Byggeøkonomuddannelsen

Størrelse: px
Starte visningen fra side:

Download "Byggeøkonomuddannelsen"

Transkript

1 Byggeøkonomuddannelsen Risikoanalyse Successiv kalkulation Ken L. Bechmann 18. november

2 Dagens emner Risikoanalyse og introduktion hertil Kalkulation / successiv kalkulation Øvelser og småopgaver Beregninger i Excel Lidt om programmer 2

3 Usikkerheds- og risikoanalyse Helt centralt i mange forhold eksempelvis: Hvilket tilbud man skal give Hvordan arbejdet skal planlægges Hvor lang tid et bestemt arbejde tager Hvad er de kritiske faser/omkostninger. Hvad man vil investere i Hvilket lån man vil tage Hvilken forsikring man skal tegne Hvilken strategi man skal vælge i POKER 3

4 Risikoanalyse I Grundidé: For et projekt er man interesseret i at få et bedre beslutningsgrundlag end det traditionelle beregninger kan give. Dette kan eksempelvis være vedr. projektets: Samlede omkostninger Samlet gennemførelsestid Givet de vigtigste delaktiviteter/poster i projektet beregnes hvad projektet forventes at koste/tage af tid og hvor stor usikkerheden er på denne forventede værdi. 4

5 Risikoanalyse II Dette gøres ved på en systematisk måde at identificere, vurdere og behandle risikofaktorer som led i helhedsbetragtningen Metoden: Skal arbejde med usikre talværdier under overholdelse af de statistiske grundlove Mere eller mindre objektive historiske talværdier suppleres med objektive vurderinger Skal medtage alle de forhold, der har væsentlig indflydelse på resultatet (også de upopulære) Skal koncentrere sig om det væsentlige Skal være overskuelig. 5

6 Risikoanalyse III Estimering er svært men nødvendigt Svært fordi Estimering foretages tidligt i processen Analyse og design er ofte usikkert Det kan være svært at forstå hvad et estimat udtrykker Der i nogle tilfælde ikke anvendes systematiske estimeringsmetoder Manglende anvendelse af erfaringsdata Nødvendigt fordi Markedet kræver det kan give kompetitiv fordel Ledelsen har behov for at prioritere knappe ressourcer 6

7 Eksempel Idrætsanlæg Består overordnet af følgende delaktiviteter: Opstartsarbejder Boldbaner Andre græsarealer Parkanlæg Afsluttende arbejder Andre mere generelle forhold 7

8 Eksempel Idrætsanlæg: Fordeling af omkostninger 16% 14% 12% Sandsynlighed 10% 8% 6% 4% 2% 0% Omkostninger (millioner kr.) 8

9 Eksempel Idrætsanlæg: Kilder til usikkerheden 31,4 15,3 0,4 0,8 4,1 2,7 0,3 49,1 Opstartsarbejder Boldbaner Andre græsarealer Parkanlæg Befæstede arealer Afsluttende arbejder Generelle forhold 9

10 Nødvendige værktøjer Sandsynligheder og statistik bruges til behandling, vurdering og kvantificering af usikkerhed / risiko Beregningsmetode (successiv kalkulation): Strukturering af fremgangsmåde Generering af resultater Skal have information: Erfaringer Databaser Osv. 10

11 Successiv kalkulation I Komplet og effektivt kalkulationsværktøj til usikkerhedsanalyse. Anvendes i høj grad i praksis: Flere tusinde danske Google hits Mange konkrete eksempler på: Anvendelser (Virksomheder, forvaltninger, organisation og ministerier) Udbydere af software til beregninger Udbydere af kurser osv. i beregningerne Kritik af manglende brug heraf i nogle skandaler 11

12 Successiv kalkulation II Resultat er: Et korrekt estimat for den forventede værdi Usikkerheden er specificeret og minimeret Realistisk billede af denne usikkerhed fordelt ud på de enkelte delaktiviteter/delposter. 12

13 Successiv kalkulation III Herudover opnås blandt andet også: Optimalt resultat med minimal arbejdsindsats Lokalisering af forbedringsmuligheder Lokalisering af svage punkter Kan medvirke til at forhindre overskridelser Effektiv og inspirerende arbejdsproces Optimal udnyttelse af ressourcer Bedre overblik Sammentømring af projektgruppen I hvert fald ifølge sælgere af kurser i Successiv kalkulation 13

