Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Størrelse: px
Starte visningen fra side:

Download "Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar"

Transkript

1 Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved 3. biostatistik forelæsning på Epidemiologi og Biostatistik. Vi vil dels fortsætte med at lære Stata at kende og dels se hvordan man kan lave nogle af de statistiske analyser i lærte sidste år i Stata. Udgangspunktet for alt hvad I laver i Stata er, at I ved hvor I vil arbejde på computeren, dvs. hvad er jeres Arbejdsfolder samt, at I starter alle do-filer med at skifte til denne folder. Husk også at alle do-filer skal generere en log-fil, der indeholder resultaterne af kørsel af do-filen. Undervejs i kurset vil vi forsøge at give jer nogle gode arbejdsrutiner, når I arbejder med data. Nogle af disse rutiner kan virke tunge (til at starte med) men al erfaringer viser at det er besværet værd, da rutinerne vil sikre, at det man laver er dokumenteret samt gøre det meget lettere at finde og rette fejl. Det kan anbefales at I i løbet af kurset læser ISHR Chap. 10 Taking good care of your data. Et godt råd: Undgå danske bogstaver i navne på filer og variable i Stata! Opgave 1 Her vil vi se lidt på data uden at skrive en do-fil, men blot ved at skrive nogle kommandoer i Command vinduet. Start med at åbne data filen. Brug codebook og summarize til at finde svar på følgende: Hvor mange deltagere er der i forsøget? Hvordan er randomiseringsgrupperne angivet i group? Er alle blevet randomiseret til en af de to grupper? Hvor mange er der i hver af de to grupper? Hvor mange har fået målt ændring i systolisk blodtryk? Hvor mange har fået målt ændring i diastolisk blodtryk? Hvad er middelændringen i diastolisk blodtryk? I Stata kan man tælle antal observationer vha. count. Kør count if diastol <= 0 og count if diastol > 0 og brug dette til at svare på. Hvor mange gravide oplevede ikke en stigning i diastolisk blodtryk? Hvor mange gravide oplevede en stigning i diastolisk blodtryk? Hvad er summen af disse to tal? Hvordan passer det med hvor mange der har fået målt en ændring? Vi så først, at der kun var 430 med oplysning om diastolisk blodtryk, men alligevel var der 171 med en værdi 0 og 262 >0, dvs. i alt 433. Dette skyldes, at en manglende værdi bliver gemt som et uendelig stort tal i Stata (se ISHR p48-50). Vi kommer derfor til at tælle de tre manglende værdier med i blandt diastol>0. Vi kan løse dette ved at tilføje &!missing(diastol) til kommandoen så den nu bliver count if diastol > 0 &!missing(diastol). 1

2 På dansk skal det læses tæl hvis diastol>0 og diastol ikke er missing, da missing() angiver hvorvidt en givne variabel er missing og! negerer udsagnet. En manglende værdi bliver angivet i datasættet ved et. (eller.a,.b, se ISHR). Kør list if missing(diastol) og list if pid > 50 & pid < 65. Stata kan også bruges som regnemaskine. Skriv display 2+2 hvad var svaret? Regner Stata rigtigt? Prøv (og forstå!): display 3^2 display log(2.3) display ln(2.3) display log10(2.3) display *8.365 display *8.365 display invnorm(0.975) display invnorm(0.975)* display *8.365/sqrt(217) display *8.365/sqrt(217) Vi vil nu til føje nogle nye variable til fishoil1.dta. Opgave 2 Vi vil nu lave en do-file ved navn Gen_fishoil2.do, der tilføjer 2 nye variable (se nedenfor) til fishoil1.dta og gemmer dette nye data under navnet fishoil2.dta. Først skal der tilføjes en ny variabel, der angiver hvorvidt diastolisk blodtryk er steget. Dette kan gøres ved. generate DiaIncr=(diastol>0) if!missing(diastol) Vi sikrer os med det samme, at vi senere kan se hvad variablen betyder label var DiaIncr "Diastolic BP increased" label define NoYes 0 No 1 Yes label value DiaIncr NoYes Vi tjekker også at vi ikke sammenlign med opgave 1. tabstat diastol, by(diaincr) stat(count min max) Tilføj endnu en variable, der angiver hvorvidt systolisk er steget og gem den nye data fil. Kør hele do-filen, gem den til dokumentation og så I evt. senere kan tilføje flere variable til fishoil2.dta 2

