3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder

Størrelse: px
Starte visningen fra side:

Download "3 Algebra. Faglige mål. Variable og brøker. Den distributive lov. Potenser og rødder"

Transkript

1 3 Algebra Faglige mål Kapitlet Algebra tager udgangspunkt i følgende faglige mål: Variable og brøker: kende enkle algebraiske udtryk med brøker og kunne behandle disse ved at finde fællesnævner. Den distributive lov: kende den distributive lov for division og anvende den til enkle algebraiske udtryk. Potenser og rødder: kunne reducere enkle algebraiske udtryk med potenser og rødder samt have en geometrisk forståelse af sammenhængen mellem potenser og brøker. Flerleddede størrelser: kunne multiplicere flerleddede størrelser ved geometrisk og algebraisk fremstilling. Algebra i anvendelse: kunne danne og anvende algebraiske udtryk i modeller, kunne analysere og undersøge udtryk via ræsonnementer, der bygger på geometriske repræsentationer eller matematikfaglige tekster samt kunne vurdere styrken i at repræsentere en løsning via en samlet formel eller et regneark med opbrudte udtryk for hver del. Kapitlet bygger naturligt videre på de færdigheder og den viden, som eleverne opnåede ved sidste års arbejde med algebra, og derved udbygges således evnerne og kendskab til at udføre omskrivninger og beregninger med variable. Variable og brøker Arbejdet med variable og brøker bygger videre på arbejdet i kapitlet Algebra fra 7. klasse. Eleverne kender til addition, subtraktion og multiplikation med variable og har dermed grundlaget for en udvidelse med den fjerde regningsart, division. Der er fokus på division ved opstilling af brøker. Den distributive lov På forrige side arbejdede eleverne med division af algebraiske udtryk som opstilling af brøker. Her er det division af algebraiske udtryk, der er omdrejningspunktet, men fokus er på opstilling af algebraiske udtryk ved brug af parenteser. Eleverne lærte i 7. klasse om den distributive lov i forbindelse med multiplikation samt reglerne for plus- og minusparenteser. Dette tidligere arbejde bygges der videre på i kraft af, at eleverne introduceres for den distributive lov for division. Potenser og rødder Arbejdet med potenser og rødder bygger videre på arbejdet med reduktion fra 7. klasse. Eleverne har kendskab til reduktion af algebraiske udtryk med addition, subtraktion og simpel multiplikation, og de fik i 7. klasse desuden introduceret det geometriske udtryk for x 2 og x 3. Dette arbejde repeteres, så eleverne bliver i stand til at videreudvikle deres algebraiske forståelse, når brugen af potenser udvides og brugen af rødder introduceres. Eleverne bliver introduceret til brugen af CAS til reduktion af algebraiske udtryk. De kender i forvejen CAS fra arbejdet med ligninger i 7. klasse.

