleen, så den kan skiftes efte behov. Infomationen gå fa en sende på bleen til modtageens smatphone

Læs mere

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser.

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser. Betonø ha den støste vandføingskapacitet Et afløbssystems opgave e at lede vand samt uenhede til ensningsanlæg elle ecipient. Evnen til at gøe dette afhænge af systemets hydauliske egenskabe næmee betegnet

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet Pension og Tilbagetækning - Ikke-paametisk Estimation af Heteogenitet Søen Anbeg De Økonomiske Råds Sekataiat, DØRS Pete Stephensen Danish Rational Economic Agents Model, DREAM DREAM Abedspapi 23:2 foeløbig

Læs mere

Praksis om miljøvurdering

Praksis om miljøvurdering Paksis om miljøvudeing Miljøvudeingsdage 2015 Nyee paksis på miljøvudeingsomådet Flemming Elbæk Flemming Elbæk, advokat, HD(Ø) Ansættelse: Advokatfuldmægtig, 2006-2008 Juist, Miljøministeiet, 2008-2012

Læs mere

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009 N. -9 Atom numme nul Fag: Fysik A Udabejdet af: Michael Bjeing Chistiansen, Åhus Statsgymnasium, august 9 Spøgsmål til atiklen 1. Hvofo vil det væe inteessant, hvis man fo eksempel finde antikulstof i

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

PÆDAGOGISK KVALITETSEVALUERING

PÆDAGOGISK KVALITETSEVALUERING PÆDAGOGISK KVALITETSEVALUERING - E N M E T O D E, D E R V I R K E R I P R A K S I S HVAD ER PÆDAGOGISK KVALITETSEVALUERING? Pædagogisk Kvalitetsevalueing gø det attaktivt fo ledelse og pesonale at gå pædagogikken

Læs mere

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?

Læs mere

De dynamiske stjerner

De dynamiske stjerner De dynamiske stjene Suppleende note Kuglesymmetiske gasmasse Figu 1 Betelgeuse (Alfa Oionis) e en ød kæmpestjene i stjenebilledet Oion. Den e så sto, at den anbagt i voes solsystem ville nå næsten ud til

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

Helikopterprojekt Vejprospektering mellem Sisimiut og Sønderstrømfjord

Helikopterprojekt Vejprospektering mellem Sisimiut og Sønderstrømfjord Helikoptepojekt Vejpospekteing mellem Sisimiut og Søndestømfjod 7.-. august 006 Hold Emil Stüup-Toft, s060480 Vivi Pedesen, s06048 János Hethey, s03793 Moten Bille Adeldam, s00334 Rettelsesblad til tykt

Læs mere

VI SEJREDE! Vi kom, vi så,

VI SEJREDE! Vi kom, vi så, Vi kom, vi så, VI SEJREDE! Pojekt JCI Julehjælp Svendbog Hjælp os med at hjælpe ande 2011 afsluttede indsamlingen til tængte bønefamilie i Svendbog med sto succes! Søndag d. 18. dec. va sidste indsamlingsdag

Læs mere

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger VIDENSYSTEM.dk Bygningsinstallatione Vae Fodelingssyste 3.0 Røbeegning 3.0 Røbeegninge 3.1 Røbeegningens foudsætninge 3. Tyktabsbeegning geneelt 3.3 Paktiske hjælpeidle 3.4 Beegningspincip fo tostengsanlæg

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Arealet af en sfærisk trekant m.m.

Arealet af en sfærisk trekant m.m. ealet af en sfæisk tekant m.m. Tillæg til side 103 104 i Matematik højniveau 1 fa TRI, af Eik Vestegaad. Sfæisk tokant Givet en kugle. En plan, de passee igennem kuglens centum, skæe kuglen i en såkaldt

Læs mere

Magnetisk dipolmoment

Magnetisk dipolmoment Kvantemekanik 9 Side 1 af 9 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π I

Læs mere

Psykisk arbejdsmiljø (kort) udarbejdet af NFA (AMI)