3 Opgave 3 Her vil vi se på hyppigheden af stigning i diastolisk blodtryk og hvordan det afhænger af fiskeolie, på basis af fishoil2.dta. Det gør I ved at lave en ny do-fil med et fornuftigt navn. Kommandoen tab2 laver en antalstabel for to (kategoriske) variable. Vi vil her se på group og DiaIncr dvs. bruge kommandoen: tab2 group DiaIncr. Prøv options missing, row, column og chi2 et af gangen (til en start). Besvar følgende derefter (uden sikkerheds intervaller): Hvor mange kvinder mangler information om diastol i de to grupper (control/fishoil)? Og blandt de, hvor vi har informationer om ændring i diastolisk blodtryk: Hvor mange kvinder oplever en stigning i hver af de to grupper? Hvor stor en andel oplever en stigning i hver af de to grupper? Hvor stor en andel af dem, der oplever en stigning, findes i kontrolgruppen? Beregn risiko differens, relativ risiko og odds ratio, der sammenligner fiskeoliegruppen med kontrolgruppen (brug Stata som regnemaskine). Er der en statistisk signifikant sammenhæng mellem randomiseringsgruppe og hyppighed af stigning i diastolisk blodtryk? Estimer hyppigheden af stigning i hver af grupper ved brug af ci med option binomial. Man kan beregne RD, RR og OR på flere forskellige måder i Stata. En hurtig oversigt få man ved den noget kryptiske kommando xi: cs DiaIncr i.group, or, prøv dette. Læs og forstå tabellen øverst og find RD, RR og OR(med sikkerhedsinterval) under tabellen. Hvis fokus er på RD kan man bruge, prtest DiaIncr, by(group). Prøv dette og genfind resultaterne fra før. Som sagt er der mange måder at lave de samme analyser i Stata. Prøv binreg DiaIncr b1.group, rd binreg DiaIncr b1.group, rr binreg DiaIncr b1.group, or Genfinde RD, RR og OR fra før. Vi vil senere på kurset forklare disse tre kommandoer, men kort fortalt betyder b1. foran group, at gruppe 1 (dvs. kontrol) sættes til at være reference (base). Til slut: Skriv en konklusion angående fiskeolies betydning for hvorvidt diastolisk blodtryk stiger under graviditeten. Da jeres analyser bygger på at binomialmodellen er opfyldt indenfor hver gruppe, så bør I også diskutere denne antagelse. 3

4 Opgave 4 Her vil vi se på ændringen i diastolisk blodtryk og hvordan det afhænger af fiskeolie, på basis af fishoil2.dta. Det gør I ved at lave en ny do-fil med et fornuftigt navn. Ændringen i diastolisk blodtryk, diastol, er en kontinuert variabel, som PEFR fra øvelse 4 sidste tirsdag. Brug det I lærte i den øvelse til at besvare (under antagelse af to uafhængige normalfordelte stikprøver): Hvad er middelstigninger i diastolisk blodtryk i hver af de to grupper? Hvad er forskellen i middelstigning i fiskeoliegruppen sammenlignet kontrolgruppen? Er der en statistisk signifikant effekt af fiskeolie? Er der (på basis af det I ved om blodtryk) en klinisk relevant effekt af fiskeolie? Lav histogrammer for stigningen i hver gruppe med normalfordelingskurver indtegnet og gem denne figur som en png fil (se øvelse 8 fra sidste gang). I Stata laver man QQ-plots vha. qnorm. I denne kommando kan man ikke bruge option by, så man er skal lave to tegninger og derefter klister dem sammen til en samlet figur. qnorm diastol if group == 1, title( kontrol ) name(p1,replace) qnorm diastol if group == 2, title( fiskeolie ) name(p2,replace) graph combine p1 p2, name(qnorms,replace) Gem denne figur på harddisken, som en png fil. Bemærk: Vi med title kan skrive en titel på grafen og at vi med name kan navngive grafen, så vi dels kan have flere grafvinduer på engang og dels kan henvise til den i graph combine. Hvis man synes at det er lidt omstændeligt at lave disse grafer, så kan man downloade qplot fra nettet, ved : net install gr42_6 Med qplot kan man lave det hele med en kommando ( det er nødvendig med det kryptiske option qplot diastol, by(group) name(qplot, replace) Diskuter på basis af ovenstående tegninger antagelse om normalitet inden for hver af de grupper. Der er et par andre nyttige plot til illustration af data, dotplots og boxplots. Prøv dotplot diastol if group==1 dotplot diastol if group==1, center dotplot diastol, over(group) center graph box diastol if group==1 graph box diastol, over(group) graph box diastol, by(group) Bemærk, at options by og over har lidt forskellig virkning. Vi kan bruge data i kontrolgruppen til at besvare nogle spørgsmål om ændringen i diastolisk blodtryk generelt. Hvad er 95% prædiktionsintervallet for stigningen i diastoliske blodtryk (brug Stata som en regnemaskine)? Test hypotesen om ingen ændring i middel diastolisk blodtryk. (se evt help ttest)? 4