14 Praktisk arbejdsgang 1. Start: Projektbeskrivelse definition 2. Forudsætninger indgår ikke i beregning 3. Opdeling i poster/aktiviteter 4. Liste og definition over generelle forhold 5. Vurdering af minimum/sandsynlig/maksimum for generelle forhold og for poster/aktiviteter 6. Beregning af samlet forventet værdi og usikkerhed. 7. Hvis resultat ikke er tilfredsstillende og forbedring er mulig, da indhentes ny information og der returneres til punkt Slut 14

15 Tilfredsstillende resultatet Usikkerheden må ikke være for stor! Middelværdien må ikke afvige for meget (jf. usikkerheden) fra et ønsket interval. (Nogle grundregler skal overholdes for at resultatet er troværdigt mere senere) Resultatet kan forbedres ved: Et eller flere af posterne med størst usikkerhed bestemmes bedre enten ved at specificere disse bedre i flere underposter eller ved at hente nye oplysninger Ændring ved forudsætningerne 15

16 Vurdering af usikkerhed Usikkerheden for en bestemt post/aktivitet er i princippet givet ved en såkaldt fordeling, men sådanne kan være lidt svære at fastlægge: 20% 18% 16% 14% Sandsynlighed 12% 10% 8% 6% 4% 2% 0% Omkostning (Tusinder kr.) 16

17 Vurdering af MIN / SAN / MAX I stedet vurderes for den enkelte post/aktivitet: MIN (minimum) Ekstrem minimum: Svarende til 1% fraktilen, dvs. at sandsynligheden for at denne værdi underskrides er 1%. I praksis: den mindste værdi man kan forestille sig. SAN (sandsynlig) den mest sandsynlige værdi: Svarende til den værdi der har højeste tæthed (sandsynlighed) I praksis: den værdi man tror mest på. MAX (maksimum) Ekstrem maksimum: Svarende til 99% fraktilen, dvs. at sandsynligheden for at denne værdi overskrides er 1%. I praksis: den største værdi man kan forestille sig. 17

18 Vurdering af MIN / SAN / MAX 20% 18% 16% 14% Sandsynlighed 12% 10% 8% 6% MIN SAN MAX 4% 2% 0% Omkostning (Tusinder kr.) 18

19 Vurderingsteknik erfaringer fra øvelsen Spørgsmål der besvares mest forkert: Dårligste forudsætninger Ukendte enheder Usandsynlige Ikke intuitive / snydere Anbefalinger til mere sikker vurdering Anvend passende enheder Pres ikke på for at få stor sikkerhed Skaf om muligt simpel baggrundsinformation Vurder MIN og MAX først evt. ud fra kendt SAN. Måske en hjælp, hvis flere arbejder sammen. 19

20 Vurderingsteknik andre erfaringer Faldgruber: Speciel interesse i resultatet: ønske, frygt, taktik, politik Dimensionsfejl: Enkelt styk versus masseproduktion Falsk sikkerhed: Dygtighed versus lille usikkerhed Støtte i det velkendte: Mest vægt på det nærmeste / mest kendte 20

21 Beregninger ud fra MIN / SAN / MAX For hver post beregnes følgende vigtige tal: MID: Middelværdien: Den værdi der med 50% sandsynlighed over- eller underskrides. STD: Standardafvigelsen: Et mål for usikkerheden (spredningen) 2/3 ssh. for at ligge i intervallet fra MID STD til MID+STD. 95% ssh. for at ligge i intervallet fra MID 2 STD til MID+2 STD. VAR: Variansen: Et andet mål for usikkerheden (varians) Er STD 2, dvs. STD STD. PRI: Prioritetstal: Et mål for postens usikkerhed i forhold til samlet usikkerhed 21

22 Beregninger ud fra MIN / SAN / MAX For den enkelte post fås: MID STD VAR PRI ( MIN ( MAX STD 3 SAN STD (100VAR) / MIN) / 5 MAX VAR Samlet Hvor VAR Samlet er summen af VAR for alle de opstillede delaktiviteter/poster. ) / 5 22

