Undersøgelser af trekanter
|
|
- Arthur Kristoffersen
- 2 år siden
- Visninger:
Transkript
1 En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus, når vi ikke kan komme til at måle den direkte? Hvordan kan vi finde bredden af en flod, som vi heller ikke kan komme til at måle? Det teoretiske grundlag for at kunne svare på dette spørgsmål er først og fremmest viden om ligedannede trekanter og kendskab til Pythagoras sætning. Dette grundlag søges opbygget i kapitlet igennem elevernes undersøgende og eksperimenterende arbejde. Undersøgelserne vedrører indledningsvist teoretiske problemstillinger fx undersøgelser, der beskæftiger sig med forholdet mellem ensliggende sider i ligedannede trekanter. Efterfølgende skal eleverne bruge deres (nye) viden til at løse praktiske problemstillinger fx til beregninger af afstande. Set i forhold til andre matematikfaglige emner, er det bl.a. i dette kapitel, at der arbejdes med grundlaget for trigonometri. Det er også i dette kapitel, at eleverne introduceres for Pythagoras sætning. I forhold til elevernes udvikling af matematiske kompetencer giver kapitlet især mulighed for at fokusere på problembehandlings-, ræsonnements- og hjælpemiddelkompetence, men også repræsentations- og symbolbehandlingskompetencen kan komme i spil. I kapitlet arbejdes med følgende matematiske centrale begreber: Ensvinklede figurer Ensliggende sider Ensliggende vinkler Topvinkler Kateter, hypotenuse Forhold i ligedannede trekanter Pythagoras sætning Tangens Huskeliste: Et geometriprogram (evt. til side 68, 70, 74, 78) Meterhjul, meterstok eller målebånd (til side 72 og 79) Teodolit eller vinkelmåler (til side 79) Sømbræt og elastikker (til side 76) Lommeregner med tangensfunktion (til side 79, 80 og 81) UNDERSØGELSER AF TREKANTER 1
2 FRA FAGHÆFTET Kompetencer opstille, afgrænse og løse både rent faglige og anvendelsesorienterede matematiske problemer og vurdere løsningerne, bl.a. med henblik på at generalisere resultater (problembehandlingskompetence) udtænke, gennemføre, forstå og vurdere mundtlige og skriftlige matematiske ræsonnementer og arbejde med enkle beviser (ræsonnementskompetence) kende forskellige hjælpemidler, herunder it, og deres muligheder og begrænsninger, samt anvende dem hensigtsmæssigt, bl.a. til eksperimenterende udforskning af matematiske sammenhænge, til beregninger og til præsentationer (hjælpemiddelkompetence) Matematiske emner I arbejdet med geometri at kende og anvende forskellige geometriske figurers egenskaber benytte grundlæggende geometriske begreber, herunder størrelsesforhold og linjers indbyrdes beliggenhed kende og anvende målestoksforhold, ligedannethed og kongruens udføre enkle geometriske beregninger, bl.a. ved hjælp af Pythagoras sætning arbejde med enkle geometriske argumenter og beviser arbejde undersøgende med enkel trigonometri i forbindelse med retvinklede trekanter og beregne sider og vinkler bruge it til tegning, undersøgelser, beregninger og ræsonnementer vedrørende geometriske figurer Matematik i anvendelse erkende matematikkens muligheder og begrænsninger som beskrivelsesmiddel og beslutningsgrundlag Matematiske arbejdsmåder undersøge, systematisere og ræsonnere med henblik på at generalisere veksle mellem praktiske og teoretiske overvejelser ved løsningen af matematiske problemstillinger arbejde individuelt og sammen med andre om praktiske og teoretiske problemstillinger, bl.a. i projektorienterede forløb Indhold og mål I dette skal kapitel skal I undersøge ligedannede trekanter og retvinklede trekanter Målet er, at I lærer mere om ligedannede trekanter. får viden om og lærer at bruge Pythagoras sætning. får viden om og lærer at bruge funktionen tangens. kan bruge jeres viden til at beregne afstande, som I ikke kan måle. UNDERSØGELSER AF TREKANTER 2
3 FACIT Side 66 1a Trekanters former kan beskrives ved hjælp af vinkler: Retvinklet, spidsvinklet eller stumpvinklet. Trekanters former kan også beskrives ved hjælp af sidelængder: Ligebenet, ligesidet. 3a 3b To trekanter er kongruente, når den ene kan bringes til at dække den anden ved en flytning. To trekanter er ligedannede, når den ene er en forstørrelse af den anden. 1b Vinkelsummen i en trekant er 180. Hver vinkel i en trekant er derfor mindre end og 5 er kongruente. 1, 5 og 6 er ligedannede. 2 og 7 er ligedannede. 3 og 4 er ligedannede. 1c 1d En højde i en trekant er et linjestykke fra en af trekantens vinkelspidser, vinkelret på den modstående side eller dennes forlængelse. Ordet højde bruges også om linjestykkets længde. En trekant har tre højder. Arealet af en trekant kan bestemmes ved hjælp af formlen:, hvor h står for en af trekantens højder og g for den tilknyttede grundlinje. 2 Trekant 1 er ligesidet. Den har sidelængden 3 cm, og dens areal er cirka 3,9 cm 2. 5 Målestoksforholdet mellem 1 og 5 er 1:1. Målestoksforholdet mellem 1 og 6 er 1:2. Målestoksforholdet mellem 6 og 5 er 2:1. Målestoksforholdet mellem 2 og 7 er 4:1. Målestoksforholdet mellem 3 og 4 er 1:3. 6a 6b Det kan ikke lade sig gøre at konstruere to trekanter, som er ensvinklede, men ikke ligedannede. Det kan ikke lade sig gøre at konstruere to trekanter, som er ligedannede, men ikke ensvinklede. 7 Ligedannede firkanter er også ensvinklede, men ensvinklede firkanter er ikke nødvendigvis ligedannede. er et kvadrat ensvinklet med et hvilket som helst rektangel. UNDERSØGELSER AF TREKANTER 3
4 Side 67 Side 70 8c 8d I trekant 1 er a og b kateter. I trekant 2 er a og b kateter. I trekant 3 er d og e kateter. I trekant 4 er p og q kateter. I trekant 1 er c hypotenuse. I trekant 2 er c hypotenuse. I trekant 3 er f hypotenuse. I trekant 4 er r hypotenuse. 1 De to topvinkler, der er markeret med rødt, er begge De to topvinkler, der er markeret med blåt, udgør forskellen mellem en lige vinkel og en rød vinkel. De kan derfor begge beregnes ved udtrykket: Side 68 1,2,3 og 4 PROBLEM = 134 De blå topvinkler er således også lige store. a = 4,71 cm b = 4,49 cm c = 4,31 cm A d = 1,57 cm e = 1,50 cm f = 1,44 cm c B a d = 3,00 b e = 3,00 c = 3,00 f 4 Topvinkler er lige store. 5 V 1 og V 5, V 1 og V 7 V 2 og V 6, V 2 og V 8 V 2 og V 5, V 2 og V 7 V 4 og V 6, V 4 og V 8 b a D f E 6 og 7 Ensliggende vinkler er lige store. De tre forhold (divisionsstykker) giver samme resultat. 5 og 6 Forholdet mellem ensliggende sider i to ligedannede trekanter vil altid give samme resultat. Side 69 C FÆRDIGHED (Facit står i grundbogen side 180) e F d 8 Samme regel gælder ikke, hvis to linjer, som ikke er parallelle skæres af en tredje linje. Side 71 9 De to trekanter er ensvinklede og derfor ligedannede. De har begge en ret vinkel. Desuden er vinklerne ved B topvinkler og dermed lige store. Vinkel A og E må også være lige store, da vinkelsummen i begge trekanter er 180. UNDERSØGELSER AF TREKANTER 4
5 10 Længden af linjestykket AC er 12 cm. 11 De to trekanter har to ensliggende vinkler og en vinkel til fælles. 12 Vi ved fra side 68, at forholdet mellem ensliggende sider i ligedannede trekanter er ens. Det må derfor gælde, at. Da, gælder derfor også, at 13 er 6 cm.. 1c er derfor ensvinklede og dermed ligedannede. Trekanterne til højre har to ensliggende vinkler og en fælles vinkel. De er derfor ensvinklede og dermed ligedannede. I trekanterne til venstre er forholdet mellem ensliggende sider. Den søgte afstand (bredden af åen) er derfor 5 2,4 m = 12 m. I trekanterne til højre er forholdet mellem ensliggende Side 72 1a 1b PROBLEM På tegningen til venstre er der først opmålt 10 meter langs kysten, derefter 2 meter mere i samme retning. Vinkelret på kystlinjen er derefter opmålt 2,4 meter til punktet på sigtelinjen til målet (træet på den modsatte kyst). På tegningen til højre er der opmålt 6 meter langs kysten, 4 meter vinkelret på 6-meter linjestykket og 8 meter parallelt med 6 meter linjestykket til punkter på sigtelinjen til målet (træet på den modsatte kyst). Trekanterne til venstre har en topvinkel og en ret vinkel til fælles. De sidste vinkler i trekanterne er også ens, da vinkelsummen i begge trekanter er 180. Trekanterne 2 - Side 73 sider. Det gælder derfor, at den søgte afstand (bredden af åen), b, skal opfylde:. På den måde kan b findes (fx ved at gætte sig frem) til 12. Bredden af åen er altså 12 meter. FÆRDIGHED (Facit står i grundbogen side 180) Side 74 1a 4 1b 9 1c 13 UNDERSØGELSER AF TREKANTER 5
6 2 Areal Mindste = 1,28 cm 2 Areal Næstmindste = 2,52 cm 2 Areal Største = 3,79 cm 2 Største det underforstået, at der er tale om kvadraternes arealer. 9 I den røde trekant er = c 2, fordi kateternes længder er 5 cm og 4 cm. I den blå trekant er a = 5 2, fordi den ene katetes længde er 4 cm, og hypotenusens længde er 5 cm. Mindste Næstmindste 10 I den røde trekant er c = cm. I den blå trekant er a = 3 cm. 3-4 Summen af de mindste kvadraters areal svarer til arealet af det største kvadrat. Side 76 PROBLEM 1 Der er 14 forskellige afstande på et sømbræt. 5 Sammenhængen gælder kun for retvinklede trekanter. 6 Beskrivelsen harmonerer med undersøgelsen, idet a 2 udtrykker arealet af det mindste kvadrat, b 2 udtrykker arealet af det næstmindste kvadrat, og c 2 udtrykker arealet af det største kvadrat. Side 75 7 d 2 + e 2 = f 2 8 Kateternes kvadrater er kvadraterne ved trekantens korteste sider (ved den rette vinkel), og kvadratet på hypotenusen er kvadratet ved den længste side (overfor den rette vinkel). I sætningen er UNDERSØGELSER AF TREKANTER 6
7 2 De præcise længder er Side 79 (i samme rækkefølge som her over) 3 Med a = 16,2 meter fås tan(a) = = 0, Det passer tilnærmelsesvist med resultatet i opgave 3. Side 77 FÆRDIGHED 5 Vi ved (fra lommeregneren), at (Facit står i grundbogen side 180) Side 78 1 Det kan ikke lade sig gøre at finde højden af huset ved hjælp af Pythagoras sætning, da kun én sidelængde er kendt. 2 Vi ved også, at b = 24 (meter). Det gælder derfor, at 6 Ved at løse ligningen fås a = 16,188. Ifølge denne beregning er huset højde altså cirka 16,19 meter. Resultatet harmonerer godt med resultatet i opgave 2.. B 5,4 cm 7 Hvis A var 40, og b var 25 meter, ville husets højde være 25 m tan (40 ) 21 meter. 8-34,0 A AC = 8,0 cm C Målene på tegningen er angivet i målestoksforholdet 1: 300. Det betyder, at husets højde er 300 5,4 cm = 1620 cm = 16,20 m UNDERSØGELSER AF TREKANTER 7
8 Side 80 PROBLEM 1-2 Tangens kan aflæses som y- koordinaten i skæringspunktet mellem vinkelbenet og ligningen med x = 1. 3 Ifølge definitionen på tangens er tan (30 ) =. 5a 5b Fordi 0 divideret med ethvert tal er 0. Hvis vinklen er 90, vil vinkelbenet ikke kunne være hypotenuse i en retvinklet trekant (kateten bliver uendelig lang ). 4 Tan ( Side 81 FÆRDIGHED 0,18 0,27 0,36 0,47 0,58 0,70 0,84 1 1,19 (Facit står i grundbogen side 180) UNDERSØGELSER AF TREKANTER 8
I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:
INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en
Geometriske eksperimenter
I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor
Matematik. Matematiske kompetencer
Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers
Årsplan for 7. klasse, matematik
Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet
Årsplan for matematik 2012-13
Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder
Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik
Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå
Årsplan for matematik
Årsplan for matematik 2016-17 Uge Tema/emne Metode/mål 33 Brøker + talforståelse Matematiske arbejdsmåder(metode) 34 Brøker + procent 35 Excel 35 GeoGebra/Geometri 36 Geometri 37 Emneuge 38 Geometri 39
Opgave 1 -Tages kvadrat
Opgave 1 -Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Figuren kan laves ved 1) at tegne et kvadrat, 2) markere midtpunkterne på kvadratets sider og 3) tegne linjestykker
3. klasse 6. klasse 9. klasse
Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning
Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende
Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,
Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET
I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.
Evaluering af matematik undervisning
Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om
Geometri i plan og rum
INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler
Selam Friskole Fagplan for Matematik
Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt
Geometri, (E-opgaver 9d)
Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige
Års- og aktivitetsplan i matematik hold 4 2014/2015
Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget
10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik
10.klasse Naturfaglige fag: Matematik, Fysik/kemi Matematik Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at
Fælles Mål 2009. Matematik. Faghæfte 12
Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget
Fælles Mål 2009. Matematik. Faghæfte 12
Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget
Fælles Mål Matematik. Faghæfte 12
Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget
Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri
Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når
Eleverne skal lære at:
PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge
Matematik for lærerstuderende klasse Geometri
Matematik for lærerstuderende 4.-10. klasse Geometri Klassisk geometri (kapitel 6) Deduktiv tankegang Ræsonnementskompetence Mål med kapitlet: Erkender Thales sætning som fundament for afstandsberegning.
Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik
Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.
Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34
Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie
7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri
7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne
Undervisningsplan for matematik
Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt
Matematik. Matematiske kompetencer
Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer
Funktioner og ligninger
Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive
1 Geometri & trigonometri
1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant
Tip til 1. runde af Georg Mohr-Konkurrencen Geometri
Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,
TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)
Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale
Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.
Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med
Matematisk argumentation
Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.
MATEMATIK. Formål for faget
MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede
Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder.
Dette tema lægger forskellige vinkler på temaet biografen. Udgangspunktet er således ikke et bestemt matematisk område, men et stykke virkelighed, der bl.a. kan beskrives ved hjælp af matematik. I dette
Årsplan for 5. klasse, matematik
Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det
Eksamensspørgsmål: Trekantberegning
Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8
Årsplan for Matematik 8. klasse 2011/2012
Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand
Matematikken og naturens kræfter
INTRO Omdrejningspunktet for dette tema er matematikkens anvendelse som beskrivelsesmiddel i forbindelse med fysiske love. Temaet er inddelt i følgende fire emner: Pendulure Frit fald Bremselængder og
Trigonometri at beregne Trekanter
Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )
MATEMATIK. Formål for faget
Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv
5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve
5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer
Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.
Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,
Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5
Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af
Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne
Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer
Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:
INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler
Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4
Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).
OM KAPITLET PLANGEOMETRI. Elevernes egne svar eller Elevernes egne forklaringer. I
PLNGEOMETRI OM KPITLET I dette kapitel om plangeometri skal eleverne arbejde med trekanter og deres egenskaber. Eleverne skal kunne anvende deres viden om trekanter til at beregne afstande, som de ikke
TRIGONOMETRI, 4 UGER, 9.KLASSE.
TRIGONOMETRI, 4 UGER, 9.KLASSE. FRA FÆLLES MÅL Målsætninger for undervisningsforløbet er opsat efter kompetence, færdigheds og vidensmål samt læringsmål i lærersprog. Geometri og måling Fase 3 Geometriske
dvs. vinkelsummen i enhver trekant er 180E. Figur 11
Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.
Årsplan 2012/2013. 9. årgang: Matematik. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009
Årsplan 2012/2013 9. årgang: Matematik FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at
Fagplan for matematik
Fagplan for matematik Formål Undervisningen i matematik skal give eleverne lyst til, forståelse for og teoretisk baggrund for at analysere, vurdere, kontrollere og argumentere, når de i deres dagligdag
Læseplan for faget matematik. 1. 9. klassetrin
Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige
Matematik. Matematiske kompetencer
Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers
It i Fælles mål 2009- Matematik
It i Fælles mål 2009- Matematik Markeringer af hvor it er nævnt. Markeringen er ikke udtømmende og endelig. Flemming Holt, PITT Aalborg Kommune Fælles Mål 2009 - Matematik Faghæfte 12 Formål for faget
Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer
Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver
Inspirationsforløb i faget matematik i 7.- 9. klasse. Trekanter et inspirationsforløb om geometri i 8. klasse
Inspirationsforløb i faget matematik i 7.- 9. klasse Trekanter et inspirationsforløb om geometri i 8. klasse Indhold Indledning 2 Undervisningsforløbet 3 Mål for forløbet 3 Relationsmodellen 3 Planlægningsfasen
Andreas Nielsen Kalbyrisskolen 2009
Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence
MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål
MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig
Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring
Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger
Matematik - undervisningsplan
I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes
RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L
SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske
Geometri, (E-opgaver 9b & 9c)
Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...
Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:
Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,
Årsplan for 2. kl. matematik
Undervisningen i 2. kl. tager primært udgangspunkt i matematikbøgerne Kolorit 2A og 2B. Årets emner med delmål Gange (kopiark) ræsonnerer sig frem til multiplikationsalgoritmen i teams, ved hjælp af additionsalgoritmer.
Kære matematiklærer. Når vi er færdige med dette forløb skal du (eleven):
Kære matematiklærer Formålet med denne materialekasse er, at eleverne med konkrete materialer og it får mulighed for at gøre sig erfaringer, der kan føre til, at de erkender de sammenhænge, der gør sig
LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15
LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin
MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL
8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x
Trigonometri. Store konstruktioner. Måling af højde
Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er
brikkerne til regning & matematik geometri F+E+D preben bernitt
brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun
Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.
MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),
Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.
6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle
TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik:
TW 2011/12 Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag Formål for faget matematik: Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at
Ens eller forskellig?
Ens eller forskellig? Geometri i 5./6. klasse Niels Kristen Kirk, Christinelystskolen Kaj Østergaard, VIA UC Plan Didaktisk design - modellen Fra model til praksis indledende overvejelser En konkret udmøntning
Trekanter. Frank Villa. 8. november 2012
Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1
Undervisningsplan for faget matematik. Ørestad Friskole
Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2
Problemløsning i retvinklede trekanter
Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug
Forslag til løsning af Opgaver om areal (side296)
Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens
Pythagoras og andre sætninger
Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,
Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.
Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler
Fag- og indholdsplan 9. kl.:
Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og
Plangeometri FORHÅNDSVIDEN. I dette kapitel skal du arbejde med plangeometri. Plangeometri handler om figurer og egenskaber ved figurer i en plan.
Plangeometri I dette kapitel skal du arbejde med plangeometri. Plangeometri handler om figurer og egenskaber ved figurer i en plan. I den første del af kapitlet skal du arbejde med trekanter, hvor du skal
Matematik på Viby Friskole
Matematik på Viby Friskole Formålet for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig
Matematik UVMs Trinmål synoptisk fremstillet
Matematik UVMs Trinmål synoptisk fremstillet Matematiske kompetencer Trinmål efter 3. klassetrin Trinmål efter 6. klassetrin Trinmål efter 9. klassetrin indgå i dialog om spørgsmål og svar, som er karakteristiske
Årsplan 2017/2018 Matematik 8. kl. Kapitel 1: Regnehierarkiet
Årsplan 07/08 Matematik 8. kl. I grundbogen Matematrix 8 arbejder elevern med bogens emner og opgaver (næsten) udelukkende på computer i word, excel og geogebra. Eleverne skal udover det daglige arbejde
Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet.
Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet. Kapitlet indledes med fokus på løn og skat og lægger op til,
7 Trekanter. Faglige mål. Trekanter. Linjer i trekanter. Pythagoras. Areal
7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Trekanter: kende navne for sider og vinkelspidser i trekanter, kunne konstruere bestemte trekanter ud fra givne betingelser
Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.
Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer
Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde
Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne
Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål
Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der
Årsplan for matematik i 4. klasse 2014-15
Årsplan for matematik i 4. klasse 2014-15 Klasse: 4. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 4(mandag, tirsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen er, at
Matematik - Årsplan for 6.b
Matematik - Årsplan for 6.b 2013-2014 Kolorit for 6. klasse består af en grundbog, en rød og en grøn arbejdsbog. Grundbogen er inddelt i 4 forskellige arbejdsformer: Fællessider, gruppesider, alenesider
Årsplan 7. klasse matematik 2012/2013 til lærerbrug
Årsplanen for 7. klasse udarbejdes i samarbejde mellem 7. klasses matematiklærere (Helle og Ditte). Overordnet er året inddelt i uger, hvor der til hver ugeforløb er et Tema. Organisering af matematikundervisningen:
Årsplan matematik 5 kl 2015/16
Årsplan matematik 5 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark
Matematik Færdigheds- og vidensmål (Geometri og måling )
Matematik Færdigheds- og vidensmål (Geometri og måling ) Kompetenceområde Klassetrin Faser 1 Eleven kan kategorisere Efter klassetrin Eleven kan anvende geometriske begreber og måle Eleven kan kategorisere
Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant
Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1
Årsplan Matematrix 3. kl. Kapitel 1: Jubii
Årsplan Matematrix. kl. A Første halvår Kapitel : Jubii I bogens første kapitel får eleverne mulighed for at repetere det faglige stof, som de arbejdede med i. klasse. Dette er samtidig et redskab for