5 I kontrolgruppen var der 213 kvinder (212 frihedsgrader) og en observeret spredning på Find et 95% sikkerhedsinterval for spredning (se forelæsningsnoterne fra i fredags) Til slut: Skriv en konklusion angående fiskeolies betydning for ændringer i diastolisk blodtryk under graviditeten. Da jeres analyser bygger på at normalfordelingsmodellen er opfyldt indenfor hver gruppe, så bør I også diskutere denne antagelse. Skriv også en konklusion angående ændringen i diastolisk blodtryk for kvinder med normal diæt. Opgave 5 Vi vil igen bruge fishoil2.dta, men I behøver ikke at lave en do-fil. I får brug for resultaterne fra sidste opgaver. Dem kan I finde ved at åbne den log-fil I har fået lavet! I næste uge vil vi begynde at se på regressionsmodeller. Disse kan bruges til meget! Prøv følgende regress diastol if group=1 regress diastol if group=2 Se om I kan finde antal, gennemsnit med CI og spredning (uden CI) for de to grupper. regress diastol b1.group her burde I genfinde gennemsnit i kontrolgruppen og forskellen mellem fiskeolie og kontrol. regress diastol b2.group her burde I genfinde gennemsnit i fiskeoliegruppen og forskellen mellem kontrol og fiskeolie. Bemærk at nogle af sikkerhedsintervallerne er lidt anderledes. Det snakker vi lidt om. 5

Statistik FSV 4. semester 2014 Holdundervisning Uge 1: 4. februar Introduktion til Stata

Statistik FSV 4. semester 2014 Holdundervisning Uge 1: 4. februar Introduktion til Stata Århus 27. januar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Holdundervisning Uge 1: 4. februar Introduktion til Stata Hvad er Stata? Stata er et program, der kan lave statistiske analyser af

Læs mere

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Morten Frydenberg 25. april 2006

Morten Frydenberg 25. april 2006 . gang: Introduktion til Logistisk Regression Morten Frydenberg 26 Afdeling for Biostatistik, Århus Universitet MPH. studieår specialmodul 4 Cand. San. uddannelsen. studieår Hvorfor logistisk regression

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Stolpediagrammer for kategoriske data med -catplot-

Stolpediagrammer for kategoriske data med -catplot- Stolpediagrammer for kategoriske data med -catplot- [Revideret 4. oktober 2013] Kim Mannemar Sønderskov Institut for Statskundskab, Aarhus Universitet ks@ps.au.dk Denne note gennemgår, hvordan resultaterne

Læs mere

Stikordsregister. (c) = kommando

Stikordsregister. (c) = kommando Stikordsregister (c) = kommando Symboler!= (forskellig fra) Se operatorer &-operatoren Se operatorer /* */ (kommentering) Se do-file // (kommentering) Se do-file /// (line join indicator) 41, 96 -operatoren

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,

Læs mere

Seniorkursus i Biostatistik og Stata, Dag 2

Seniorkursus i Biostatistik og Stata, Dag 2 SENIORKURSUS STATA OG BIOSTATISTIK Aarhus Universitet juni DAGENS TEMA: SAMMENLIGNINGER FORMIDDAG: KONTINUERTE DATA EFTERMIDDAG: KATEGORISKE DATA STATISTISK ANALYSE AF TO UAFHÆNGIGE STIKPRØVER FRA NORMALFORDELTE

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts Århus 19. marts 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts Epibasic er nu opdateret til version 2.04 med arkene Str any og weighted Alle tabeller og tegninger

Læs mere

Danmarks Statistik. Retningslinjerne for brug af Forskermaskiner Institut for Folkesundhed Aarhus Universitet

Danmarks Statistik. Retningslinjerne for brug af Forskermaskiner Institut for Folkesundhed Aarhus Universitet Danmarks Statistik Retningslinjerne for brug af Forskermaskiner Institut for Folkesundhed Aarhus Universitet Institut for Folkesundhed Datamanagement, nsb Version 1.0 2014 1 1 Indholdsfortegnelse 2 Introduktion...