Psykisk arbejdsmiljø (kort) udarbejdet af NFA (AMI) Psykisk abejdsmiljø (kot) udabejdet af NFA (AMI) Navn, dato, å Hvilken afdeling abejde du i? Afdelingens navn De følgende spøgsmål handle om dit psykiske abejdsmiljø. Sæt et kyds ud fo hvet spøgsmål ved

Læs mere

Hverdagsliv før og nu. fortalt gennem Børnenes Arbejdermuseum. Arbejdsbog

Hverdagsliv før og nu. fortalt gennem Børnenes Arbejdermuseum. Arbejdsbog Hvedagsliv fø og nu fotalt gennem Bønenes Abejdemuseum Abejdsbog Hvedagsliv fø og nu fotalt gennem Bønenes Abejdemuseum Denne bog tilhøe Navn: Klasse: 1 Hvedagsliv fø og nu fotalt gennem Abejdemuseets

Læs mere

Ønskekøbing Kommune - netværksanalyse i den administrative organisation

Ønskekøbing Kommune - netværksanalyse i den administrative organisation Ønskekøbing Kommune - netvæksanalyse i den administative oganisation Hvodan vike det i paksis? Elektonisk spøgeskemaundesøgelse Svaene fa undesøgelsen kombinees med alleede eksisteende stamdata i minde

Læs mere

Frivillige dyrkningsaftaler i indsatsområder

Frivillige dyrkningsaftaler i indsatsområder Miljøpojekt N. 812 2003 Fivillige dykningsaftale i indsatsomåde Gundlag og mulighede belyst ud fa kvælstofpoblematikken Egon Noe og Andes Højlund Nielsen Danmaks JodbugsFoskning Helene Simoni Thoup og

Læs mere

Plasticitetsteori for jord som Coulomb materiale

Plasticitetsteori for jord som Coulomb materiale Downloaded fo obit.dtu.dk on: Nov 3, 05 Plasticitetsteoi fo jod so Coulob ateiale Jantzen, Thoas; Nielsen, Mogens Pete Publication date: 007 Docuent Vesion Publishe final vesion (usually the publishe pdf)

Læs mere

Cykelfysik. Om udveksling og kraftoverførsel

Cykelfysik. Om udveksling og kraftoverførsel Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple

Læs mere

Tilfredshedsmåling SKP 2015 AARHUS TECH. 1. Har du været i praktik i en virksomhed i løbet af den seneste praktikperiode? 2. Køn. 3.

Tilfredshedsmåling SKP 2015 AARHUS TECH. 1. Har du været i praktik i en virksomhed i løbet af den seneste praktikperiode? 2. Køn. 3. Tilfedshedsmåling SKP 2015 AARHUS TECH 1. Ha du væet i paktik i en viksomhed i løbet af den seneste paktikpeiode? 2. Køn 3. Alde 4. Hvo langt e du i uddannelsen? 5. Hvo meget ha du sammenlagt væet i paktik

Læs mere

STATISTIKNOTER Simple multinomialfordelingsmodeller

STATISTIKNOTER Simple multinomialfordelingsmodeller STATISTIKNOTER Simple multinomialfodelingsmodelle Jøgen Lasen IMFUFA Roskilde Univesitetscente Febua 1999 IMFUFA, Roskilde Univesitetscente, Postboks 260, DK-4000 Roskilde. Jøgen Lasen: STATISTIKNOTER:

Læs mere

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( )

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( ) Kvantemekanik 0 Side af 9 Bintatomet I Sfæisk hamoniske Ifølge udtyk (9.7) e Lˆ Lˆ og de eksistee således et fuldstændigt sæt af = 0 samtidige egenfunktione fo ˆL og L ˆ de som antydet i udtyk (9.8) kan

Læs mere

11: Det skjulte univers

11: Det skjulte univers : Det skjulte unives Jeg nævnte tilbage i kapitel 2, at de e en foklaing på, at univeset ha den oveodnede stuktu, som det ha. Men dengang manglede vi foudsætningene fo at fostå foklaingene. Siden ha elativitetsteoien

Læs mere

diagnostik Skulder fysioterapeuten nr. 05 marts 2009

diagnostik Skulder fysioterapeuten nr. 05 marts 2009 side 08 fysioteapeuten n. 05 mats 2009 diagnostik Skulde Mogens Dam e oplægsholde på fagfestivalen d. 26.-28. mats 2009. Fysioteapeut Mogens Dam ha udvalgt en ække gængse diagnostiske test fo skuldepobleme.