23 Beregninger ud fra MIN / SAN / MAX For den tidligere post haves: MID ( ) / 5 25 / 5 5 STD (12 1) / 5 2,2 VAR 2,2 2,2 4,84 23

24 Beregninger ud fra MIN / SAN / MAX For det samlede projekt fås nu: MID Samlet = Summen af middelværdierne for de opstillede poster. VAR Samlet = Summen af varianserne for de opstillede poster. STD Samlet = Kvadratroden af VAR Samlet 24

25 Et større eksempel I Et projekt, hvor resultatet afhænger af tre poster, hvor nedenstående MIN/SAN/MAX er vurderet. For det samlede projekt fås således: Lille opgave: Check (efterregn) alle de gråbrune tal! 25

26 Et større eksempel II Resultat: 35% 30% 25% Post 1 Post 2 Post 3 Samlet 20% 15% 10% 5% 0%

27 Forudsætninger for troværdigt resultatet Bygger på en del statistik (se evt. sidste slides) som i praksis betyder at følgende forudsætninger gerne skal være opfyldt: Tilstrækkeligt mange poster minimum ca. 30. Alle usikkerheder er medtaget Intet prioritetstal (PRI) afviger ekstremt Uafhængighed mellem posterne Hvis disse antagelser ikke (nogenlunde) er opfyldte skal man passe på med at hænge for meget på slutresultatet nærmere analyser bør foretages! 27

28 Uafhængighed I Udfaldet af en post må ikke sige noget om udfaldet af andre poster Eksempler: Afhængige poster: Beton Type X og Type Y Arbejdsløn af forskellige typer Uafhængige poster (tilnærmelsesvist): Materialeomk. ved 1 m 2 græs henholdsvis 1 m 2 asfalt Omkostninger til inventar og til etablering af parkering. 28

29 Uafhængighed II Eksempel på betydning: Betragt to poster begge med VAR=100. Hvis helt uafhængige: VAR Samlet =200 Hvis helt afhængige: VAR Samlet =400 Hvis der haves problemer med afhængighed, da undervurderes den samlede usikkerhed! 29

30 Løsning på uafhængighed Find alle de fælles forhold, som skaber afhængigheden mellem nogle af (alle) posterne. Indfør disse forhold som en post under generelle forhold og vurder for hver af disse den samlede påvirkning af projektet (MIN/SAN/MAX). Vurder de øvrige poster uden hensyntagen til disse forhold. 30

31 Generelle forhold I Politiske forhold Myndighedsproblemer Arbejdsmiljø Sikkerhedsforhold Miljøforhold Lønforhold Konkurrence Inflation Realrenten Disponible ressourcer Størrelse / omfang Lokale forhold Udførelsestidspunkt Tidsplan Vejret Tyveri/hærværk Samarbejdsevner Kvalitetsniveau Uforudsete forhold Optimisme / pessimisme Etc. 31

32 Generelle forhold II Vurdering af generelle forhold: Kan gøres i absolutte beløb Beton-prisen: / / Løn-forhold: / 0 / Osv. Eller som procenter af summen af alle de andre relevante poster (hvor faktoren indgår): Tyveri/hærværk: 5% / 0% / 10% Vejret: 0% / 5% / 10% Osv. 32

33 Mulige problemer med metoden Andre fejlmuligheder: Undervurdering af generelle forhold Indregning af reserve flere gange Brugerfejl fx at alle poster ikke vender ens. Andre problemer: Resultater kan være svært at kommunikere til folk, der ikke selv har erfaringer med metoden Metoden (og arbejdet hermed) kan misbruges Vigtigt men ikke altid nemt at arbejde med de generelle forhold. 33

34 Større eksempel: Idrætsanlæg Bestemmelse af de samlede omkostninger til etablering af idrætsanlæg: Post Beskrivelse Mængde Enhed MIN SAN MAX MID STD VAR (10 6 ) PRI 1 Opstartsarbejder 1 stk ,4 2 Boldbaner m ,1 3 Andre græsarealer m ,8 4 Parkanlæg m ,7 5 Befæstede arealer m ,4 6 Afsluttende arbejder 1 stk ,3 7 Generelle forhold sum -10% 0% 20% ,3 Samlet ,0 Ovenstående findes i et regneark, som man kan studere, hvis man har lyst. 34

35 Større eksempel: Idrætsanlæg Med udgangspunkt i dette regneark vises nogle yderligere aspekter af successiv kalkulation i praksis og det vises, hvorledes Excel på flere måder med fordel kan anvendes i dette arbejde. I forbindelse med sidstnævnte findes en række smarte funktioner til hjælp i Excel. Dem vil vi ikke gøre ret meget ud af (ej pensum). 35

36 Excel funktioner I Tegning af projektets usikkerhed: Normfordeling(x; MID;STD;FALSK) *GrafEnhed Eksempel: Hvis MID=12,5 mdr. og STD=1,5 mdr. da er fordelingen af projektets usikkerhed: Normfordeling(x; 12,5; 1,5; FALSK)*1. Bemærk: Normfordeling er det danske navn for funktionen; på engelsk hedder den: Normdist og FALSK hedder naturligvis FALSE. 36

37 Excel funktioner II 30% 25% 20% Sandsynlighed 15% 10% 5% 0% Måneder 37

38 Excel funktioner III Eksempel fortsat: Sandsynligheden for at projektet kommer til at vare mindre end 10 mdr.: Normfordeling(10; 12,5; 1,5; SAND)=4,8% Og sandsynligheden for at projektet kommer til at vare mere end 14 mdr. er: 1 ssh. for under 14 mdr.= 1 Normfordeling(14;12,5;1,5;SAND)=16% 38

39 Appendiks I: Lidt tekniske forhold/bemærkninger Metoden bygger på, at de enkelte poster antages at følge forskellige erlangfordelinger (skæve normalfordelinger). For disse gælder generelt, at MID og STD med god tilnærmelse kan beregnes som angivet tidligere. Summeres en række (tilstrækkeligt mange) erlangfordelte stokastiske variable bliver summen normalfordelt med MID og STD som beregnet tidligere. 39

40 Appendiks II: Lidt tekniske forhold/bemærkninger Vil du vide mere, så findes der forskellige (mere eller mindre komplicerede) noter og lærebøger om emnet. Eksempler (uden ansvar): Steen Lichtenberg: Rapport over successiv kalkulation Anlægsteknik 2, Styring af byggeprocessen Anlægsteknik 3, Økonomi i bygge- og anlægsvirksomheder To sidstnævnte udgives på Polyteknisk Forlag. Yderligere tilbydes der forskellige kurser, der i vid udstrækning fokuserer på forskellige konkrete anvendelser i praksis. 40

41 Programmer Der findes forskellige færdige programmer til successiv kalkulation. Eksempel: Sigma 2007 Enterprise: integration af de to kalkulationsværktøjer, V&S PrisDatabase og Sigma. Programmet kan blandt andet foretage forskellige beregninger og herunder også foretage successiv kalkulation. 41

Slide 1. Slide 2. Slide 3. Byggeøkonomuddannelsen. Dagens emner. Usikkerheds- og risikoanalyse. Risikoanalyse Successiv kalkulation

Slide 1. Slide 2. Slide 3. Byggeøkonomuddannelsen. Dagens emner. Usikkerheds- og risikoanalyse. Risikoanalyse Successiv kalkulation Slide 1 Byggeøkonomuddannelsen Risikoanalyse Successiv kalkulation Ken L. Bechmann 18. november 2013 1 Slide 2 Dagens emner Risikoanalyse og introduktion hertil Kalkulation / successiv kalkulation Øvelser

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Byggeøkonomuddannelsen Afrunding successiv kalkulation og Værktøjer til Totaløkonomi

Byggeøkonomuddannelsen Afrunding successiv kalkulation og Værktøjer til Totaløkonomi Byggeøkonomuddannelsen Afrunding successiv kalkulation og Værktøjer til Totaløkonomi Ken L. Bechmann 25. november 2013 1 Totaløkonomi hvorfor: Analysere hvad der samlet bedst betaler sig Foretage økonomiske

Læs mere

UNDERSØGELSE af RISK MANAGEMENT blandt danske virksomheder 2006/7

UNDERSØGELSE af RISK MANAGEMENT blandt danske virksomheder 2006/7 UNDERSØGELSE af RISK MANAGEMENT blandt danske virksomheder 2006/7 Baggrund: Risk Management (RM) er i dag et væsentligt fundament for at kunne håndtere store og komplekse projekter - herunder at kunne