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

SENIORKURSUS STATA OG BIOSTATISTIK

SENIORKURSUS STATA OG BIOSTATISTIK SENIORKURSUS STATA OG BIOSTATISTIK Aarhus Universitet juni 011 Genopfriskning af statistik Basale tankegange og begreber (i dag) Sammenligninger (i morgen) Sammenhænge (i overmorgen) Brug af programpakken

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003 Opgave 1 (mandag) Figuren nedenfor viser tilfælde af mononukleose i en lille population bestående af 20 personer. Start og slut på en sygdoms periode er angivet med. 20 15 person number 10 5 1 July 1970

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes 25. april 2. gang: Introduktion til Logistisk Regression Morten Frydenberg 22 Institut for Biostatistik, Århus Universitet MPH. studieår specialmodul Cand. San. uddannelsen. studieår Hvorfor logistisk

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Korrelation Pearson korrelationen

Korrelation Pearson korrelationen -9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

R / RStudio. Intro til R / RStudio

R / RStudio. Intro til R / RStudio R / RStudio Intro til R / RStudio R R er et open source statstikprogram og programmeringssprog introduceret i 1993. Seneste version er 2.15.3 R kan downloades på www.r-project.org R er i udgangspunktet

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Introduktion 1 Formelt Lærere: Esben Budtz-Jørgensen Jørgen Holm Petersen Øvelseslærere: Berivan+Kathrine, Amalie+Annabell Databehandling: SPSS

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion

24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion . februar 00 Ikke parametrisk statistiske test : Ideen bag Epidemiologi og biostatistik. Uge, mandag. februar 00 Morten Frydenberg, Institut for Biostatistik. To grupper: Mann-Whitney / Wilcoxon testet

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering

Sommereksamen 2015. Bacheloruddannelsen i Medicin/Medicin med industriel specialisering Sommereksamen 2015 Titel på kursus: Uddannelse: Semester: Statistik og evidensbaseret medicin Bacheloruddannelsen i Medicin/Medicin med industriel specialisering 2. semester Eksamensdato: 16-06-2015 Tid:

Læs mere

Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2. R opgaver

Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2. R opgaver Institut for Matematiske Fag Sandsynlighedsregning og Statistik 2 Københavns Universitet Susanne Ditlevsen og Helle Sørensen R opgaver Det er en god ide at vænne sig til at skrive kommandoerne i en editor

Læs mere

Introduktion til SPSS

Introduktion til SPSS Introduktion til SPSS Øvelserne på dette statistikkursus skal gennemføres ved hjælp af det såkaldte SPSS program. Det er erfaringsmæssigt sådan, at man i forbindelse af øvelserne på statistikkurser bruger

Læs mere

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik

2 Epidemiologi og biostatistik. Uge 5, mandag 26. september 2005 Michael Væth, Institut for Biostatistik ... september 1 Epidemiologi og biostatistik. Uge, mandag. september Michael Væth, Institut for Biostatistik. Ikke parametrisk statistiske test : Analyse af overlevelsesdata (ventetidsdata) Censurering

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Epidemiologi og Biostatistik Kliniske målinger (Kapitel. +.1 + 11.-11 + 1.1-) Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik

Læs mere

Grupperede observationssæt Deskriptiv statistik: Middelværdi, frekvensfordeling, sumkurve, kvartilsæt, boxplot

Grupperede observationssæt Deskriptiv statistik: Middelværdi, frekvensfordeling, sumkurve, kvartilsæt, boxplot Grupperede datasæt: Middelværdi, intervalfrekvens og kumuleret frekvens. Bilbestandens alder i 2005 fremgår af følgende tabel. Alder i år ]0;4] ]4;8] ]8;12] ]12;16] ]16;20] ]20;24] Antal i tusinde 401

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode

Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode Velkommen til Flemmings store Maplekursus 1. lektion. Skift mellem tekst- og matematikmode Man kan skifte mellem tekst- og matemamatikmode ved at trykke på F5. I øjeblikket er jeg i tekstmode.. 2. lektion.