2 Flerleddede størrelser Eleverne arbejder videre med forståelsen af multiplikation i forbindelse med algebra, da de introduceres for multiplikation af flerleddede størrelser. De skal arbejde geometrisk og algebraisk med den distributive lov for to toleddede størrelser, kvadratet på en toleddet størrelse samt to tals sum gange med de samme to tals differens. De forskellige regler for multiplikation af flerleddede størrelser bliver givet til eleverne i de grå bokse, men eleverne skal via arbejdet med opgaverne forsøge at formulere deres egne regler og først dernæst sammenligne med udtrykkene i de grå bokse. De to sidste regler er jo specialtilfælde af den distributive lov for to toleddede størrelser. Algebra i anvendelse Arbejdet med algebra i anvendelse tager udgangspunkt fra Format 7: Undersøgelse af algebraiske udtryk. De algebraiske udtryk er i 8. klasse mere anvendelsesorienteret, og da eleverne arbejder med modeller fra virkelighedens verden, er der bl.a. fokus på udvikling af elevernes modelleringskompetence. Eleverne skal udforme opgaver med udgangspunkt i virkeligheden, og vurdere forskellige matematiske modeller. Hermed bliver modelleringskompetencen sat i spil. Side til side-vejledning Variable og brøker Intro 1 Fangeleg (klasseaktivitet) og kopiark 3.01 Kapitlet begynder med en aktivitet for hele klassen. Den indeholder indsætningsøvelser med udtryk, som de skal arbejde med i kapitlet. Eleverne deles i to hold. Kopiarket kopieres i 2 eksemplarer fx grøn og rød. Alle elever får en brik i sin holdfarve, og resten af brikkerne lægges i en bunke. Der vælges en værdi for x og denne skrives et synligt sted. Det kan være på et stort stykke karton, på en tavle med kridt el.lign. Spillerne forsøger at vinde så mange brikker som muligt, hvilket sker, ved at fange en modstander, indsætte værdien for x i sit udtryk, og den spiller med højeste værdi vinder modstanderens brik. Vundne brikker afleveres tilbage, og taberen henter en ny brik fra holdets bunke. Værdien af x ændres løbende i spillet. Forslag til x-værdier: 1, 1, 0, 2, 2 og 1 2 Spillet slutter, når et hold har vundet alle modstanderens brikker. Der kan også spilles på tid, hvor flest antal vundne brikker afgør spillet. 2 Sats (gruppeaktivitet) og kopiark 3.02 I opgaven repeteres ved vurdering om forskellige udsagn er sande eller falske. Eleverne satser mellem 3 og 10 point ved hvert udsagn. Efter at have udfyldt arket kontrolleres parvis hinandens svar og pointene tælles sammen. 3 Kage og brøker (gruppeaktivitet) Eleverne uddyber forståelsen af bogstaver som symbol for variable ved at arbejde i en kendt kontekst. Størrelserne af brøker sammenlignes herved i en konkret sammenhæng. 4 Regn med brøker

3 Opgaven tager udgangspunkt i elevernes viden omkring brøker fra kapitel 2. I opgave a beregnes fællesnævneren og herefter summen. I opgave b beregnes differens, produkt og kvotient. 5 Ræsonnement (paraktivitet) Eleverne arbejder i denne opgave med mere komplicerede udtryk med variable i brøker. De ræsonnerer sig til løsningerne ved hjælp af indsættelse af konstanter, omskrivning og beregning. Den distributive lov 6 Håndboldmenuer Eleverne finder de 3 udtryk, som beskriver, hvor mange penge der er til hver spiller. De har således fundet 3 forskellige udtryk med den samme værdi, hvilket ses ved at gennemføre reduktionen. Division, parentesregler samt opstilling på brøkstreg bliver anvendt i opgaven. 7 Parenteser og CAS (paraktivitet) og kopiark 3.03 Først arbejder eleverne i par omkring reduktion af udtrykkene i elevbogen samt kontrol i CAS. Kopiarket er et træningsark, hvor eleverne får flere opgaver af samme slags. De skiftes til at anvende CAS og reducere med papir og blyant. Den elev, som er hurtigst efter hver opgave, får et point. 8 Domino (paraktivitet) og kopiark 3.04 Kopiarket forstørres til A3. Brikkerne klippes ud og lægges med bagsiden opad på bordet. Hver spiller trækker 9 brikker. Den yngste starter med at lægge en brik på bordet. På skift lægges en brik i forlængelse af de øvrige brikker. Brikken kan lægges ned hvis værdierne, som støder op til hinanden, er lige store. Kan der ikke lægges ned, trækkes en ny brik. Vinderen er den spiller, som først kommer af med alle sine brikker. 9 Dan udtryk Eleverne skriver udtryk med variablen x, som indeholder de krav, som er beskrevet. 10 Faktor- og divisorjagt (gruppeaktivitet) I denne opgave skal eleverne finde en faktor og en divisor, som kan sættes uden for en parentes. Der er givet et eksempel i illustrationen. Med dette arbejde ledes eleverne over i ræsonnementer omkring reglerne bl.a.. sammenhængen mellem 2 og 1 2, 3 og 1 3 osv. Potenser og rødder 11 Reducer og kopiark 3.05 Indledningsvis arbejder eleverne med reduktion af udtryk indeholdende potenser. Illustrationen hjælper eleverne til at huske tidligere lært stof fra 7. klasse. Kopiarket indeholder lignende opgaver. 12 Divisorer Som optakt til elevernes arbejde med opgaven, kan der tales om betydningen af divisorer samt eksempler på divisorer i forskellige typer af tal og variable. Opgaven giver en øget forståelse af potenser, og dette lægger til grund for det efterfølgende arbejde. 13 Byt opgaver (klasseaktivitet) og kopiark 3.06 Først løser eleverne individuelt eller i par opgaverne a og b i bogen. Dernæst får alle i klassen udleveret et kopiark. Hver elev udarbejder opgaver, som ligner opgaverne i opgave a. Resultaterne på opgaverne tjekkes i CAS, og de to bedste opgaver skrives på kopiarket. Eleverne går rundt og løser hinandens opgaver. Hver gang en elev har løst en andens opgave, skal denne elev også skrive under på den anden elevs ark. 14 Potens og parenteser (paraktivitet) Eleverne arbejder med reduktion af udtryk med opløftning at potens til ny potens. 15 En tung model (paraktivitet)

4 I denne opgave arbejder eleverne med en given model og denne models begrænsning. Derved er det den kritiske del af modelleringskompetencen, som eleverne arbejder med. 16 Elsker, elsker ikke (paraktivitet) Eleverne indsætter værdier for a, b og c i et algebraisk udtryk indeholdende kvadratrod og potens, og de aflæser værdierne i intervallerne. Tal med eleverne om betydningen af indholdet i disse intervaller. Testen kan bruges til hvad som helst. Eleverne kan selv vælge om den skal teste, om de bliver millionær eller ej, om de får et bestemt ønske opfyldt eller ej eller noget andet. 17 Rødder og sidelængder Arbejdet med kubikrødder tager i denne opgave udgangspunkt i en geometrisk fremstilling af begrebet. 18 Reduktion af rødder Eleverne træner færdigheder i reduktion af algebraiske udtryk indeholdende rødder og potenser. 19 Kend din CAS (paraktivitet) Udtrykkene i opgave 18 indtastes i CAS, og eleverne konstruerer en opgave, som kan løses med og uden CAS. 20 Særlige tilfælde Eleverne undersøger hvilke x-værdier, som gør udtrykkene sande. Flerleddede størrelser 21 Begrebskapløb (gruppeaktivitet) og kopiark 3.07 Individuelt eller i par indsættes de korrekte ord på linjerne, så teksten bliver rigtig. Dernæst skal hver elev skrive en forklaring på begreberne, som står nederst på kopiarket. De kan hente hjælp i indsætningsteksten, de lige har udfyldt. I gruppen på 3-4 personer udvælges den bedste forklaring. Brikkerne fra kopiarket klippes ud og lægges i en bunke med bagsiden opad. Forklaringerne renskrives på brikker, og disse fordeles på et større område. Der vendes en brik med begrebet, og alle løber rundt og leder efter den rigtige forklaring. Der er 1 point til den, der først finder forklaringen. Sådan fortsættes til alle brikker og forklaringer er fundet. Hvis aktiviteten foregår udendørs, kan brikkerne med fordel lægges under kegler, så de ikke blæser væk. 22 Algebradiktat (gruppeaktivitet) og kopiark 3.08 Brikkerne på kopiarket klippes ud. En i gruppen trækker en brik og læser højt for de andre, hvad de skal gøre. De skriver et udtryk, som opfylder kravene. Udtrykkene tjekkes i fællesskab. Den næste elev trækker en brik, og aktiviteten fortsætter, indtil alle brikker er brugt. 23 Toleddede størrelser (paraktivitet) Ved hjælp af geometriske repræsentationer ræsonnerer eleverne sig frem til, hvordan man multiplicerer toleddede størrelser. I den grå boks kan de efterfølgende se den algebraiske repræsentation. 24 Erobringsspillet (paraktivitet) og kopiark 3.09 Hvert par får udleveret et kopiark. Det faglige indhold er reduktion og optælling af led. De tre spilleplader har stigende sværhedsgrad, så efter, at alle har spillet den første bane, kan de springe ned til bane 3, hvis det er for nemt. De kan også få udleveret et nyt kopiark og spille på bane 1 igen, hvis det var svært for dem. 25 Anettes indkomst I opgaven arbejder eleverne med faglig læsning, og ved løsning af opgaven får eleverne et konkret billede på, hvad multiplikation af to toleddede størrelser kan bruges til i hverdagen. 26 Regn reglen ud (paraktivitet) I opgave 23 arbejdede eleverne med en geometrisk repræsentation af toleddede størrelser. Denne tilgang fortsættes i denne opgave, hvor eleverne skal formulere reglen for kvadratet på en toleddet størrelse. De kan finde hjælp i den grå boks under opgaven.

5 27 Krydsogtværs Eleverne løser krydsogtværs ved at arbejde med reduktion af udtryk, som indeholder kvadratet på en toleddet størrelse. Opmærksomheden skal være på elevernes forståelse af, at fx (2b) 2 = 4b 2 28 Flere slags toleddede størrelser (paraktivitet) I denne opgave arbejder eleverne med to tals sum gange med de samme to tals differens. Der er meget tekst i opgaven, så hvis eleverne har svært ved at gennemskue, hvad de skal i opgave b, kan denne danne grundlag for en klassesamtale, hvor det algebraiske udtryk opstilles i fællesskab. Som i de foregående undersøgende opgaver, formulerer eleverne også her en generel regel og sammenligner med den grå boks. Algebra i anvendelse 29 LivKro (paraktivitet) Eleverne formulerer opgaver ud fra en tekst med informationer omkring opholdet på en kro. 30 Gavlen I denne opgave arbejder eleverne med algebraiske udtryk, som beskrivelser for hverdagsfænomenet. De rigtige udtryk identificeres, og det forkerte udtryk ændres til det rigtige ved at eleverne enten reflekterer over tegningen eller reducerer udtrykkene og finder det manglende element. 31 Renovation af gavlene Eleverne arbejder med at formulere opgaver til teksten i mailen. Dernæst arbejder de med regneark, og fokus er på programmering af cellerne. 32 Vandforbrug (paraktivitet) Modelleringskompetencen er i fokus i denne opgave, hvor eleverne vurderer to matematiske modellers anvendelighed i den virkelige verden. 33 Stikstafet (klasseaktivitet) og kopiark 3.10 Eleverne spiller stikstafet, som beskrevet på kopiarket. Eleverne må ikke lede efter et bestemt svar, når de løber efter en brik. De skal blot vælge en brik, løbe tilbage til holdet, og sammen kontrollere, om der er stik. Skriftlig problemløsning 1 Kondital Den faglige tekst danner grundlag for besvarelsen af opgaven. Eleverne reducerer udtrykkene og anvender udtrykkene til beregning. 2 Regneopskrifter Eleverne arbejder med beregning ud fra regneopskrifter samt opstilling af algebraiske udtryk ud fra regneopskrifter.

2 Brøker, decimaltal og procent

2 Brøker, decimaltal og procent 2 Brøker, decimaltal og procent Faglige mål Kapitlet Brøker, decimaltal og procent tager udgangspunkt i følgende faglige mål: Brøker: kunne opstille brøker efter størrelse samt finde det antal af en helhed,

Læs mere

5 Ligninger og uligheder

5 Ligninger og uligheder 5 Ligninger og uligheder Faglige mål Kapitlet Ligninger og uligheder tager udgangspunkt i følgende faglige mål: Regler for løsning af ligninger og uligheder: kende reglerne for ligningsløsning og uligheder

Læs mere

3 Algebra. Faglige mål. Led og faktorer. Reduktion

3 Algebra. Faglige mål. Led og faktorer. Reduktion 3 Algebra Faglige mål Kapitlet Algebra tager udgangspunkt i følgende faglige mål: Led og faktorer: kende opbygningen af regneudtryk i led og faktorer, kende og anvende regnearternes hierarki ved reduktion,

Læs mere

10 Skitur til Østrig. Faglige mål. Side til side-vejledning. Budget og opsparing. Klubfest. Opsparing til skituren. Penge. Budget og opsparing

10 Skitur til Østrig. Faglige mål. Side til side-vejledning. Budget og opsparing. Klubfest. Opsparing til skituren. Penge. Budget og opsparing 10 Skitur til Østrig Faglige mål Kapitlet Skitur til Østrig tager udgangspunkt i følgende faglige mål: Budget og opsparing: kunne udarbejde budget og regnskab, kende forskel på de to begreber samt vide

Læs mere

Side til side-vejledning. 1 Tal. Faglige mål. Division. Potenser. Talfølger

Side til side-vejledning. 1 Tal. Faglige mål. Division. Potenser. Talfølger Side til side-vejledning 1 Tal Faglige mål Kapitlet Tal tager udgangspunkt i følgende faglige mål: Division: kunne regne division med decimaltal og negative tal samt kende til anvendelsen af division i

Læs mere

10 Medier. Faglige mål. Side til side-vejledning. Sociale medier. Gadgets. Økonomi. Spil

10 Medier. Faglige mål. Side til side-vejledning. Sociale medier. Gadgets. Økonomi. Spil 10 Medier Faglige mål Kapitlet Medier tager udgangspunkt i følgende faglige mål: Sociale medier: kunne oversætte tekstuddrag, som er skrevet på baggrund af statistiske undersøgelser til matematikkens sprog

Læs mere

9 Statistik og sandsynlighed

9 Statistik og sandsynlighed 9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Enkeltobservationer: kunne skabe overblik over statistisk materiale og anvende udvalgte

Læs mere

Farfar Anders Farmor Agnes Morfar Carl Mormor Oda. Mor Anita Hunden Kimber Katten Panter Killingen Misser

Farfar Anders Farmor Agnes Morfar Carl Mormor Oda. Mor Anita Hunden Kimber Katten Panter Killingen Misser Hvem tænkes der på? Nr. 42 Farfar Anders Farmor Agnes Morfar Carl Mormor Oda Mor Anita Hunden Kimber Katten Panter Killingen Misser Faster Lillian Moster Gurli Farbror Frede Morbror Frank Far Jens Storesøster

Læs mere

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet.

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet. Algebra og ligninger - Facitliste Om kapitlet I dette kapitel om algebra og ligninger skal eleverne lære at regne med variable, få erfaringer med at benytte variable Elevmål for kapitlet Målet er, at eleverne:

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Areal og overflade: kunne foretage beregninger af sammensatte arealer og sammensætte formler til beregning af disse.

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

4 Funktioner. Faglige mål. Lineære sammenhænge. Forskrifter og grafer. Den rette linjes ligning

4 Funktioner. Faglige mål. Lineære sammenhænge. Forskrifter og grafer. Den rette linjes ligning 4 Funktioner Faglige mål Kapitlet Funktioner tager udgangspunkt i følgende faglige mål: Lineære sammenhænge: vide hvad der kendetegner lineære sammenhænge samt kende de forskellige repræsentationsformer

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Isolere en ubekendt... 3 Hvis x står i første brilleglas...

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Navn: Nr.: Klasse: Prøvedato: mat Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

7 Trekanter. Faglige mål. Trekanter. Linjer i trekanter. Pythagoras. Areal

7 Trekanter. Faglige mål. Trekanter. Linjer i trekanter. Pythagoras. Areal 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Trekanter: kende navne for sider og vinkelspidser i trekanter, kunne konstruere bestemte trekanter ud fra givne betingelser

Læs mere

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Geometriske begreber: kunne sætte matematiske begreber ind i en matematisk kontekst samt kende den visuelle betydning

Læs mere

Årsplan matematik 3.klasse - skoleår 14/15- Ida Skov Andersen

Årsplan matematik 3.klasse - skoleår 14/15- Ida Skov Andersen BASIS: Klassen består af 25 elever og der er afsat 5 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 3A og 3B, de tilhørende kopisider (123-mappen) + CD-rom, Rema samt evt. ekstraopgaver. Derudover

Læs mere

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel

Grundlæggende matematiske begreber del 2 Algebraiske udtryk Ligninger Løsning af ligninger med én variabel Grundlæggende matematiske begreber del Algebraiske udtryk Ligninger Løsning af ligninger med én variabel x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse ALGEBRAISKE UDTRYK... 3 Regnearternes

Læs mere

Årsplan for 2. kl. matematik

Årsplan for 2. kl. matematik Undervisningen i 2. kl. tager primært udgangspunkt i matematikbøgerne Kolorit 2A og 2B. Årets emner med delmål Gange (kopiark) ræsonnerer sig frem til multiplikationsalgoritmen i teams, ved hjælp af additionsalgoritmer.

Læs mere

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens.

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens. Rapport Bjælken Indledning Vi arbejdede med opgaverne i grupper. En gruppe lavede en tabel, som de undersøgte og fandt en regel. De andre grupper havde studeret tegninger af bjælker med forskellige længder,

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

Matematik 2. klasse Årsplan. Årets emner med delmål

Matematik 2. klasse Årsplan. Årets emner med delmål Matematik 2. klasse Årsplan Årets emner med delmål Regn (side 1 14 + kopisider) opnå større fortrolighed med plus og minus anvende plus og minus til antalsbestemmelse anvende forskellige metoder til løsning

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Navn: Nr.: Klasse: Prøvedato: mat3 Noter: Kompetencemål efter 3. klassetrin Eleven kan udvikle metoder til beregninger med naturlige tal Tal og algebra Tal Titalssystem Decimaltal, brøker og procent Negative

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 5 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning Opmærksomhedspunkt Eleven kan anvende ræsonnementer i undersøgende arbejde

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering MULTI 7 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Læs og skriv matematik Eleven kan kommunikere mundtligt og skriftligt med og om matematik

Læs mere

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses

Læs mere

Årsplan Matematik 3.klasse 2016/2017

Årsplan Matematik 3.klasse 2016/2017 Årsplan Matematik 3.klasse 2016/2017 Undervisningen i matematik tager udgangspunkt i Trix 3A og 3B, som består af 2 grundbøger og en. Der vil derudover suppleres med opgaver i Pirana 3 samt opgaver på

Læs mere

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x))

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x)) A.0 A Algebradans x + y + k (x + y + k) (y + x) + (xy + k) (y + x) (k + (y + x)) k + k + k + (y +xy + k) (y + x) + k x + x + x + x + x + k (xy + (y + x) xy + xy + k (k + y + k) (xy + x) + y 6(x + xy) k

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Ræsonnement og tankegang. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Ræsonnement og tankegang. Modellering MULTI 6 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning og skrivning Eleven kan anvende forskellige strategier til matematisk problemløsning

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence)

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence) Matematiske kompetencer indgå i dialog om spørgsmål og svar, som er karakteristiske i arbejdet med matematik (tankegangskompetence) løse matematiske problemer knyttet til en kontekst, der giver mulighed

Læs mere

Vejledende årsplan for matematik 4.v 2008/09

Vejledende årsplan for matematik 4.v 2008/09 Vejledende årsplan for matematik 4.v 2008/09 Uge Emne Formål Opgaver samt arbejdsområder 33-35 Kendskab og skriftligt arbejde At finde elevernes individuelle niveau samt tilegne mig kendskab til deres

Læs mere

Årsplan for matematik i 4. klasse 2014-15

Årsplan for matematik i 4. klasse 2014-15 Årsplan for matematik i 4. klasse 2014-15 Klasse: 4. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 4(mandag, tirsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen er, at

Læs mere

Tal og algebra Eleverne kan anvende rationelle tal og variable i beskrivelser og beregninger