Læs mere

Danmarks Tekniske Museum. Det kunstige øje - om mikroskopet og dets verden

Danmarks Tekniske Museum. Det kunstige øje - om mikroskopet og dets verden Danmaks Tekniske Museum O P T I K & L Det kunstige øje - om mikoskopet og dets veden Y S Til læeen At bille både e fysik og kultuhistoie, e fo mange bøn en velbevaet hemmelighed. Dette til tods fo at alle

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komlekse eksonentialfunktion og olynomie Peben Alsholm Uge 8 Foå 009 Den komlekse eksonentialfunktion. Definitionen Definitionen Den velkendte eksonentialfunktion x! e x vil vi ofte ligesom

Læs mere

Elektrostatisk energi

Elektrostatisk energi Elektomagnetisme ide 1 af 8 Elektostatik Elektostatisk enegi Fo et legeme, de bevæge sig fa et punkt til et andet, e tilvæksten i potentiel enegi høende til en konsevativ 1 kaft F givet ved minus det abejde,

Læs mere

CO 2. -regnskab For virksomheden Jammerbugt Kommune

CO 2. -regnskab For virksomheden Jammerbugt Kommune -egnskab Fo viksomheden Jammebugt Kommune Fosidebilledet vise Ryå, de gå ove sine bedde -egnskab fo Jammebugt Kommune Jammebugt Kommune indgik d. 9. oktobe 2009 en klimakommuneaftale med Danmaks Natufedningsfoening.

Læs mere

Fra udsat til ansat. Medieinfo. Socialrådgiveren. job til udsatte unge. dgmedia.dk. ds advarer mod at spare i psykiatrien

Fra udsat til ansat. Medieinfo. Socialrådgiveren. job til udsatte unge. dgmedia.dk. ds advarer mod at spare i psykiatrien Socialådgiveen Medieinfo 2015 socialådgiveen 11/14 Læs mee om voes mange ande medie på Fa udsat til ansat viksomhedspaktik skaffe job til udsatte unge dgmedia.dk ds advae mod at spae i psykiatien Kommunalt

Læs mere

MuligHeden. www.ikast-brande.dk September 2015. Robuste idéer

MuligHeden. www.ikast-brande.dk September 2015. Robuste idéer www.ikast-bande.dk Septembe 2015 Robuste idée Fitid, oplevelse og en håndsækning til kultuen En en mandeguppe ha sat sig på opgaven som scenemeste og lysfolk i Bakkehuset Skulle Ikasts kultuhus, Bakkehuset,

Læs mere

Hidsig debat om fleksjobreform Sygemeldte følges tæt i Jammerbugt Når stress ødelægger helbredet

Hidsig debat om fleksjobreform Sygemeldte følges tæt i Jammerbugt Når stress ødelægger helbredet magasin om det ummelige abejdsmaked N. 14 decembe 2010 4. ågang lige mulighede fo alle altid Hidsig debat om fleksjobefom Sygemeldte følges tæt i Jammebugt Nå stess ødelægge helbedet Indhold Fleksicuity

Læs mere

Cisgene bygplanter. planteforskning.dk Bioteknologi

Cisgene bygplanter. planteforskning.dk Bioteknologi plantefoskning.dk Cisgene bygplante Nyttige egenskabe kan tilføes til femtidens afgøde ved hjælp af genetisk modifikation uden indsættelse af atsfemmede gene. Den nye stategi anvendes bl.a. til udvikling

Læs mere

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys Metode til beenin af vametansmissionskoefficient (U-vædi) fo oven Nævæende notat beskive en metode til beenin af vametansmissionskoefficienten fo oven. Pincippet i beeninspoceduen tae udanspunkt i beeninsmetoden

Læs mere

Impulsbevarelse ved stød

Impulsbevarelse ved stød Iulsbevaelse ved stød Iulsbevaelse ved stød Indhold Iulsbevaelse ved stød.... Centalt stød.... Elastisk stød... 3. Uelastisk stød... 4. Iulsbevaelse ved stød...3 5. Centalt elastisk stød...4 6. Centalt

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

CoCo-obligationer i matematisk modelperspektivering

CoCo-obligationer i matematisk modelperspektivering CoCo-obligatione i matematisk modelpespektiveing CoCo bonds in a mathematical modeling pespective af JENS PRIERGAARD NIELSEN ######-#### THESIS fo the degee of MSc in Business Administation and Management

Læs mere

MuligHeden. www.ikast-brande.dk. Vær med!

MuligHeden. www.ikast-brande.dk. Vær med! www.ikast-bande.dk Væ med! Vi vil godt væe med I te månede ha bogee i Nøe Snede taget skald og skidt i eg hånd. Det e histoi om by, de også e ved at tage ejeskab fo at tage sig godt ud. Skald på bys offtlige

Læs mere

VORDINGBORG KOMMUNE. Butiksområde ved Bryggervangen LOKALPLAN NR. C-15.2. 20 kr. BØDKERVÆNGET BRYGGERVANGEN VÆVERGANGEN VALDEMARSGADE

VORDINGBORG KOMMUNE. Butiksområde ved Bryggervangen LOKALPLAN NR. C-15.2. 20 kr. BØDKERVÆNGET BRYGGERVANGEN VÆVERGANGEN VALDEMARSGADE VORDINGBORG KOMMUNE N BØDKERVÆNGET VÆVERGANGEN BRYGGERVANGEN VALDEMARSGADE LOKALPLAN NR. C-15.2 Butiksomåde ved Byggevangen Vodingbog apil 2005 20 k. Lokalplanlægning Planloven indeholde bestemmelse om

Læs mere

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen,

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen, ekommandation ovespændingsafledee til højspændingsnet Udabejdet af: Enst Boye Nielsen & Pete Mathiasen, DESITEK A/S Denne publikation e en ekommandation fo valg af ovespændingsafledee til højspændingsnet

Læs mere

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt. VORDINGBORG KOMMUNE N VOLDGADE ALGADE BAISSTRÆDE LOKALPLAN NR. C-16.1 Centeomåde mellem Algade og Voldgade, Vodingbog Vodingbog juni 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets

Læs mere

grib chancen 1/3 sæt ord på din drøm

grib chancen 1/3 sæt ord på din drøm gib chancen sæt od på din døm DR e på mange måde alleede i vedensklasse. Og vi skal væe det hele vejen undt. DR i vedensklasse handle om samab: Hvodan skal vi samab i femtiden? Og hvilke vædie skal vi

Læs mere

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( ) Støelsesoden fo funktionene, og ln() Side f 5 Støelsesoden fo funktionene, og ln() (opgvefoløb v/ Bjøn Gøn og John Schächte) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt

Læs mere

SUPERLEDNING af Michael Brix Pedersen

SUPERLEDNING af Michael Brix Pedersen UPERLEDNING af Mihael Bix Pedesen Indledning I denne note foudsættes kendskab til de eleentæe egenskabe ved hödingeligningen (se fx Refeene [] elle [3], lidt eleentæe egenskabe ved koplekse tal og Eules

Læs mere

Notat. 18. oktober 2011. Social & Arbejdsmarked

Notat. 18. oktober 2011. Social & Arbejdsmarked Notat Fovaltning: Social & Abejdsmaked Dato: J.n.: B.n.: 18. oktobe Udf diget af: mbf Vedłende: Fłtidspension Notatet sendes/sendt til: Abejdsmakedsudvalget Fłtidspension De ha i de seneste v et en tendens

Læs mere

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning)

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning) Fagstudieodning fo tilvalgsuddannelsen i Ehvevsøkonomi (2012-odning) 1 Indledning Til denne uddannelsesspecifikke fagstudieodning knytte sig også Rammestudieodning fo Det Samfundsvidenskabelige Fakultet,

Læs mere

Honeywell Hometronic

Honeywell Hometronic Honeywell Hometonic Komfot + Spa enegi Gulvvame Lysstying Lys Sikkehed Sikkehed Andet Andet Radiato Insight Building Automation 1 MANAGER Hometonic Manageen HCM200d e familiens oveodnede buge-inteface.