Læs mere

Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november)

Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) Hjemmeopgave Basal statistik, efterår 2013 Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) I forbindelse med en undersøgelse af vitamin D status i Europa, har man

Læs mere

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer)

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer) D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)

Læs mere

DST SIKKERHED OG ANVENDELSE

DST SIKKERHED OG ANVENDELSE VER 1.3 Introduktion til brug af DST Ansøgning om adgang DEN PERSONLIGE ADGANG Hvordan kommer jeg på? Hvordan nedtager jeg informationer? HVAD ER REGLERNE FOR NEDTAGNING AF INFORMATIONER? Brud, sanktioner

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Vejledning i brug af Gym-pakken til Maple

Vejledning i brug af Gym-pakken til Maple Vejledning i brug af Gym-pakken til Maple Gym-pakken vil automatisk være installeret på din pc eller mac, hvis du benytter cd'en Maple 16 - Til danske Gymnasier eller en af de tilsvarende installere. Det

Læs mere

SPSS introduktion Om at komme igang 1

SPSS introduktion Om at komme igang 1 SPSS introduktion Om at komme igang 1 af Henrik Lolle, oktober 2003 Indhold Indledning 1 Indgang til SPSS 2 Frekvenstabeller 3 Deskriptive statistikker gennemsnit, standardafvigelse, median osv. 4 Søjlediagrammer

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

Vejledning til GYM17 Copyright Adept Nordic 2013

Vejledning til GYM17 Copyright Adept Nordic 2013 Vejledning til GYM17 Copyright Adept Nordic 2013 Vejledning i brug af Gym17-pakken... iv 1 Deskriptiv statistik... 1 1.1 Ikke-grupperede observationssæt... 1 1.2 Grupperede observationssæt... 4 2 Regressioner...

Læs mere

Hjemmeopgave, efterår 2009

Hjemmeopgave, efterår 2009 Hjemmeopgave, efterår 2009 Basal statistik for sundhedsvidenskabelige forskere Udleveret 29. september, afleveres senest ved øvelserne i uge 44 (27.-29. oktober) I alt 112 piger har fået målt bone mineral

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

DST SIKKERHED OG ANVENDELSE

DST SIKKERHED OG ANVENDELSE Introduktion til brug af DST Ansøgning om adgang DEN PERSONLIGE ADGANG Hvordan kommer jeg på? Hvordan nedtager jeg informationer? HVAD ER REGLERNE FOR NEDTAGNING AF INFORMATIONER? Brud, sanktioner og konsekvenser

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Statistik med Boxplot

Statistik med Boxplot 11 Statistik med Boxplot Til dette afsnit skal du benytte Stats-List Editoren (SL-editoren). Har du ikke denne applikation installeret, så hent den på TI's hjemmeside. Nøgletal Boxplot bygger på en undersøgelse

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:

Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25. Hjemmeopgave Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.-27 marts) Garvey et al. interesserer sig for sammenhængen mellem

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14 Module 5: Exercises 5.1 ph i blod.......................... 1 5.2 Medikamenters effektivitet............... 2 5.3 Reaktionstid........................ 3 5.4 Alkohol i blodet...................... 3 5.5

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Basal Statistik. Undervisningstider. Formål med kurset. Faculty of Health Sciences. Praktiske bemærkninger om kurset.

Basal Statistik. Undervisningstider. Formål med kurset. Faculty of Health Sciences. Praktiske bemærkninger om kurset. Faculty of Health Sciences Undervisningstider Basal Statistik Praktiske bemærkninger om kurset. Lene Theil Skovgaard 31. januar 2017 Forelæsninger tirsdag 10.15 13.00 for ca. 100 personer (i princippet)

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Statistik og skalavalidering. Opgave 1

Statistik og skalavalidering. Opgave 1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl?

a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl? Module 6: Exercises 6.1 To laboranter....................... 2 6.2 Nicotamid i piller..................... 3 6.3 Karakterer......................... 5 6.4 Blodtryk hos kvinder................... 6 6.5

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere