IDRÆTSSTATISTIK BIND 2

Størrelse: px
Starte visningen fra side:

Download "IDRÆTSSTATISTIK BIND 2"

Transkript

1 IDRÆTSSTATISTIK BIND 2

2 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN Bd.2

3 iii Forord Denne bog er skrevet til brug i et statistikkursus for bachelorstuderende ved Center for Idræt, Aarhus Universitet. Bag bogen ligger samme holdninger både til statistisk analyse og til begynderundervisning i statistik, der primært retter sig mod brugere, som i Blæsild og Granfeldt (2000) Statistik for biologer og geologer. Et vigtigt holdepunkt i statistisk analyse er modelbegrebet. Man vælger en statistisk model, som kan belyse den faglige problemstilling. Det vil sige, at parametrene i modellen kan fortolkes i den faglige problemstilling, og at interessante faglige hypoteser svarer til restriktioner på parametrene. En faglig hypotese afprøves ved at undersøge (teste), om man kan acceptere en reduktion af modellen til en ny model, som er enklere ved at have færre parametre. Gør man sig det klart, kan man hurtigt lære at analysere temmelig komplicerede problemstillinger korrekt. Ydermere bliver analysen til at følge også for folk, som hverken er specialister på det faglige område eller er professionelle statistikere. Et tidsvarende brugerkursus i statistik må benytte EDB og en statistisk programpakke. Ved dette kursus er valgt regnearket Excel og den statistik pakke der under navnet Dataanalyse optræder som et tilføjelsesprogram til Excel, men der er ikke benyttet faciliteter, som er specielle for denne statistik pakke, og bogen kan uden vanskelighed anvendes sammen med andre statistiske programpakker. Argumentet for at benytte Excel er, at regnearket er tilgængeligt på de fleste PC-er imodsætning til mere kostbare og specialiserede statistiske programpakker såsom for eksempel SAS, Genstat og BMDP. Disse programpakker er designet specielt til brug i forbindelse med statistisk analyse og kan derfor udføre beregningerne i meget mere avancerede statistiske modeller end regnearket Excel kan. Disse noter demonsterer forhåbenligt at i forbindelse med et elementært kursus i statistik er Excel et brugbart alternativ. Når man bruger statistiske programpakker i undervisningen bliver modellerne, som beskrevet ovenfor, det faste holdepunkt når man skal orientere sig i udskrifterne. Man kan bruge en programpakke til statistisk analyse, når man har lært dels at specificere modeller i programpakken og dels at teste reduktionen fra én model til en simplere ved at hente relevante oplysninger ud fra udskrifterne fra estimationen i de to modeller.

4 iv Kun få kan lære statistik uden at få metoderne ind gennem fingrene. Vi har derfor valgt både at præsentere, hvordan de enkleste modeller kan regnes på lommeregner, og hvordan de kan regnes ved at orientere sig i udskrifter fra en programpakke. For normalfordelte data vises både for én, to og k observationsrækker, samt én regressionslinje, hvordan modellerne regnes igennem på lommegner, mens en mere kompliceret model som tosidet variansanalyse kun skal kunne klares med henvisning til programudskrifter. Et statistikkursus for studerende, der ikke har et vist kendskab til de mest basale begreber i sandsynlighedsteorien, fremstår for os som en umulighed. I Kapitel 2 introduceres og/eller repeteres disse begreber, der illustreres ved en række eksempler, som er valgt ud fra det princip, at de matematisk skulle være lette at håndtere. Kapitel 3 er at betragte som et katalog vedrørende definition af og egenskaber ved de fordelinger som anvendes i forbindelse med de statistiske modeller i de senere kapitler. Kaptitel 2 gennemgås efter diskussionen i Kapitel 1 af grafiske og numeriske metoder i forbindelse med beskrivende statistik. Herefter fortsættes med modellerne for normalfordelte data i Kapitel 4 idet de hertil relaterede fordelinger fra Kapitel 3 omtales undervejs. Efter adskillige eksempler på statistisk analyse i forbindelse med normalfordelingen i Kapitel 4 diskuteres hovedtrækkene i en analyse af en parametrisk statistisk model i generelle termer i Kapitel 5. Derefter gennemgås Kapitel 6 om multinomialfordelte data og Kapitel 7 om Poissonfordelte data. Bogen slutter med omtale af nogle simple ikke-parametriske test i Kapitel 8. Som nævnt ovenfor foretrækker vi at betragte parametriske statistiske modeller. Formålet med Kapitel 8 er at orientere læserne om at ikke alle deler denne holdning og for at give et kort indblik i de alternative metoder. Det vil være muligt at læse kapitlerne i en anden rækkefølge, men man skal være opmærksom på, at de statistiske grundbegreber som nulhypotese, test, testsandsynlighed, signifikansniveau og så videre gennemgås i forbindelse med Afsnit 4.2. Uden dataeksempler, som udspringer af en faglig problemstilling, bliver en lærebog til et brugerkursus i statistik temmelig uinteressant. En del af eksemplerne er taget fra Andersen (1998) Statistik for Idrætsstuderende med forfatterens tilladelse, hvilket vi er taknemmelige for. Vi vil også gerne takke medarbejdere og studerende ved Center for Idræt, Aarhus Universitet og ved Institut for Idræt, Københavns Universitet, som har stillet data og deres historie til rådighed for bogens eksempler og opgaver. Bogen er blevet brugt ved Idrætsstatistik i efteråret 2000 og bygger på erfaringer fra et lignede kursus i efteråret 1999 og en særlig tak går til Jakob Krabbe Pedersen og Lars Bo Kristensen for deres store indstats som instruktorer på disse to kurser og for deres påvisning af trykfejl. Bogen er skrevet LATEX, og Jacob Goldbach har skrevet de stylefiler i LATEX, som definerer

5 v udseendet af bogen, men derudover har Jacob Goldbach tålmodigt besvaret utallige spørgsmål om LATEX ligesom Frank Allan Hansen, Niels Væver Hartvig og Michael Kjærgård Sørensen velvilligt har assisteret os. I forhold til versionen af bogen fra maj 2001 er der rettet en del trykfejl og nogle få figurer er blevet tilføjet. Vi vil gerne takke Lars Madsen for meget kompetent bistand med LATEX spørgsmål i forbindelse med revisionen og Michael Kjærgård Sørensen for at have produceret de nye figurer. Århus, august 2005 Preben Blæsild og Jørgen Granfeldt

6 vi

7 vii Indhold 1 Data og beskrivende statistik Prik- og pindediagrammer Histogrammer Empiriske størrelser Grupperede data Kvalitative data Flerdimensionale data Anneks til Kapitel Opgaver til Kapitel Begreber fra sandsynlighedsteorien Sandsynlighedsrum Definition af sandsynlighedsmål Regneregler for sandsynligheder Betingede sandsynligheder og uafhængighed Stokastiske variable Diskrete stokastiske variable Kontinuerte stokastiske variable Stokastiske vektorer Diskrete stokastiske vektorer Kontinuerte stokastiske vektorer Marginale fordelinger Uafhængighed Betingede fordelinger Middelværdi og varians Opgaver til Kapitel

8 viii 3 Specielle fordelinger Normalfordelingen og relaterede fordelinger Normalfordelingen Den todimensionale normalfordeling χ 2 -fordelingen t-fordelingen F-fordelingen Diskrete fordelinger Binomialfordelingen Multinomialfordelingen Poissonfordelingen Den hypergeometriske fordeling Den negative binomialfordeling Opgaver til Kapitel Normalfordelte data Fraktilsammenligning Ugrupperede observationer Grupperede data Transformation Anneks til Afsnit Én observationsrække med kendt varians Anneks til Afsnit Hovedpunkter til Afsnit Én observationsrække med ukendt varians Anneks til Afsnit Hovedpunkter til Afsnit To observationsrækker Test for varianshomogenitet Ens varians Forskellig varians Parrede observationer Anneks til Afsnit Hovedpunkter til Afsnit k observationsrækker Test for varianshomogenitet

9 ix Test for ens middelværdier Forskelle og ligheder i behandlingen af to og k observationsrækker Notation og test i forbindelse med en følge af modeller Anneks til Afsnit Hovedpunkter til Afsnit Lineær regression Lineær regression uden gentagelser Lineær regression med gentagelser Hypoteser om regressionsparametrene Korrelation og/eller regression Anneks til Afsnit Hovedpunkter til Afsnit Tosidet variansanalyse Anneks til Afsnit Hovedpunkter til Afsnit Opgaver til Kapitel Indeks I.1 5 Statistisk analyse Data Modelopstilling Modelkontrol Statistisk inferens Likelihood inferens Begreber fra generel testteori Approksimativ likelihood teori Afsluttende bemærkninger Opgaver til Kapitel Multinomialfordelte data Eksempler Inferens i én multinomialfordeling Test af simpel hypotese Uafhængighed af inddelingskriterier Inferens i flere multinomialfordelinger

10 x Homogenitet af flere multinomialfordelinger Fishers eksakte test Test for goodness of fit Anneks til Kapitel Hovedpunkter til Kapitel Opgaver til Kapitel Poissonfordelte data Eksempler Sandsynlighedsteoretiske resultater vedrørende Poissonfordelingen Én observationsrække Inferens i flere fordelinger Poissonmodellen med proportionale parametre Den multiplikative Poissonmodel Anneks til Kapitel Hovedpunkter til Kapitel Opgaver til Kapitel Ikke-parametriske test Fortegnstestet Rangtest Wilcoxons test for én observationsrække Wilcoxons test for to observationsrækker Kruskal-Wallis test Anneks til Kapitel Hovedpunkter til Kapitel Opgaver til Kapitel A Forskellige matematiske begreber A.1 A.1 Notation fra mængdelæren A.1 A.2 Rækker A.3 A.3 Dobbeltintegraler og partiel differentiation A.4 A.3.1 Dobbeltintegraler A.5 A.3.2 Partiel differentiation A.5 B Simulerede fraktildiagrammer B.1

11 xi C Matematiske symboler C.1 D Det græske alfabet D.1 Indeks I.1

12 xii

13 5 Statistisk analyse Statistisk analyse Vi har i Kapitel 4 set adskillige eksempler på statistiske analyser og i disse eksempler er e- stimater og teststørrelser valgt ud fra heuristiske argumenter. Disse valg er dog baseret på en generel metode, der omtales i dette kapitel. Denne metode kan benyttes i andre situationer, hvor valg af estimatorer og teststørrelser ikke kan baseres på heuristiske argumenter. Kapitlet indeholder en beskrivelse af de vigtigste ingredienser i en statistisk analyse samt en præsentation af de basale matematiske og/eller filosofiske begreber, der ligger til grund for de statistiske metoder, vi betragter i disse noter. Næsten alle de statistiske metoder, der er blevet eller vil blive omtalt i noterne, kan faktisk opfattes som specialtilfælde - eller illustrationer - af den generelle metodik, som diskuteres i dette kapitel. Eneste undtagelse er metoderne i Kapitel 8. Formålet med kapitlet er at fremstille de grundliggende begreber og ideer så overskueligt som muligt, og vi har valgt at gøre dette med reference til teorien for én normalfordelt observationsrække med kendt varians i Afsnit 4.2. En nybegynder i statistisk analyse kan betragte kapitlet som udstilling af fundamentale begreber i statistisk analyse, som er blevet og også senere vil blive anvendt og illustreret igen og igen. En mere erfaren læser kan derimod betragte kapitlet som et lille opslagsværk vedrørende begreber og terminologi i statistisk analyse. Afsnit 5.1 vedrører videnskabelige eksperimenter og data. Vi har valgt at fokusere på tre hovedingredienser eller aktiviteter i en statistisk analyse i) modelopstilling ii) modelkontrol iii) statistisk inferens som omtales i Afsnit Statistik inferens baseret på begrebet likelihood diskuteres i Afsnit 5.5 og i Afsnit 5.6 omtales nogle få begreber fra den generelle testteori. Approksimative statistiske metoder omtales i Afsnit 5.7 og endelig indeholder Afsnit 5.8 nogle afsluttende bemærkninger.

14 Modelopstilling 5.1 Data Udgangspunktet for en statistisk analyse er et datasæt x, der er resultatet af et eksperiment, udført med det formål at få indblik i en speciel faglig sammenhæng. Betegnelsen eksperiment skal her forstås i en bred forstand. Data fra idræt kan for eksempel være bestemmelser af kondital, hæmatokritværdier eller andre fysiologiske målinger. Data er ofte indsamlet for at få indblik i, hvorledes træning eller konkurrence påvirker målingerne. En anden form for data er resultater fra konkurrencer, der studeres for at få indsigt i, hvordan forskellige personer eller hold klarer sig i forhold til hinanden eller for at sammenligne præstationer udført under forskellige omstændigheder. 5.2 Modelopstilling Karakteristisk for et datasæt x i et eksperiment er, at det er stokastisk; det vil sige, at hvis man gentager eksperimentet eller målingerne under lignende omstændigheder, bliver resultatet ikke nødvendigvis x. Dette er i modsætning til en deterministisk situation, hvor udfald på forhånd kan bestemmes med sikkerhed. Men selv om udfaldene af eksperimentet ikke kan angives på forhånd er der ofte en regelmæssighed på et højere niveau, som man netop kan erkende, hvis forsøget gentages mange gange. En byggesten i beskrivelsen af et eksperiment er derfor en sandsynlighedsteoretisk model. En sandsynlighedsteoretisk model består af tre komponenter: 1) udfaldsrummet, X, som er samtlige værdier (udfald), som eksperimentet kan få; 2) hændelsessystemet, A, som omfatter alle de hændelser vi vil betragte; og 3) sandsynlighedsmålet, P, som angiver sandsynligheden af alle hændelser i A. Det stokastiske element i et eksperiment beskrives af hændelsessystemet og sandsynlighedsmålet, som beskriver alle hændelser vi er interesserede i og deres sandsynligheder. Vi beskriver ofte det stokastiske ved et datasæt ved at opfatte data x som en realisation af en stokastisk vektor X. Denne stokastiske vektor kan man tænke på som identitetsafbildningen på udfaldsrummet X og dens fordeling som givet ved sandsynlighedsmålet P. Vi indskrænker os til kun betragte diskrete og kontinuerte stokastiske vektorer. Hændelsessystemet vil omfatte alle etpunktsmængder, alle intervaller og alle mængder, der kan dannes udfra dem med de sædvanlige mængdeoperationer, som foreningsmængde, fællesmængde og komplementærmængde. Sandsynlighedsmålene på disse hændelsessystemer kan repræsenteres enten ved deres fordelingsfunktionen F eller deres tæthedsfunktion f. En statistisk model er en parametriseret mængde af sandsynlighedsteoretiske modeller. Sædvanligvis er udfaldsrummene og hændelsessystemerne identiske for alle de sandsynlighedsteo-

15 5.3 retiske modeller, og i det tilfælde kan man tænke på en statistisk model som en sandsynlighedsteoretisk model, hvor sandsynlighedsmålet er blevet erstattet med en parametriseret klasse af sandsynlighedsmål, P = {P ω ω Ω}. Alternativt kan klassen af sandsynlighedsmål repræsenteres med en parametriseret klasse af fordelinger, F = {F ω ω Ω}, eller en parametriseret klasse af tætheder { f( ;ω) ω Ω}. Her er parameteren ω = (ω 1,...,ω k ), og vi antager altså, at Ω, parameterrummet (parametermængden), er en delmængde af R k. Parameteren ω bør vælges, således at den er relevant for det faglige problem, der ligger til grund for eksperimentet. Det vil sige, at parameteren skal vælges, således at udsagn vedrørende det faglige problem kan formuleres ved hjælp af ω. Med undtagelse af modellerne i Kapitel 8 er alle de statistiske modeller, der betragtes i disse noter, på formen Vores foretrukne repræsentation af sandsynlighedsmålene er via tætheder, og vi kalder funktionen (X,A ;P) = (X,A ;{P ω ω Ω}). X Ω R (x,ω) f(x;ω) (5.1) for modelfunktionen. Modelfunktionen er tætheden som funktion af både udfaldet x og parameteren ω. For at gøre de matematiske overvejelser lettere vil vi antage, at parametermængden Ω kan vælges som et område i R k ; det vil sige, at Ω er en åben 1 og sammenhængende 2 delmængde af R k. Vi har nu fået fastlagt de termer og den notation vi vil bruge i omtalen af statistiske modeller. Modelopstilling opfatter vi som den proces, hvor man identificerer komponenterne i den statistiske model: udfaldsrum, hændelsessystem og klassen af fordelinger. Det er sædvanligvis uproblematisk at bestemme sig for udfaldsrummet, og dermed er hændelsessystemet også givet. Det væsentligste arbejde er i forbindelse med identifikation af den parametriserede klasse af fordelinger, som man vil betragte. Det betyder også, at man i omtalen af modellerne ofte undlader at nævne hele triplet (X,A ;{P ω ω Ω}), men fokuserer på fordelingerne {P ω ω Ω}. Endda går man ofte så vidt, at man nøjes med at specificere parametermængden Ω, idet både udfaldsrum, hændelsessystem og fordelingsklasse er underforstået. I arbejdet med at identificere en klasse af fordelinger inddrager man almindelig og specifik viden om forsøgsomstændighederne og undertiden erfaringer fra statistiske analyser af lignende forsøg. Sædvanligvis er de indledende grafiske procedurer, der omtales i Kapitel 1, særdeles 1 Ω er åben, hvis et vilkårligt punktω Ω er centrum for en kugle, der helt er indeholdt i Ω. 2 Ω er sammenhængende, hvis to vilkårlige punkter ω og ω i Ω kan forbindes med hinanden ved hjælp af linjestykker, der alle er indeholdt i Ω.

16 Modelkontrol nyttige i forbindelse med modelopstilling. Dette trin i en statistisk analyse kræver ofte en så betydelig indsigt i den faglige sammenhæng, at et samarbejde mellem fagmanden fra idræt og statistikeren er påkrævet. 5.3 Modelkontrol Dette punkt i en statistisk analyse vedrører vurdering af rimeligheden af den opstillede statistiske model. Det undersøges, om data x strider mod en eller flere væsentlige konsekvenser af modellen. Hvis dette er tilfældet, forkastes modellen og en ny opstilles; hvis ikke, er man klar til at gå videre til næste punkt i analysen, statistisk inferens. Bemærk, at man ved den skitserede procedure på ingen måde opnår sikkerhed for, at modellener korrekt. Det er vanskeligt at give en generel beskrivelse af dette punkt i en statistisk analyse, idet metoderne dels afhænger af modellen og dels af de betragtede aspekter ved modellen. Desuden skal det understreges, at modelkontrol ikke er begrænset til de indledende faser af en statistisk undersøgelse. I mange modeller, for eksempel i regressionsmodeller, sker den væsentligste del af modelkontrollen efter, at man har estimeret i modellen. Som det fremgår af næsten alle de følgende kapitler, indgår såvel grafiske som numeriske undersøgelser i kontrollen af en model. Eksempel 4.1 (Fortsat) Ved opstillingen af en model for data x som består af de 15 målingerx 1,...,x 15 af laktat koncentrationen i den samme blodprøve med en kendt koncentration på 80 mg/l benytter vi oplysningen om, at erfaringsmæssigt kan sådanne målinger betragtes som normalfordelte med en spredning på 5mg/l. Vi opfatter derfor de 15 målinger som realisationer af uafhængige og identisk fordelte stokastiske variable X 1,...,X 15. Vi betragter altså modellen X i N(µ,σ 2 0), i = 1,...,n, hvor n = 15 og σ0 2 = 25. Parameteren µ varierer i R, og da de stokastiske variable er uafhængige er modelfunktionen f(x; µ) = n i=1 1 2πσ0 2 ( 1 = 2πσ0 2 e 1 2σ 0 2 (x i µ) 2 ) n 2 e 1 2σ 2 0 n i=1(x i µ) 2. (5.2) Modellen kontroleres ved hjælp af en fraktilsammenligning, som beskrevet i Afsnit 4.1.

17 Statistisk inferens Formålet med en statistik analyse er at opnå indsigt i den faglige problemstilling, der gav anledning til eksperimentet. Ved modelopstillingen blev parameteren ω valgt, således at den repræsenterer de aspekter ved det faglige problem, som er af speciel interesse. Statistisk inferens vedrører spørgsmålet om at formulere udsagn om parameteren ω - og dermed om det faglige problem - på baggrund af data x, udfaldet af eksperimentet. Disse udsagn har som formål at angive, i hvilken grad de forskellige parameterværdier ω, eller rettere de tilsvarende fordelingsfunktioner F ω (eller tæthedsfunktioner f( ; ω)), kan anses for at give en rimelig beskrivelse af data x. Estimationsteori og testteori anses traditionelt som de vigtigste discipliner i statistisk inferens. I estimationsteorien søges en afbildning ω ω ω : X Ω x ω ω ω(x), (5.3) der til data x tilordner en bestemt parameterværdi ω ω ω(x), se Figur 5.1. Denne værdi omtales som estimatet for (skønnet over) parameteren ω. Den tilsvarende stokastiske vektor ω ω ω(x) omtales som en estimator for ω. Vi vil ofte bruge notationen ω ω ω ω eller ω ω ω ω til at antyde, at ω ω ω er et estimat for ω. Figur 5.1 Illustration af en estimator ω ω ω.

18 Statistisk inferens Det er ofte en del af en statistisk analyse at undersøge, om en enklere statistiske model end den, der som udgangspunkt blev opstillet, giver en tilfredsstillende beskrivelse af data. Det kan netop være på den måde, man formulerer og besvarer et relevant fagligt spørgsmål. Lad Ω 0 betegne en delmængde af parameterrummet Ω. Hypotesen H 0 : ω Ω 0 (5.4) repræsenterer da en reduktion af den statistiske model. Hvis Ω 0 kun har ét element ω 0, omtales hypotesen som en simpel hypotese eller som en punkthypotese. I modsat fald betegnes hypotesen som sammensat. Testteorien angiver metoder til at vurdere, om hypotesen H 0 er rimelig eller ej på grundlag af data x. Matematisk set er et test blot en opdeling af værdimængden X i to disjunkte mængder R = {x X : H 0 forkastes på grundlag af x} A = {x X : H 0 forkastes ikke på grundlag af x}, (5.5) der betegnes som henholdsvis forkastelses- og acceptområdet for H 0. Mængden R (ikke at forveksle med de reelle tal R) omtales undertiden også som det kritiske område for H 0. Ofte fås den betragtede opdeling af værdimængden X som beskrevet på følgende måde, se også Figur 5.2: Lad T være en afbildning af X ind i de reelle tal og lad T R og T A være en opdeling af værdimængden T = T(X ) i to disjunkte mængder. Hvis R = T 1 (T R ) = {x X : T(x) T R } A = T 1 (T A ) = {x X : T(x) T A }, (5.6) omtales T som en testor af hypotesen H 0. Værdien T(x) af T svarende til data x omtales som teststørrelsen. Ud fra heuristiske argumenter er det ofte muligt at angive estimatorer og testorer i simple, konkrete situationer. Imidlertid er det naturligvis af værdi at have en general metodik, baseret på simple principper, der anviser estimatorer og testorer også i mere komplicerede situationer. Den metodik, vi skal omtale i det følgende, baserer sig på likelihood funktionen, som introduceres i det næste afsnit. De hertil hørende størrelser omtales som henholdsvis maksimum likelihood estimatoren og likelihood ratio testoren.

19 Likelihood inferens Figur 5.2 Illustration af en testor T for hypotesen H 0. Ideerne bag likelihood inferens og de første grundliggende udviklinger af dette begreb skyldes den engelske genetiker R. A. Fisher. Likelihood inferens er baseret på likelihood funktionen, som vi nu introducerer og diskuterer. Fra formuleringen af den statistiske model i Afsnit 5.2 ses det, at for fast værdi af parameteren ω er modelfunktionen f(x; ω) tæthedsfunktionen for den stokastiske vektor X. Hvis P ω betegner sandsynlighedsmålet svarende til tæthedsfunktionen f(x;ω) har vi derfor, at f(x;ω) = P ω (X = x), (5.7) hvis X er diskret. Hvis X er kontinuert er relationen mellem f(x;ω) og P ω givet ved hvor I x er en lille mængde omkring x, hvis indhold er dx. f(x;ω)dx P ω (X I x ), (5.8) For fast værdi af ω beskriver modelfunktionen altså sandsynlighederne knyttet til alle mulige realisationer af X. Data x er imidlertid en bestemt og fast realisation af X, og da vi ønsker at udtale os om forskellige værdier af ω i lys af data x, kunne vi prøve at betragte modelfunktionen som funktion af ω for fastholdt x. Vi har da stadig fortolkningen, at f(x; ω) er sandsynligheden af observationen x, hvis parameteren er ω. Det har vi direkte via (5.7), hvis X er diskret, eller

20 Likelihood inferens via fortolkningen i (5.8), hvis X er kontinuert. I den forstand er f(x;ω) et udtryk for troligheden eller rimeligheden af ω i lys af data x. R.A. Fisher valgte termen likelihood, fordi likelihood i lighed med probability i engelsk daglig tale bruges til at udtrykke grader af tiltro. Ved at vælge en anden term end probability understregede Fisher, at vi ikke har at gøre med sandsynligheder på parametrene. Termen likelihood er ikke oversat til dansk, og vi kalder f(x;ω) som funktion af ω for likelihood funktionen og betegner den L(ω) = f(x;ω) ω Ω, (5.9) idet vi underforstår afhængigheden af de observerede data. Men hvis vi ønsker at understrege, at vi betragter funktionen svarende til data x, skriver vi L(ω;x) i stedet for L(ω). Et eksempel på en likelihood funktion kan ses i Figur 5.3. Figur 5.3 Likelihood funktionen L(µ) (ganget med ) for middelværdien µ i én normalfordelt observationsrække med kendt varians (σ0 2 = 25) for data i Eksempel 4.1. Likelihood funktionen laver en ordning i parametermængden. Hvis vi et øjeblik betragter kun to parameterværdier ω 1 og ω 2, og på baggrund af data x ønsker at vælge, hvilken af de to parameterværdier, der bedst forklarer data, må det blive den, som har den største værdi af likelihood funktionen L(ω), fordi det er den som gør data mest sandsynlig. Vi siger, at værdien ω 1 er mere likely end ω 2 i lys af data x, hvis L(ω 1 ) > L(ω 2 ). På dansk vil vi undertiden bruge

21 ordet trolig i denne tekniske betydning, og altså sige, at ω 1 er mere trolig end ω 2 i lys af data x, hvis L(ω 1 ) > L(ω 2 ). Likelihood funktionens ordning af parametermængden leder umiddelbart til, at hvis vi vil angive én parameterværdi, som er i bedst overensstemmelse med data x, må det blive den værdi, som gør de observerede data mest sandsynlige, det vil sige den værdi, hvor likelihood funktionen antager sit maksimum. Vi har hermed introduceret begrebet maksimum likelihood estimation. Hvis der eksisterer en entydigt bestemt værdi ˆωˆωˆω, for hvilken likelihood funktionen L( ) antager sit maksimum, det vil sige L( ˆωˆωˆω) > L(ω) for alle ω Ω således at ω ˆωˆωˆω, kaldes denne værdi ˆωˆωˆω af parameteren for maksimum likelihood estimatet for ω. Med andre ord er maksimum likelihood estimatet ˆωˆωˆω = ( ˆωˆωˆω(x)) den mest trolige værdi af parameteren ω i lys af data x. Den tilsvarende stokastiske vektor ˆωˆωˆω(X) omtales som maksimum likelihood estimatoren. Undertiden er det lettere at maksimere log likelihood funktionen 5.9 l(ω) = lnl(ω) ω Ω, (5.10) end selve likelihood funktionen L( ). I de modeller, vi betragter, er likelihood funktionen (mindst) to gange differentiabel med kontinuerte (partielle) afledede, og det letter arbejdet med at finde den værdi, hvor likelihood funktionen antager sit maksimum. Da parametermængden er antaget at være et område, kan ˆωˆωˆω = ( ˆω 1,..., ˆω k ) findes som en løsning til ligningerne l ω j (ω) = 0, j = 1,2,...,k. (5.11) Disse ligninger, der kaldes likelihood ligningerne, kan undertiden løses eksplicit, men i nogle tilfælde må man benytte numeriske procedurer for at finde ˆωˆωˆω. Desuden må man også vurdere om en løsning til likelihood ligningerne er et punkt, hvor likelihood funktionen antager sit maksimum. Ofte består data x af n enkeltmålinger x 1,...,x n, det vil sige x = (x 1,...,x n ). Hvis vi som model kan benytte, at x 1,...,x n er udfald af uafhængige og identisk fordelte stokastiske variable X 1,...,X n, hvor tæthedsfunktionen for X i er f(x i ;ω),i = 1,...,n, vil vi omtale data som én observationsrække fra fordelingen F ω. Antagelsen om uafhængighed af de stokastiske variable medfører - som bekendt fra sandsynlighedsteorien - at tæthedsfunktionen for X er produktet af tæthedsfunktionerne for X i, i = 1,...,n. Likelihood funktionen L( ) og log likelihood funktionen l( ) bliver derfor i denne situation henholdsvis L(ω) = n i=1 f(x i ;ω) (5.12)

IDRÆTSSTATISTIK BIND 1

IDRÆTSSTATISTIK BIND 1 IDRÆTSSTATISTIK BIND 1 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN 87-87436-05-1 Bd.1 iii Forord Denne bog er skrevet til brug i et statistikkursus

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005 TEKST NR 435 2004 BASISSTATISTIK Jørgen Larsen 2004, 2005 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING OG ANVENDELSER

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 2013/14

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Lær nemt! Statistik - Kompendium

Lær nemt! Statistik - Kompendium David Brink Lær nemt! Statistik - Kompendium Ventus wwwventusdk Lær nemt! Statistik - Kompendium 005 David Brink Nielsen og Ventus Download kompendiet gratis på wwwventusdk ISBN 87-7681-01-7 Ventus Falkoner

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

En statistikstuderendes bekendelser Søren Wengel Mogensen

En statistikstuderendes bekendelser Søren Wengel Mogensen Oplysning 23 En statistikstuderendes bekendelser Søren Wengel Mogensen Om at skrive BSc-opgave i anvendt statistik. Der findes matematikere (i hvert fald matematikstuderende), der mener, at den rene matematik

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle.

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014 IBC-Kolding

Læs mere

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides 01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...

Læs mere

En Introduktion til Sandsynlighedsregning

En Introduktion til Sandsynlighedsregning En Introduktion til Sandsynlighedsregning 4. Udgave Michael Sørensen 26. juni 2003 0 Forord Til 2. udgave Disse forelæsningsnoter trækker i betydelig grad på noter udarbejdet af en række kolleger. Det

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF Sammenligning af to måleserier En af de mest grundlæggende problemstillinger i statistik består i at undersøge om to forskellige måleserier er signifikant forskellige eller om forskellen på de to serier

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Elevmateriale. Forløb Statistik

Elevmateriale. Forløb Statistik Elevmateriale Forløb Statistik Første lektion: I første lektion skal eleverne reflektere over, hvordan man sammenligner datasæt. Hvordan afgør man, hvor høj man er i 5. klasse? I andre dele af matematikken

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

MATEMATIK ( 5 h ) DATO: 8. juni 2009

MATEMATIK ( 5 h ) DATO: 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 5 h ) DATO: 8. juni 2009 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Stokastiske processer og køteori 9. kursusgang Anders Gorst-Rasmussen Institut for Matematiske Fag Aalborg Universitet 1 OPSAMLING EKSAKTE MODELLER Fordele: Praktiske til initierende analyser/dimensionering

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler

Dagens program. Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler Dagens program Afsnit 1.1-1.3 Eksperimenter med usikkerhed Sandsynlighedsmodel - Udfaldsrum - Hændelser - Sandsynligheder Eksempler 1 Sandsynlighedsmodel Kvantitative Metoder 1 - Efterår 2006 Eksperiment

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring 7. april 2011 Indhold 1 Undersøgelsesdesign 5 1.1 Kausalitet............................. 5 1.2 Validitet og bias......................... 6 1.3

Læs mere

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/

Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ Nanostatistik: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/ kurser/nanostatistik/ JLJ Nanostatistik: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/nanostatistik/ p. 1/16 Højder

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: maj-juni 2011/2012 ZBC Ringsted Hhx Matematik B Jens Jørvad 12hhx21 Oversigt over

Læs mere

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4 Indholdsfortegnelse INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF OULATIONEN... 4 DELOGAVE 1...5 BEGREBSVALIDITET... 6 Differentiel item funktionsanalyser...7 Differentiel item effekt...10 Lokal

Læs mere

Ny karakterskala nye mål?

Ny karakterskala nye mål? Ny karakterskala nye mål? Workshop Camilla Rump Lene Møller Madsen Mål for workshoppen Efter workshoppen skal deltagerne kunne Lave en operationel mål- og kriteriebeskrivelse af 12-tallet og 2-tallet for

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hfe Mat A Viktor Kristensen

Læs mere

Sandsynlighedsbaserede metoder

Sandsynlighedsbaserede metoder Metodeartikel 29 Sandsynlighedsbaserede metoder Monte Carlo-metoden Daniel Kjær I sidste udgave af Famøs kunne læseren finde første halvdel af en todelt artikelserie om sandsynlighedsbaserede metoder under

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 11. Denne

Læs mere

Matematik i AT (til elever)

Matematik i AT (til elever) 1 Matematik i AT (til elever) Matematik i AT (til elever) INDHOLD 1. MATEMATIK I AT 2 2. METODER I MATEMATIK OG MATEMATIKKENS VIDENSKABSTEORI 2 3. AFSLUTTENDE AT-EKSAMEN 3 4. SYNOPSIS MED MATEMATIK 4 5.

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Institution Uddannelse Fag og niveau Lærer Hold IBC Aabenraa HHX Matematik C Lars Erik Henriksen 1HHI 1 Funktioner og polynomier a) Lave en grafisk funktionsanalyse. 1. Definitionsmængde.

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Vi ønskede at planlægge og afprøve et undervisningsforløb, hvor anvendelse af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere

Matematik og spil. Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014

Matematik og spil. Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014 Enhedens navn Matematik og spil Rolf Poulsen rolf@math.ku.dk Institut for Matematiske Fag, Kbh. Uni. Mød MATH på KU (måske sidste chance), november 2014 På disse slides skal spil læses som væddemål. Hvorfor

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau Lærer(e)

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393.

Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Broer, skak og netværk Side 1 af 6 Broer, skak og netværk Carsten Thomassen: Naturens Verden 10, 1992, s. 388-393. Eksempler på praktiske anvendelser af matematik og nogle uløste problemer Indledning Figur

Læs mere