Vejledende besvarelse på august 2009-sættet 2. december 2009

Save this PDF as:

Størrelse: px
Starte visningen fra side:

Download "Vejledende besvarelse på august 2009-sættet 2. december 2009"

Transkript

1 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af, hvordan man bør formulere en besvarelse skriftligt. Modsat hvad der typisk er tilfældet i matematik, er der ikke en entydig måde at gøre dette på, men hvis der var, ville det være den her. Der tages forbehold for alle former for fejl. Rettelser og kommentarer kan smides på Opgave. Lad f betegne funktionen f(x, y) = x 2 cos y.. Beregn de partielle aedede f x, f y, og angiv gradienten f. 2. Beregn den retningsaedede D u f(2, ) i retningen givet ved enhedsvektoren u = (3, 2). 3. Bestem en enhedsvektor v så den retningsaedede D v f(2, ) =. Løsning. ) Ved direkte udregning fås, at de partielle aedede er givet ved Det betyder, at f er givet ved f x (x, y) = 2x cos y, f y (x, y) = x 2 sin y. f(x, y) = (f x (x, y), f y (x, y)) = (2x cos y, x 2 sin y). 2) Da de partielle aedede er kontinuerte, er funktionen f dierentiabel if. [S] stn..4.8 og ifølge [S] stn..6.8 er den ønskede retningsaedede givet ved D u f(2, ) = f x (2, ) 3 + f y (x, y) 2 = 4 cos() 3 4 sin() 2 = 4 (3 cos() 2 sin()). 3) Idet vi skriver v = (cos θ, sin θ) er det if. formel.6.6 nok at nde θ, så Med andre ord skal gælde, at men dette er ækvivalent til, at f x (2, ) cos θ + f y (2, ) sin θ =. () = 4 cos() cos θ 4 sin() sin θ, sin() sin θ = cos() cos(θ). Idet cos θ = ikke giver anledning til en løsning af (), får vi idet vi husker, at tan θ = sin θ/ cos θ at ovenstående ligning er det samme som tan(θ) = tan(). Ligningen ( ()) har altså to løsninger v = (cos θ, sin θ), hvor θ er givet ved θ = arctan. tan()

2 Opgave 2. Betragt 3 3-matricen A givet ved A =.. Beregn det karakteristiske polynomium for A og angiv egenværdierne. 2. Bestem egenrummet hørende til egenværdien for matricen A. Løsning. ) Pr. denition er det karakteristiske polynomium for A givet ved det(a λi), der, idet vi udvikler efter anden søjle, er givet ved λ det(a λi) = det λ λ = λ(( λ)( λ) ) = λ( + λ 2 2λ ) = (λ )(λ )(λ 2), og vi kan aæse, at egenværdierne for A er og 2. 2) Pr. denition er egenrummet givet ved N(A I) = N(A), og rækkereduktion giver, at. Vi har altså to frie parametre, og egenrummet bliver N(A) = span,. Opgave 3. Lad D betegne området i planen begrænset af linjerne x =, x = 4 samt af graferne for funktionerne y = x 2 og y = x.. Tegn området og beskriv det i koordinater som et type I-område. 2. Udregn dobbeltintegralet D xy da. Løsning. ) Området D fremgår af g. og kan som type I-område beskrives som D = {(x, y) x 4, x y x 2 }. 2

3 2) Funktionen f givet ved f(x, y) = xy er kontinuert på D, og if. [S] stn fås da, at D f(x, y) da = 4 x 2 4 x xy dy dx = 4 [ 2 xy2 ] y=x2 y= x dy dx 4 = 2 x(x4 x 2 )) dx = 2 = ( ) = ( x 5 x 3 dx = 2 [ 6 x6 4 x4 ] x=4 x= ) 92 3 = 856 = Figur : Området D, der optræder i opgave 3. Opgave 4. Betragt følgende vektorer i R 3 : u = (,, ), x = (, 3, 2).. Beregn afstanden mellem vektorerne x og u. 2. Beregn den ortogonale projektion v af vektoren x på underrummet U = span(u). 3. Beregn den korteste afstand fra x til U. Løsning. ) Afstanden mellem de to vektorer er givet ved x u = (, 2, ) = = 6. 2) Projektionen af x på U er blot projektionen af x på u, som er givet ved v = x u u u u = (,, ) = 5 2 (,, ). 3) Som det fremgår af g. 2, er den korteste afstand fra x til U præcis længden af vektoren x v (eller altså afstanden fra x til v), der er givet ved x v = (, 2, 2 ) = = 3 2 =

4 Figur 2: Skitse til opg Opgave 5. Betragt funktionen f givet ved f(x, y) = 6 3x 3y + x 2 + xy + y 2.. Bestem det kritiske punkt (a, b) for funktionen f og beregn den kritiske værdi f(a, b). 2. Bestem arten af det kritiske punkt (a, b) ved brug af andenordenskriteriet. Løsning. ) Det kritiske punkt (a, b) skal opfylde, at f x (a, b) = f y (a, b) =. De partielle aedede er givet ved f x (x, y) = 3 + 2x + y, f y (x, y) = 3 + x + 2y. Vi får derfor, at = 3+2a+b og = 3+a+2b, der har den entydige løsning a =, b =, som det ses ved indsættelse. Den kritiske værdi er f(a, b) = f(, ) = = 3. 2) Vi betragter [S] stn..7.2 og nder de dobbelt partielt aedede, der her er givet ved f xx (x, y) = 2, f yy (x, y) = 2, f xy (x, y) =. Idet disse alle er kontinuerte i nærheden af (, ), og idet vi i sætningens notation har D = D(a, b) = = 3 > og ydermere, at f xx (a, b) >, får vi, at den kritiske værdi er et lokalt minimum. Opgave 6. Lad f være funktionen givet ved f(x) = sin(x 2 ).. Angiv Maclaurinrækken for funktionen f. 2. Lad F betegne den stamfunktionen til f, der opfylder F () =. Angiv en potensrække i x, der fremstiller F. Løsning. ) Idet Maclaurinrækken for sin x er givet ved sin x = x x3 3! + x5 5!, 4

5 er Maclaurinrækken for sin(x 2 ) blot givet ved sin(x 2 ) = x 2 x6 3! + x = 5! ( ) n x4n+2 (2n + )!. 2) Vi kan nde stamfunktionen F ved blot at integrere ledvist i Maclaurinrækken. Vi nder da, at F (x) = sin(x 2 ) dx = C + x3 3! x7 5!7 + x 7! = C + ( ) n x 4n+3 (2n + )!(4n + 3), n= n= og da F () = C, må der gælde, at C = i ovenstående udtryk. Opgave 7. Betragt dierentialligningssystemet y = y + 2y 2 y 2 = 2y y 2. Det oplyses, at 3 og er egenværdier for systemets koecientsmatrix A.. Bestem egenvektorerne for koecientmatricen. 2. Angiv løsningerne til dierentialligningssystemet. 3. Bestem den løsning, der opfylder begyndelsesværdibetingelsen ( ) ( ) y () =. y 2 () Løsning. ) Vi nder egenvektoren hørende til egenværdien λ rækkereducere A 3I og får, at ( ) ( ) 2 2, 2 2 = 3 ved at hvilket viser, at x = (, ) er en egenvektor hørende til λ = 3. Vi observerer, at dette er rigtigt, idet A(, ) = (3, 3) = 3(, ). For egenværdien λ 2 = ser vi, at ( ) ( ), og i dette tilfælde bliver x 2 = (, ) en egenvektor. 2) Vi ved, at den generelle løsning er på formen ( ) ( ) y (t) = c y 2 (t) e λt x + c 2 e λ2t c e x 2 = 3t + c 2 e t c e 3t + c 2 e t, 5

6 hvor c og c 2 er konstanter. 3) Ovenstående udregning viser, at ( ( ) y () = = ) y 2 () ( ) c + c 2. c + c 2 Det ses ud fra disse ligninger, at konstanterne nødvendigvis bliver c =, c 2 =, og den ønskede løsning bliver ( ) ( ) y (t) e t = y 2 (t) e t. Som et tjek ser vi, at y (t) = e t = e t + 2e t = y (t) + 2y 2 (t), og tilsvarende er y 2(t) = 2y (t) y 2 (t). 6

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Calculus Uge

Calculus Uge Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Oversigt Matematik Alfa 1, Januar 2003

Oversigt Matematik Alfa 1, Januar 2003 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50.

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0.

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Her skal du lære om Separable ligninger Logistisk ligning og eksponentiel vækst 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens

Læs mere

Oversigt [LA] 10, 11; [S] 9.3

Oversigt [LA] 10, 11; [S] 9.3 Oversigt [LA] 1, 11; [S] 9.3 Nøgleord og begreber Repetition: enhedsvektor og identitetsmatrix Diagonalmatricer Diagonalisering og egenvektorer Matrixpotens August 22, opgave 2 Skalarprodukt Længde Calculus

Læs mere

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan så vælge tegnet. - For at definere noget, eks en x værdi,

Læs mere

Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1

Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1 Besvarelse af Eksamensopgaver Juni 5 i Matematik H Opgave De fire vektorer stilles op i en matrix som reduceres: 4 4 4 8 4 4 (a) Der er ledende et-taller så dim U =. Som basis kan f.eks. bruges a a jfr.

Læs mere

Besvarelser til Lineær Algebra Reeksamen August 2016

Besvarelser til Lineær Algebra Reeksamen August 2016 Besvarelser til Lineær Algebra Reeksamen - 9. August 26 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2019

Besvarelser til Calculus Ordinær Eksamen Juni 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017 Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2018

Besvarelser til Calculus Ordinær Eksamen Juni 2018 Besvarelser til Calculus Ordinær Eksamen - 5. Juni 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over

Læs mere

Lokalt ekstremum DiploMat 01905

Lokalt ekstremum DiploMat 01905 Lokalt ekstremum DiploMat 0905 Preben Alsholm Institut for Matematik, DTU 6. oktober 00 De nition Et stationært punkt for en funktion af ere variable f vil i disse noter blive kaldt et egentligt saddelpunkt,

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer 1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018

Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018 Besvarelser til Calculus Ordinær Eksamen - 5. Januar 18 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Maj 2013 (alle opgaver og alle spørgsmål)

Maj 2013 (alle opgaver og alle spørgsmål) Maj 2013 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Jeg gider ikke håndregne i de simple spørgsmål! Her

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2 Oersigt [LA],, Komplement Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på ektor Projektion på basis Kortest afstand August 00, opgae 6 Tømrermester Januar

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 2002, opgave 6 Cauchy-Schwarz ulighed Calculus

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 08 Dette eksamenssæt består af 8 nummererede sider med afkrydsningsopgaver.

Læs mere

Prøveeksamen i Calculus

Prøveeksamen i Calculus Prøveeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Marts 6 Dette eksamenssæt består af 9 nummererede sider med 4 afkrydsningsopgaver.

Læs mere

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder Oversigt [LA] 11, 1, 13 Prikprodukt Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 00, opgave 6 Cauchy-Schwarz ulighed

Læs mere

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016 Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Eksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 4. januar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017 Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Lineær algebra: Egenværdier, egenvektorer, diagonalisering

Lineær algebra: Egenværdier, egenvektorer, diagonalisering Lineær algebra: Egenværdier, egenvektorer, diagonalisering Institut for Matematiske Fag Aalborg Universitet 2011 Egenvektorer og egenværdier Mål: Forståelse af afbildningen x Ax fra R n R n for en n n-matrix

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

MM502+4 forelæsningsslides. uge 6, 2009

MM502+4 forelæsningsslides. uge 6, 2009 MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,

Læs mere

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Oversigt [S] 5., 5.3, 5.4,.,. Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 6 Uge 39.

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2017

Besvarelser til Calculus Ordinær Eksamen Juni 2017 Besvarelser til Calculus Ordinær Eksamen - 12. Juni 217 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6.

Eksamen i Calculus. Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet. 6. Eksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 6. juni 16 Dette eksamenssæt består af 1 nummererede sider med 14 afkrydsningsopgaver.

Læs mere

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2017

Besvarelser til Calculus Ordinær Eksamen Juni 2017 Besvarelser til Calculus Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET H.A. NIELSEN INDHOLD. Lineær ligning 2 2. Lineært system 8 3. Generel ligning 6 4. Stabilitet 8 Litteratur 2 Noterne er til 4 timers forelæsninger

Læs mere

Ekstremum for funktion af flere variable

Ekstremum for funktion af flere variable Ekstremum for funktion af flere variable Preben Alsholm 28. april 2008 1 Ekstremum for funktion af flere variable 1.1 Hessematricen I Hessematricen I Et stationært punkt for en funktion af flere variable

Læs mere

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleord og begreber Differentiabel funktion i en variabel Partielle afledede i flere variable Notation og regneregler for partielle afledede Test partielle afledede Grafisk

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

Maj 2015 (alle opgaver og alle spørgsmål)

Maj 2015 (alle opgaver og alle spørgsmål) Maj 2015 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Ved eksamen er der ikke tid til f.eks. at lave illustrationer,

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Eksamen i Calculus. Onsdag den 1. juni Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet

Eksamen i Calculus. Onsdag den 1. juni Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Eksamen i Calculus Onsdag den 1. juni 211 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt

Læs mere

Oversigt [S] 8.7, 8.8, 8.9

Oversigt [S] 8.7, 8.8, 8.9 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Potensrækker og opgaver Binomialformlen Binomialkoefficienter Binomialrækken Taylor polynomier Vurdering af Taylor s restled Eksponentialrækken konvereger

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Torsdag den 11. august 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning

Læs mere

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3.

Eksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 3. Eksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. januar 7 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

Besvarelser til Lineær Algebra og Calculus Globale Forretningssystemer Eksamen - 6. Juni 2016

Besvarelser til Lineær Algebra og Calculus Globale Forretningssystemer Eksamen - 6. Juni 2016 Besvarelser til Lineær Algebra og Calculus Globale Forretningssystemer Eksamen - 6 Juni 206 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind Kontakt mig endelig, hvis du skulle falde over en

Læs mere

Matematisk modellering og numeriske metoder

Matematisk modellering og numeriske metoder Matematisk modellering og numeriske metoder Morten Grud Rasmussen 5. september 2016 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Oversigt [S] 5.2, 5.3, 5.4, 2., 2.2 Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 26

Læs mere

Bedste rette linje ved mindste kvadraters metode

Bedste rette linje ved mindste kvadraters metode 1/9 Bedste rette linje ved mindste kvadraters metode - fra www.borgeleo.dk Figur 1: Tre datapunkter og den bedste rette linje bestemt af A, B og C Målepunkter og bedste rette linje I ovenstående koordinatsystem

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den 9. februar, 4. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen

MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 05 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Eksamen i Calculus Fredag den 8. januar 2016

Eksamen i Calculus Fredag den 8. januar 2016 Eksamen i Calculus Fredag den 8. januar 2016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med

Læs mere

Noter til Lineær Algebra

Noter til Lineær Algebra Noter til Lineær Algebra Eksamensnoter til LinAlg Martin Sparre, www.logx.dk, August 2007, Version π8 9450. INDHOLD 2 Indhold 0. Om disse noter.......................... 3 Abstrakte vektorrum 4. Definition

Læs mere

Besvarelser til Calculus Ordinær Eksamen Januar 2019

Besvarelser til Calculus Ordinær Eksamen Januar 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Januar 19 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Eksamen maj 2019, Matematik 1, DTU

Eksamen maj 2019, Matematik 1, DTU Eksamen maj 2019, Matematik 1, DTU NB: Nedenstående udregninger viser flere steder mere end én metode. Det er der IKKE tid til eksamen! Ligeledes er der ikke krav om eller tid til at illustrere med plots.

Læs mere

Reeksamen i Calculus Mandag den 11. august 2014

Reeksamen i Calculus Mandag den 11. august 2014 Reeksamen i Calculus Mandag den 11. august 2014 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010

INSTITUT FOR MATEMATIK OG DATALOGI. TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010 INSTITUT FOR MATEMATIK OG DATALOGI TIDLIGERE EKSAMENSOPGAVER MM501 Calculus I, MM502 Calculus II Januar 2006 juni 2010 Forord Denne opgavesamling indeholder samtlige eksamensopgaver, der har været stillet

Læs mere

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG Matematik A Studentereksamen Skriftlig prøve (5 timer) STX MAA 581710_STX093-MAA.indd 1 LQGG Fredag den. december kl... 03/11/09 10:53:00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker

Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker Arne Jensen 7. 11. marts 2005 1 Indledning I forbindelse med kurset i Reelle og Komplekse Funktioner afholdes et fordybelsesprojekt med et omfang

Læs mere

Differentialkvotient af cosinus og sinus

Differentialkvotient af cosinus og sinus Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises

Læs mere

Reeksamen i Calculus

Reeksamen i Calculus Reeksamen i Calculus Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet 9. august 6 Dette eksamenssæt består af nummererede sider med 4 afkrydsningsopgaver.

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 6. juni, 26. Kl. 9-3. Nærværende eksamenssæt består af nummererede sider med ialt 5 opgaver. Alle opgaver er multiple

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 8 januar, Kl 9- Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Reeksamen i Calculus Onsdag den 17. februar 2016

Reeksamen i Calculus Onsdag den 17. februar 2016 Reeksamen i Calculus Onsdag den 17. februar 216 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1 1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Calculus

To find the English version of the exam, please read from the other end! Eksamen i Calculus To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere