Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Størrelse: px
Starte visningen fra side:

Download "Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt)."

Transkript

1 Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på kvadreret A4 papir eller mm-papir i målestoksforholdet 1:10. Du skal starte med at lave fire skitser, hvor du skriver alle de mål, du har brug for til tegningen. Du skal selv foretage opmålingerne. Alle mål skal findes i dag, så tegningerne kan gøres færdige hjemme til næste gang.

2 Retvinklet projektion Når du har tegnet dit skolebord, som vi gjorde forleden, siger vi, at det er tegnet som en retvinklet projektion. Tegn på samme måde de tegninger, der er nødvendige for at vise alle forskellige sider af denne model af et hus. Husets mål: bredde: 8 m længde: 12 m højde fra jord til tagryg: 6 m højde af trekant i gavl: 2 m Tegningerne skal laves i målestoksforholdet 1:100. Ekstra: Beregn det samlede overfladeareal af huset. Beregn rumfanget. Tegn også en retvinlet projektion af papirkurven, eller en af de andre figurer, der er sat frem. Figuren skal tegnes, så alle forskellige sider vises. Vælg selv et passende målestoksforhold og angiv det på din tegning. Hjemmeopgaver. 1. Lav en tegning af et mælkekarton, tegnet som retvinklet projektion. Tegn kartonen set fra alle de forskellige sider. Lav tegningerne i målestoksforholdet 1:1. 2. Disse tre tegninger forestiller den samme figur set fra forskellige sider ved retvinklet projektion. Tilpas en korkprop (eller gulerod), så den tegnet ved retvinklet projektion fra tre sider svarer til disse tegninger.

3 Isometri / teknisk perspektiv Når en tegning, er lavet som retvinklet projektion, får man ikke nogen dybdevirkning med. Hvis du vil lave en enkel form for dybdevirkning på din tegning af huset, kan du tegne i de tre retninger svarende til længde, bredde og højde, idet du bevarer målene i alle retninger. Herunder ses to tegninger af en kasse med målene 3,1 cm, 2,5 cm og 1,5 cm. Til venstre omtrent som kassen ses og til højre er de linier, man normalt ikke kan se i kassen, tegnet med en lys grå farve. Opgave 1 Prøv at tegne en forenklet tegning af dit bord og dit mælkekarton på denne måde. Denne form for perspektiv ser ikke naturtro ud. Det kaldes for isometri eller teknisk perspektiv. Iso = samme og metri = mål, altså samme mål. Der findes noget specielt papir, isometrisk papir, som består af prikker anbragt i et mønster af ligesidede trekanter. Afstanden mellem prikkerne er normalt 1 cm. Til højere er vist en terning med kantlængden 3 cm tegnet på isometrisk papir. Opgave 2 Tegn følgende kasser på isometrisk papir: a) l = 4 cm, b = 3 cm og h = 3 cm b) l = 5 cm, b = 3 cm og h = 5 cm c) l = 8 cm, b = 6 cm og h = 1 cm

4 Her er vist 4 terninger (eller er der kun 3?) stablet oven på hinanden. Opgave 3 Anbring nogle terninger oven på hinanden. Lav og tegn derefter mindst tre forskellige stabler på isometrisk papir. Du kan farvelægge din tegning, således at flader, der vender ens får samme farve. Herunder er der nogle ideer (den ene er måske umulig at lave, eller er den?): Opgave 4 Hvor mange terninger er der i denne "pyramide"? Hvad er grundfladens areal og rumfanget af figuren, når kantlængden i hver terning er 2 cm? Tegn en pyramide med 3 lag og en med 4 lag. Tip: Tegn øverste lag først. Beregn (tæl eller prøv dig frem), hvor mange terninger, der er i hver af "pyramiderne" og beregn rumfangene. Lav og udfyld et skema som dette: Højde Terninger Grundflade Rumfang 2 cm 1 4 cm 6 cm 8 cm 10 cm 12 cm Du kan også lave et skema, hvor du laver de tilsvarende beregninger for en pyramide opbygget af terninger med kantlængden 1 cm.

5 Cirkel på oversiden af en kasse (0, 5) (1; 4,9) (2; 4,6) (3, 4) (4, 3) (4,6; 2) (4,9; 1) Hvis du vil tegne en cirkel på en af siderne i en kasse med kvadratisk grundflade med sidelængden 10 cm, må du først tegne cirklen på kvadreret papir og finde koordinaterne til nogle punkter på cirklen. Koordinaterne kan også beregnes ved hjælp af Pythagoras' sætning. Disse koordinater overføres til det "skæve" koordinatsystem på det isometriske papir. Denne kasse har målene 10 cm, 10 cm og 2 cm. Derpå forbindes punkterne med en kurve. Opgave Tegn en terning med sidelængden 10 cm. Indtegn en cirkel på midst en af sidefladerne. Du kan også tegne en terning med sidelængden 8 cm.

6 Cylinder Hvis du vil tegne en cylinder, tegnes først den kasse cylinderen kan være indeni. Hvis cylinderen skal have en diameter på 10 cm og en højde på 2 cm startes med kassen, der anvendtes under gennemgang af cirkel på oversiden af en kasse. Der tegnes en cirkel på oversiden, som gennemgået tidligere. Derpå tegnes hjælpelinier svarende til bunden af kassen. På samme måde, som på oversiden, afmærkes punkter til cirklen i bunden, men du kan nøjes med at afmærke de punkter, som svarer til den nederste halve del af cirklen. Dernæst forbindes den øverste cirkel med den nederste med to lodrette liniestykker. Hjælpelinierne kan viskes ud. Opgave Lav en tegning af papirkurven i en passende målestoksforhold. Anfør målestoksforhold og mål på din tegning.

7 Perspektiv Kig på disse tre billeder og tegn på hvert billede så nøjagtigt som muligt gennem 3-4 parallelle, vandrette linier, som har retning ind i billedet (linierne skal være parallelle og vandrette i virkeligheden). Marker, hvor linierne skærer hinanden. Dette punkt kaldes et forsvindingspunkt. Gennem forsvindingspunktet skal du tegne en linie, der er parallel med billedets nederste kant. Denne vandrette linie kaldes for billedets horisontlinie. Hvordan ligger horisontlinien i de tre billeder? Er det sandt eller falsk, at horisontliniens højde afgør, hvor kameraet har været placeret i forhold til gulvet? Læg mærke til, at alle lodrette linier er næsten lodrette og parallelle på billederne. Nederst er der tegnet en kasse og omridset af et hus set fra hjørnet. Her er der to forsvindingspunkter på horisonten. Læg mærke til horisontens placering og forlængelsen af de "vandrette" linier ud mod forsvindingspunkterne. På huset kan du se, at de to skrå tagkanter kan forlænges op til et tredje forsvindingspunkt, der ligger lodret over det venstre forsvindingspunkt på horisonten.

8 Opgaver I aviser og reklamer skal du finde nogle billeder med perspektiv. Du må gerne finde nogle med både et og to forsvindingspunkter. Tegn linier gennem "parallelle" linier i billedet og bestem forsvindingspunkterne og horisontlinien. Hvis du klipper små billeder ud, kan du klæbe dem op på et større stykke papir, hvis forsvindingspunkterne ligger udenfor billedet. Tegningen nedenfor er begyndelsen til en perspektivtegning af to kasser, der står oven på hinanden. Bestem forsvindingspunkterne på horisontlinien. Tegn derefter de to kasser færdige. Hvordan vil du finde midtpunktet på kassernes sider. Det kan måske hjælpe, hvis du først finder midtpunktet på rektanglet herunder.

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten.

Alle vandrette linjer, der er vinkelrette med synslinjen, er parallelle med horisonten. Perspektiv tegning Hjælp til perspektivtegning. Illustrationerne er købt fra Perspektivtegning - Matematik i Billedkunst, billedkunst i matematik. - en kopimappe som er lavet af Jørgen Skourup og Ole Stærkjær.

Læs mere

Perspektiv. At illustrerer rumligt. Forsvindingspunkt Horisont

Perspektiv. At illustrerer rumligt. Forsvindingspunkt Horisont Rumlig afbildning For at illustrere en bygning eller et Rum, i et sprog der er til at forstå, for ikke byggefolk, kan det være en fordel at lave en gengivelse af virkeligheden. Perspektiv At illustrerer

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Projekt 3.1 Pyramidestub og cirkelareal

Projekt 3.1 Pyramidestub og cirkelareal Projekt. Pyramidestub og cirkelareal - i tilknytning til afsnit., især for A Indhold Rumfanget af en pyramidestub... Moderne metode... Ægyptisk metode... Kommentarer til den ægyptiske beregning... Arealet

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

brikkerne til regning & matematik geometri basis+g preben bernitt

brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri, basis+g ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering

Læs mere

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5

Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5 Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde t system rod orden nøjagtig præcis

Læs mere

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 2 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 2 ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver Blandede opgaver (2) 1: Tegningen viser et værelse med skråvæg. To af væggene kaldes A og B. a: Find arealet af væg A. b: Find arealet af væg B. A B 1 m 465 cm 4 m c: Tegn væggene i målestoksforhold 1:50.

Læs mere

I denne opgave arbejder vi med følgende matematiske begreber:

I denne opgave arbejder vi med følgende matematiske begreber: I denne opgave arbejder vi med følgende matematiske begreber: En meter: 1 m. En kvadratmeter: 1 m. 1 m 2 1 m. En kubikmeter: 1 m 3 Radius-beregning af træet Find omkredsen af træet, mål i brysthøjde. Ca.

Læs mere

Bacheloruddannelsen 1. år E15

Bacheloruddannelsen 1. år E15 Bacheloruddannelsen 1. år E15 2 v/jan Fugl 3 Projektionstegning Projek tion -en, -er (lat.pro jectio, til pro jicere-, kaste frem, af pro frem + jacere kaste; jf. Projekt, projektil, projektion) afbildning

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

Udforskningsopgaver. Hvor lang kan stangen højst blive, hvis den består af 4 metalstænger?

Udforskningsopgaver. Hvor lang kan stangen højst blive, hvis den består af 4 metalstænger? r 2015 Videre arbejde med opgaverne Udforskning af opgaverne Disse opgaver bygger videre på udvalgte opgaver fra Kænguruen og lægger op til, at klassen sammen kan diskutere og udforske opgaverne. Opgavenumrene

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

brikkerne til regning & matematik areal og rumfang F+E+D preben bernitt

brikkerne til regning & matematik areal og rumfang F+E+D preben bernitt brikkerne til regning & matematik areal og rumfang F+E+D preben bernitt brikkerne til regning & matematik areal og rumfang,f ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering

Læs mere

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Lektion 8 Geometri Når du bruger denne facitliste skal du være opmærksom på, at: - der kan være enkelte fejl. - nogle af facitterne er udeladt - bl.a. der hvor facitterne er tegninger. - decimaltal kan

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER I oldtiden regnede man med 7 underværker, hvilket var seværdigheder, som man fremhævede på grund af deres størrelse, skønhed og udseende. Kun et enkelt af disse

Læs mere

geometri basis+g brikkerne til regning & matematik preben bernitt

geometri basis+g brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri G ISBN: 978-87-92488-15 2 1. udgave som E-bog til tablets 2012 by bernitt-matematik.dk Denne

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene.

Hop videre med. Udforskning af opgaverne for 6. og 7. klassetrin i Danmark. 1 a) Tegn alle de mulige symmetriakser på vejskiltene. Hop videre med Udforskning af opgaverne ne bygger videre på opgaver fra Kænguruen og lægger op til, at klassen sammen kan diskutere og udforske problemstillingerne. Opgavenumrene henviser til de opgaver,

Læs mere

A Hvor mange omgange skal hjulene rulle for at komme hele vejen?

A Hvor mange omgange skal hjulene rulle for at komme hele vejen? A Hvor mange omgange skal hjulene rulle for at komme hele vejen? B Tegn den vej, som hjulene kan rulle på tre omgange. Skriv vejens længde med én decimal. C Tegn det hjul, der kan rulle to omgange på vejen.

Læs mere

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

En perspektivtegning er en tegning, der forsøger at efterligne, hvordan øjet ser virkeligheden.

En perspektivtegning er en tegning, der forsøger at efterligne, hvordan øjet ser virkeligheden. En perspektivtegning er en tegning, der forsøger at efterligne, hvordan øjet ser virkeligheden. Når man tegner perspektivtegninger, er der forskellige finter til at lave de rigtige størrelsesforhold. Nedenfor

Læs mere

Indhold. Servicesider. Testsider

Indhold. Servicesider. Testsider Indhold Servicesider Isometrisk papir.................................................... kopiside - Prikpapir............................................................. kopiside - Brøkkort.............................................................

Læs mere

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger.

Matematik for malere. praktikopgaver. Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger. Matematik for malere praktikopgaver 3 Tilhører: Tegneopgave Ligninger Areal Materialeberegning Procent Rumfang og massefylde Trekantberegninger 2 Indhold: Tegneopgave... side 4 Ligninger... side 8 Areal...

Læs mere

Den pythagoræiske læresætning

Den pythagoræiske læresætning Den pythagoræiske læresætning 1. Udfyld skemaet herunder dvs. find den manglende hypotenuse ved a 2 + b 2 = c 2 : 1 20 21 2 12 35 3 28 45 4 56 33 5 119 120 6 168 95 7 52 165 8 207 224 9 315 572 10 627

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Korncirkler og matematik

Korncirkler og matematik Korncirkler og matematik I den følgende opgave vil jeg undersøge om korncirkler indeholder matematiske figurer nærmere bestemt det gyldne snit, det gyldne rektangel og den gyldne spiral. Før jeg starter

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Kirsten Isager, perspektivkasse 1. Forudsætninger: øjet står 2 m foran rummet og rummet bliver 1,5 m dybt, men skal se ud som om det er 3,85 m dybt:

Kirsten Isager, perspektivkasse 1. Forudsætninger: øjet står 2 m foran rummet og rummet bliver 1,5 m dybt, men skal se ud som om det er 3,85 m dybt: Kirsten Isager, perspektivkasse 1 Projektopgave nr 2: Geoetri, Perspektivkasse. uet skal være et snydeperspektiv. Først tager vi ålene i det virkelige ålestoksforhold. Forudsætninger: øjet står 2 foran

Læs mere

koordinatsystemer og skemaer

koordinatsystemer og skemaer brikkerne til regning & matematik koordinatsystemer og skemaer basis preben bernitt brikkerne til regning & matematik Koordinatsystemer og skemaer, basis 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

Sådan gør du i GeoGebra.

Sådan gør du i GeoGebra. Sådan gør du i GeoGebra. Det første vi skal prøve er at tegne matematiske figurer. Tegne: Lad os tegne en trekant. Klik på trekant knappen Klik på punktet ved (1,1), (4,1) (4,5) og til sidst igen på (1,1)

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul

Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

fortsætte høj retning benævnelse afstand form kort

fortsætte høj retning benævnelse afstand form kort cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde rundt system rod orden nøjagtig

Læs mere

Julehjerter med motiver

Julehjerter med motiver Julehjerter med motiver Torben Mogensen 18. december 2012 Resumé Jeg har i mange år moret mig med at lave julehjerter med motiver, og er blevet spurgt om, hvordan man gør. Så det vil jeg forsøge at forklare

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat8 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER

MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER MATEMATIK, MUNDTLIG PRØVE TEMA: PYRAMIDER I oldtiden regnede man med 7 underværker, hvilket var seværdigheder, som man fremhævede på grund af deres størrelse, skønhed og udseende. Kun et enkelt af disse

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

AEU-2 Matematik - problemregningsdel.

AEU-2 Matematik - problemregningsdel. NAMMINERSORLUTIK OQARTUSSAT/GRØNLANDS SELVSTYRE/GREENLAND HOME RULE AEU-2 Matematik - problemregningsdel. Sygeprøve Piffissami nal. Ak./Tidspunkt.: 09.00 11.30 Ulloq misilitsiffik/dato: 16. januar 2013

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Billeder på matematikken

Billeder på matematikken Billeder på matematikken Oplæg om repræsentationer Aktiviteter: Et rundt forløb Grovmotorik I skal lege med Footzie (den der dims man tager om foden med en snor i med en kugle i enden) og I skal lege Kaffen

Læs mere

Løsninger til KÆNGURUEN International matematikkonkurrence. Del 1 Løsninger 3 point pr. opgave. 2. Erik har 10 ens metalstænger.

Løsninger til KÆNGURUEN International matematikkonkurrence. Del 1 Løsninger 3 point pr. opgave. 2. Erik har 10 ens metalstænger. Løsninger til 2015 60 minutter Del 1 Løsninger 3 point pr. opgave 1. 2 3 15 A 6 B 7 C 8 D 10 E 15 2. Erik har 10 ens metalstænger. Han skruer dem sammen to og to og får fem metalstænger. Hvilken stang

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

Fra model til virkelighed Elev-arbejdsark til Fra model til virkelighed

Fra model til virkelighed Elev-arbejdsark til Fra model til virkelighed Fra model til virkelighed Elev-arbejdsark til Fra model til virkelighed - et forløb om målestoksforhold, omkreds-, areal og rumfangsberegning Jeres overvejelser er vigtige! Inden I løser en opgave, så

Læs mere

Geometri med Geometer II

Geometri med Geometer II hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne

Læs mere

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Projekt 4.13 Vodkaklovn en optimeringsopgave med fri fantasi

Projekt 4.13 Vodkaklovn en optimeringsopgave med fri fantasi ISBN 978-87-7066-9- Projekter: Kapitel Differentialregning. Projekt. Vodkaklovn Projekt. Vodkaklovn en optimeringsopgave med fri fantasi Firmaet Sprits for Kids ønsker at relancere deres vodkadrink Vodkaklovnen

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Matematik i 5. klasse

Matematik i 5. klasse Matematik i 5. klasse Igen i år benytter vi os af Faktor i femte. Systemet indeholder en grundbog, hvortil der er supplerende materiale i form af kopiark, som er tilpasset de gennemgåede emner. Grundbogen

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 376 + 2489 = 2. 367 120 = 3. 16 40 = 4. 216 : 12 = Løs ligningen 14. x - 6 = 4 x = 15. 3x = 24 x = Afrund til nærmeste hele tal 5. 21,88 6. 3 3 1 16. 17. 1 4 + 6 6

Læs mere

KÆNGURUEN 2015. International matematikkonkurrence. Del 1. 3 point pr. opgave. 2. Erik har 10 ens metalstænger.

KÆNGURUEN 2015. International matematikkonkurrence. Del 1. 3 point pr. opgave. 2. Erik har 10 ens metalstænger. 2015 60 minutter Navn og klasse Del 1 3 point pr. opgave 1. A 6 B 7 C 8 D 10 E 15 2. Erik har 10 ens metalstænger. Han skruer dem sammen to og to og får fem metalstænger. Hvilken stang er længst? A A B

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat6 Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it

16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it 16 opgaver, hvor arbejdet med funktionsbegrebet er centralt og hvor det er oplagt at inddrage it Tanker bag opgaverne Det er min erfaring, at elever umiddelbart vælger at bruge det implicitte funktionsbegreb,

Læs mere

Forunderlig matematik. Svanholm. Matematik trin 2. Matematik trin 2. avu

Forunderlig matematik. Svanholm. Matematik trin 2. Matematik trin 2. avu Forunderlig matematik Svanholm Matematik trin 2 Matematik trin 2 avu Almen voksenuddannelse 8. december 2005 Forunderlig matematik Matematik trin 2 Opgavesættet består af: informationshæfte (dette hæfte)

Læs mere

1gma_tændstikopgave.docx

1gma_tændstikopgave.docx ulbh 1gma_tændstikopgave.docx En lille simpel opgave med tændstikker Læg 10 tændstikker op på en række som vist Du skal nu danne 5 krydser med de 10 tændstikker, men du skal overholde 3 regler: 1) når

Læs mere

En lille vejledning i at bruge Paint Win 98 og Win XP Indhold

En lille vejledning i at bruge Paint Win 98 og Win XP Indhold 1 En lille vejledning i at bruge Paint Win 98 og Win XP Indhold Indhold...2 1. Åbn Paint...3 2. Vælg en baggrundsfarve og en forgrundsfarve...3 3. Tegn et billede...4 4. Ny, fortryd og gentag...4 5. Andre

Læs mere

Matematik Delmål og slutmål

Matematik Delmål og slutmål Matematik Delmål og slutmål Ferritslev friskole 2006 SLUTMÅL efter 9. Klasse: Regning med de rationale tal, såvel som de reelle tal skal beherskes. Der skal kunne benyttes og beherskes formler i forbindelse

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

FP9. Matematisk problemløsning. 9.-klasseprøven. December 2015

FP9. Matematisk problemløsning. 9.-klasseprøven. December 2015 FP9 9.-klasseprøven Matematisk problemløsning December 2015 1 I praktik i en boghandel 2 I praktik som murer 3 I praktik som journalist 4 I praktik som arkitekt 5 Sekskanter 6 Retvinklede og ligesidede

Læs mere

fsa 1 Besøg i Eiffeltårnet 2 Bygningen af Den Kinesiske Mur 3 Panamakanalen - en genvej 4 Solstråler i Pantheon 5 En trappepyramide i centicubes

fsa 1 Besøg i Eiffeltårnet 2 Bygningen af Den Kinesiske Mur 3 Panamakanalen - en genvej 4 Solstråler i Pantheon 5 En trappepyramide i centicubes fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2010 Som bilag til dette opgavesæt er vedlagt et svarark 1 Besøg i Eiffeltårnet 2 Bygningen af Den Kinesiske Mur 3 Panamakanalen - en genvej

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

Beregning til brug for opmåling, udfoldning og konstruktion

Beregning til brug for opmåling, udfoldning og konstruktion VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages

Læs mere

Konstruktion af SEGMENTBUE I MURVÆRK.

Konstruktion af SEGMENTBUE I MURVÆRK. Konstruktion af SEGMENTBUE I MURVÆRK. Murerviden.dk - 1 - RE Forudsætninger. Segmentbuens endepunkt i overkant sten Stander Overkant segmentbue i lejefuge Vederlag Pilhøjde Det er nødvendigt at kende visse

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Lille Georgs julekalender 07. 1. december. Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden?

Lille Georgs julekalender 07. 1. december. Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden? 1. december Hvor mange løbere kan der opstilles på et skakbræt uden at de truer hinanden? Svar: 14 Forklaring: Der kan godt stå 14, f.eks. sådan: Men kunne der stå flere hvis man stillede dem endnu snedigere

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

1 Løsningsforslag til årsprøve 2009

1 Løsningsforslag til årsprøve 2009 1 Løsningsforslag til årsprøve 009 Opgave 1 Figur 1 viser en tegning af en person der står på en skrænt og smider en sten ud over vandet. Vandet har overflade i t-aksen. Stenen følger grafen for funktionen

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

5. KLASSE UNDERVISNINGSPLAN MATEMATIK

5. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: SS Forord til faget i klassen Vi vil i matematik arbejde differentieret i hovedemnerne geometri, statistik og sandsynlighed samt tal og algebra. Vi vil i 5. kl. dagligt arbejde med matematisk kommunikation

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

Rumlig afbildning. af Torsten Gjøl Jacobsen, bygningskonstruktør og Lasse Bengtsson, arkitekt m.a.a. Københavns Erhvervsakademi, Byggeri/Produktion

Rumlig afbildning. af Torsten Gjøl Jacobsen, bygningskonstruktør og Lasse Bengtsson, arkitekt m.a.a. Københavns Erhvervsakademi, Byggeri/Produktion Rumlig afbildning af Torsten Gjøl Jacobsen, bygningskonstruktør og Lasse Bengtsson, arkitekt m.a.a. Københavns Erhvervsakademi, Byggeri/Produktion Den traditionelle bygningstegning, med sin plan, snit

Læs mere

På min hjemmeside under Libre Draw finder du nederst en skabelon Skabelon med 2 spalter. Det er den vi skal bruge i dette eksempel.

På min hjemmeside under Libre Draw finder du nederst en skabelon Skabelon med 2 spalter. Det er den vi skal bruge i dette eksempel. Side 1 Mange kender programmet Microsoft Publisher hvor man sætte forskellige ting op i, blade, skrivelser, sange m.m. Libre Office Draw der er en del af den gratis LibreOffice pakke kan noget i samme

Læs mere

Matematik A. Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til bedømmelse.

Matematik A. Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til bedømmelse. HTX Matematik A Fredag den 18. maj 2012 Kl. 09.00-14.00 GL121 - MAA - HTX 1 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres til

Læs mere

Matematik på VUC Modul 3c Opgaver

Matematik på VUC Modul 3c Opgaver Blandede opgaver (1) 1: Tegningen viser tre byggegrunde, der skal sælges. a: Find arealet af grund nr. 1. b: Find arealet af grund nr. 2 c: Find arealet af grund nr. 3 d: Find omkredsen af hver af de tre

Læs mere

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor

Rumfangs. umfangsberegning. Rumfang af en cylinder. På illustrationen til højre er indtegnet en lineær funktion indenfor et afgrænset interval, hvor Rumfang af en cylinder På illustrationen til øjre er indtegnet en lineær funktion indenfor et afgrænset interval, vor 0;. Funktionen () kan skrives på formen: = (vor a er en konstant) Det markerede grå

Læs mere

Lille Georgs julekalender 2010. 1. december

Lille Georgs julekalender 2010. 1. december 1. december I hver af de øverste bokse skal der skrives et af tallene 1, 2, 3,..., 9. Alle tre tal skal være forskellige. I de næste bokse skrives de tal der fremkommer ved at man lægger sammen som vist.

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

2.kapitel Vi skal i dette kapitel arbejde med emnet figurer. Eleverne skal i denne periode lære om:

2.kapitel Vi skal i dette kapitel arbejde med emnet figurer. Eleverne skal i denne periode lære om: Til 4.klasses forældre: Her er nogle gode ideer til hvordan I hjemme, kan hjælpe Jeres barn med de enkelte emner i matematik. 1.kapitel Vi skal i dette kapitel arbejde med emnet tal. Eleverne skal i denne

Læs mere