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Forelæsning 1: Intro og beskrivende statistik

Forelæsning 1: Intro og beskrivende statistik Kursus 02402 Introduktion til Statistik Forelæsning 1: Intro og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Til. Københavns Kommune - CAU. Dokumenttype. Rapport. Dato. august 2010 RISIKOANALYSE AF AN- LÆGSOVERSLAG NORDHAVNSVEJ

Til. Københavns Kommune - CAU. Dokumenttype. Rapport. Dato. august 2010 RISIKOANALYSE AF AN- LÆGSOVERSLAG NORDHAVNSVEJ Til Københavns Kommune - CAU Dokumenttype Rapport Dato august 2010 RISIKOANALYSE AF AN- LÆGSOVERSLAG NORDHAVNSVEJ Revision 0 Doc. ID NHV 882-011-0 Risikoanalyse af anlægsoverslag August 2010.docx Dato

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14 Module 5: Exercises 5.1 ph i blod.......................... 1 5.2 Medikamenters effektivitet............... 2 5.3 Reaktionstid........................ 3 5.4 Alkohol i blodet...................... 3 5.5

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Planen idag. Fin1 (mandag 16/2 2009) 1

Planen idag. Fin1 (mandag 16/2 2009) 1 Planen idag Porteføljeteori; kapitel 9 Noterne Moralen: Diversificer! Algebra: Portefølje- og lineær. Nogenlunde konsistens med forventet nyttemaksimering Middelværdi/varians-analyse Fin1 (mandag 16/2

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

En intro til radiologisk statistik. Erik Morre Pedersen

En intro til radiologisk statistik. Erik Morre Pedersen En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl?

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl? Module 6: Exercises 6.1 To laboranter....................... 2 6.2 Nicotamid i piller..................... 3 6.3 Karakterer......................... 5 6.4 Blodtryk hos kvinder................... 6 6.5

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Introduktion 1 Formelt Lærere: Esben Budtz-Jørgensen Jørgen Holm Petersen Øvelseslærere: Berivan+Kathrine, Amalie+Annabell Databehandling: SPSS

Læs mere

Torsdag: PROJEKTPLANLÆGNING, ØKONOMI

Torsdag: PROJEKTPLANLÆGNING, ØKONOMI Torsdag: PROJEKTPLANLÆGNING, ØKONOMI Hvad Er det en god har idé? vi lært? (CBA/BC) Hvad har vi lavet? (projektevaluering) Hvornår har vi et projekt? (projektgeografi) Hvad skal vi levere? (produktmål)

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X.

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X. Opgave I I en undersøgelse af et potentielt antibiotikum har man dyrket en kultur af en bestemt mikroorganisme og tilført prøver af organismen til 20 prøverør med et vækstmedium og samtidig har man tilført

Læs mere

Praktiske erfaringer fra estimering med usikkerhed i IT projekter

Praktiske erfaringer fra estimering med usikkerhed i IT projekter Praktiske erfaringer fra estimering med usikkerhed i IT projekter Estimering af IT projekter har gennem tiderne altid været en særdeles vanskelig disciplin, og der findes næppe den eller de metoder der

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Test nr. 4 af centrale elementer 02402

Test nr. 4 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 4 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

ØVELSE 3A. I SAS kan man både bruge {}, [] og () som paranteser til index.

ØVELSE 3A. I SAS kan man både bruge {}, [] og () som paranteser til index. ØVELSE 3A I denne øvelse gennemgår vi: Flere funktioner - udvalgte tilfældigtals generatorer i SAS Eksempler på anvendelse af SAS til statistisk analyse Formål Du får brug for de træk ved SAS-systemet,

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud

Læs mere

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl

Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl Skriftlig Eksamen ST501: Science Statistik Tirsdag den 8. juni 2010 kl. 9.00 12.00 IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt. Opgavesættet består af 5

Læs mere

Risiko-regneark Planteproduktion

Risiko-regneark Planteproduktion Risiko-regneark Planteproduktion Introduktion og en kortfattet vejledning Videncentret for Landbrug, september 2011 Denne vejledning er baseret på regnearkets version 1.5, som findes og kan downloades

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Perspektiver i Matematik-Økonomi: Linær regression

Perspektiver i Matematik-Økonomi: Linær regression Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: jlj@imf.au.dk Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Løsninger til kapitel 1

Løsninger til kapitel 1 Opgave. a) observation hyppighed frekvens kum. frekvens 2,25,25 3,875,325 2 3,875,5 3 3,875,6875 4,625,75 5,625,825 6,,825 7 2,25,9375 8,,9375 9,625, Frekvenser illustreres i et pindediagram,2,8,6,4,2,,8,6,4,2

Læs mere

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014 Matematik A Højere handelseksamen hh143-mat/a-151014 Mandag den 15. december 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Hvad har vi lært? 23-02-2012 PROJEKTPLANLÆGNING, ØKONOMI. Torsdag: Hvad har vi lavet? (projektevaluering) Er det en god idé?

Hvad har vi lært? 23-02-2012 PROJEKTPLANLÆGNING, ØKONOMI. Torsdag: Hvad har vi lavet? (projektevaluering) Er det en god idé? Torsdag: PROJEKTPLANLÆGNING, ØKONOMI Er det en god idé? Hvad har vi lært? (CBA/BC) Hvad har vi lavet? (projektevaluering) Hvornår har vi et projekt? (projektgeografi) Hvad skal vi levere? (produktmål)

Læs mere

Stormvandstande ved Svendborg Kommunes Kyster 2011-2111

Stormvandstande ved Svendborg Kommunes Kyster 2011-2111 Stormvandstande ved Svendborg Kommunes Kyster 2011-2111 Miljø og Teknik Svendborg Kommune April 2011 Stormvandstande ved Svendborg Kommunes Kyster 2011-2111 1. Fremtidens permanente havstigning Den globale

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 25 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

hvor y antages approksimeret ved normalfordeling med middelværdi y og varians va^r(y): y ± u 1-/2 # cv(y) # y = y(1 ± u 1-/2 # cv(y))

hvor y antages approksimeret ved normalfordeling med middelværdi y og varians va^r(y): y ± u 1-/2 # cv(y) # y = y(1 ± u 1-/2 # cv(y)) 1 Opgave II.1 a) Stikprøvevariansen er vidt forskellig for de fire varetyper, men denne absolutte størrelse er vanskelig at sammenligne på tværs af varetyper, da disse har vidt forskellige niveauer, målt

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Kvantitative Metoder 1 - Efterår 2006. Dagens program

Kvantitative Metoder 1 - Efterår 2006. Dagens program Dagens program Afsnit 2.4-2.5 Bayes sætning Uafhængige stokastiske variable - Simultane fordelinger - Marginale fordelinger - Betingede fordelinger Uafhængige hændelser - Indikatorvariable Afledte stokastiske

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Bilag 7. SFA-modellen

Bilag 7. SFA-modellen Bilag 7 SFA-modellen November 2016 Bilag 7 Konkurrence- og Forbrugerstyrelsen Forsyningssekretariatet Carl Jacobsens Vej 35 2500 Valby Tlf.: +45 41 71 50 00 E-mail: kfst@kfst.dk Online ISBN 978-87-7029-650-2

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Øvelse 2. SPSS og sandsynlighedsregning

Øvelse 2. SPSS og sandsynlighedsregning Øvelse 2 SPSS og sandsynlighedsregning Der er flere forskellige formål med opgaverne i denne øvelse. Det væsentligste formål er at arbejde lidt med sandsynlighedsregningen, binomialfordelingen og de store

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard Mandags Chancen En optimal spilstrategi Erik Vestergaard Spilleregler denne note skal vi studere en optimal spilstrategi i det spil, som i fjernsynet går under navnet Mandags Chancen. Spillets regler er

Læs mere

2011.09.20 lth@campus.dk

2011.09.20 lth@campus.dk 2011.09.20 lth@campus.dk Intro Læseplan Beskrivende Statistik Sandsynligheder Ordet kommer fra Latin.: statisticum (statsrådgiver) Italiensk.: statistica (statsmand / politiker) Hvorfor statistik? Træk

Læs mere