Læs mere

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Modul 0: Speciale 0. semeste, cand.oecon Aalbog Univesitet Afleveet d. 30. maj 202 VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Vejlede: Finn Olesen Skevet af Henik Hanghøj

Læs mere

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale ...when motos must be contolled Om Gea fa Technoinganaggi Riduttoi Tilføjelse til TR s katalogmateiale ISO 9 cetificeing: Technoinganaggi Riduttoi følge ISO 9 pincippene i dees kvalitetsstying. Alle dele

Læs mere

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning Elektomagnetisme 1 Side 1 af 11 Elektostatik 1 Elektisk ladning Stof e opbygget af potone (, neutone ( n og elektone ( og bestå defo p + mestendels af ladede patikle, men langt, langt støstedelen af denne

Læs mere

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt. VORDINGBORG KOMMUNE NÆSTVEDVEJ N ALGADE MARIENBERGVEJ LOKALPLAN NR. C-2.2 Banegådsomådet, Vodingbog By Vodingbog august 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt

Læs mere

Skema til evaluering af specifik indsats i et tema i henhold til lov om læreplaner

Skema til evaluering af specifik indsats i et tema i henhold til lov om læreplaner Skema til evalueing af specifik indsats i et tema i henhold til lov om læeplane De udfyldes et evalueingsskema p. tema p. aldesguppe. Institutionens navn:_katholt Målguppe:_3-6 å 2010 Antal bøn: 25 Tema:

Læs mere

LØSNINGER FRA OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER

LØSNINGER FRA OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER MASKIN- LØSNINGER FRA He finde du voes sotiment f mskine OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER 94 Omsnøingsmskine og stækfilmsomviklee

Læs mere

1. Indledning... 1 2. Lineær iteration... 2

1. Indledning... 1 2. Lineær iteration... 2 Hvad e matematik? B, i og ISBN 978 87 766 494 3 Pojekte: Kapitel Pojekt.3 Lieæe Iteatiospocesse Idhold 1. Idledig... 1 2. Lieæ iteatio... 2 2.1 Lieæ vækst... 2 2.2 Ekspoetiel vækst... 2 2.3 Foskudt ekspoetiel

Læs mere

VORDINGBORG KOMMUNE. Boligområde "Falunparken" LOKALPLAN NR. B-25.2. 20 kr. FALUNVEJ PRINS JØRGENS ALLÈ KØBENHAVNSVEJ

VORDINGBORG KOMMUNE. Boligområde Falunparken LOKALPLAN NR. B-25.2. 20 kr. FALUNVEJ PRINS JØRGENS ALLÈ KØBENHAVNSVEJ VORDINGBORG KOMMUNE N PRINS JØRGENS ALLÈ FALUNVEJ KØBENHAVNSVEJ LOKALPLAN NR. B-25.2 Boligomåde "Falunpaken" Vodingbog mats 2005 20 k. Rettelsesblad til Lokalplan B-25.2 Lokalplan C.17.24.01 Vaehus ved

Læs mere

Appendiks B: Korrosion og restlevetid for trådbindere

Appendiks B: Korrosion og restlevetid for trådbindere Appendiks B: Koosion og esleveid fo ådbindee I de følgende omales koosionspocessene fo ådbindee og hvodan man beegne esleveiden fo en koodee ådbinde. Tådbindee ha i idens løb væe udfø af: messing (en legeing

Læs mere

Pædagogisk Handleplan. Møllehøjens Børnegård i 2016

Pædagogisk Handleplan. Møllehøjens Børnegård i 2016 ! Pædagogisk Handleplan Møllehøjens Bønegåd i 2016 Møllehøjens iske mål fo 2016, tage udgangspunkt i de nationale læeplane fo daginstitutione. Vi ha sat os nogle mål fo hvilke aktivitete, vi g vil have

Læs mere

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning

Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning Elektomagnetisme 1 Side 1 af 11 Elektostatik 1 Elektisk ladning Stof e opbygget af potone ( ), neutone ( n ) og elektone ( ) og bestå defo p + mestendels af ladede patikle, men den altovevejende del af

Læs mere

Uddannelsesordning for uddannelsen til Gastronom

Uddannelsesordning for uddannelsen til Gastronom Uddannelsesodning fo uddannelsen til Gastonom Udstedelsesdato: 9. juni 2011 Udstedt af Det faglige Udvalg fo Gastonomuddannelsen i henhold til bekendtgøelse n. 329 af 28. apil 2009 om uddannelsene i den

Læs mere

Baggrunden for den nye G3. De psykologisk-pædagogiske principper bag opbygningen af skolehverdagen og det samlede skoleforløb. Den konkrete hverdag

Baggrunden for den nye G3. De psykologisk-pædagogiske principper bag opbygningen af skolehverdagen og det samlede skoleforløb. Den konkrete hverdag Baggunden fo den nye G3 De psykologisk-pædagogiske pincippe bag opbygningen af skolehvedagen og det samlede skolefoløb Paathed Me nin g Den konkete hvedag Abejdet med elevenes femtidsplane Social konstuktion

Læs mere

VORDINGBORG KOMMUNE. Boligområde ved Kalvøvej LOKALPLAN NR. B-24.2. 20 kr. Færgegårdsvej Bogøvej. Kalvøvej

VORDINGBORG KOMMUNE. Boligområde ved Kalvøvej LOKALPLAN NR. B-24.2. 20 kr. Færgegårdsvej Bogøvej. Kalvøvej VORDINGBORG KOMMUNE N Fægegådsvej Bogøvej Kalvøvej LOKALPLAN NR. B-24.2 Boligomåde ved Kalvøvej Vodingbog apil 2005 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt til at

Læs mere

AKTUEL ANALYSE. Nye tider på boligmarkedet 24. januar 2007

AKTUEL ANALYSE. Nye tider på boligmarkedet 24. januar 2007 AKTUEL ANALYSE Nye tie på boligmakeet 24. janua 2007 De høje pisstigningstakte på boligmakeet e løjet af, og meget tale fo en fotsat afæmpning i en kommene ti. Sien boligmakeet vente i 1993, e pisene vokset

Læs mere

Ejlskov A/S har for Vejdirektoratet udført prøvetagning af sediment i 2 regnvandsbassiner på Etape 4540 tilslutningsanlæg ved Odense SØ.

Ejlskov A/S har for Vejdirektoratet udført prøvetagning af sediment i 2 regnvandsbassiner på Etape 4540 tilslutningsanlæg ved Odense SØ. Notat 25-03-2014 Ejlskov A/S Jens Olsens Vej 3 8200 Åhus N Danmak www.ejlskov.com Sag: 14038 phk@ejlskov.com Tel: 87310063 Klient: Vejdiektoatet Pojekt: Etape 4540 Tilslutningsanlæg Odense SØ Opgave: Pøvetagning

Læs mere

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen Hvolis Jenaldelandsby og Kultuavsfobindelsen, Skive Heedsvejen 135 Veste Bjeegav 9632 Møldup www.jenaldelandsby.dk hvolis@vibog.dk A13 Hobo Løgstø Bjeegav Hjabæk Fjod Skals OL Kontakt: - en anden tid et

Læs mere

Elektrodynamik. Christian Andersen. 15. juni 2010. Indhold 1. 1 Indledning 3

Elektrodynamik. Christian Andersen. 15. juni 2010. Indhold 1. 1 Indledning 3 Elektodynamik Chistian Andesen 15. juni 010 Indhold Indhold 1 1 Indledning 3 Elektostatik 3.1 Det elektiske felt............................. 3. Divegens og Cul af E-felte...................... 3.3 Elektisk

Læs mere