Tal og algebra Eleverne kan anvende rationelle tal og variable i beskrivelser og beregninger ÅRSPLAN MATEMATIK 4. KLASSE 2016/17 I de enkelte undervisningsforløb indgår der mål fra både de matematiske kompetencer og fra de 3 stofområder: Matematiske kompetencer handle med overblik i sammensatte

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Andreas Nielsen Kalbyrisskolen 2009

Andreas Nielsen Kalbyrisskolen 2009 Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 4 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning undersøgende arbejde Eleven kan læse og skrive enkle tekster med og om matematik

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Variable. 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0

Variable. 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0 Variable 1 a a + 2 3 a 5 2a 3a + 6 a + 5 3a a 2 a 2 a 2 5 7 15 5 21 5 25 0 2 0 6 9 0 9 4 0 1 3 3 3 9 3 1 0 0 2 0 5 6 5 0 0 2,5 1,5 4 7,5 4 0 2 a x = 5 b x = 1 c x = 1 d y = 1 e z = 0 f Ingen løsning. 3

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.

Læs mere

9 Statistik og sandsynlighed

9 Statistik og sandsynlighed Side til side-vejledning 9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Deskriptorer: kunne gennemføre og beskrive en statistisk

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

Matematik - Årsplan for 6.b

Matematik - Årsplan for 6.b Matematik - Årsplan for 6.b 2013-2014 Kolorit for 6. klasse består af en grundbog, en rød og en grøn arbejdsbog. Grundbogen er inddelt i 4 forskellige arbejdsformer: Fællessider, gruppesider, alenesider

Læs mere

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Algebra med Bea Bea Kaae Smit nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende regler 7 3.1 Tal..........................

Læs mere

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk

Algebra. Dennis Pipenbring, 10. februar 2012. matx.dk matx.dk Algebra Dennis Pipenbring, 10. februar 2012 nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere

Årsplan matematik 1.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 1.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer BASIS: Klassen består af 26 elever og der er afsat 5 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 1A og 1B, de tilhørende kopisider + CD-rom, Rema samt evt. ekstraopgaver. Derudover vil

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Årsplan Matematik 5.klasse

Årsplan Matematik 5.klasse Årsplan Matematik 5.klasse Emne Periode Mål Relation til fælles mål Arbejdsform Materialer Evaluering Evaluering Rette forståelses fejl Evaluering prøve MAT 4 MAT 4 Geometri Arbejde med Excel regneark

Læs mere

Uge Emne Materiale Fokus/faglige mål Kompetencer Andre aktiviteter Regneregler Grundbogen side 7-19 Arbejdsbogen side 1-6

Uge Emne Materiale Fokus/faglige mål Kompetencer Andre aktiviteter Regneregler Grundbogen side 7-19 Arbejdsbogen side 1-6 Årsplan Matematik 5.klasse 2016/2017 Undervisningen i matematik tager udgangspunkt i Matematrix 5, som består af en grundbog og en arbejdsbog. Der vil derudover suppleres med opgaver i Pirana 5 samt opgaver

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

med regningsarternes hierarki, men i dette kapitel bliver eleverne introduceret for reglerne Matematiske kompetencer - om primtal og sammensatte tal

med regningsarternes hierarki, men i dette kapitel bliver eleverne introduceret for reglerne Matematiske kompetencer - om primtal og sammensatte tal REGNING MED TAL I dette kapitel er målet, at eleverne får repeteret og udvidet deres viden og kunnen om addition og subtraktion med og uden decimaltal, om multiplikation, division samt negative tal. Eleverne

Læs mere

Årsplan matematik 2.klasse - skoleår 14/15- Majbrit Trampedach

Årsplan matematik 2.klasse - skoleår 14/15- Majbrit Trampedach BASIS: Klassen består af 25 elever og der er afsat 5 ugentlige timer, hvoraf en af timerne bliver en fast Regne-time. Grundbog: Vi vil arbejde ud fra Matematrix 2A og 2B, de tilhørende kopisider + CD-rom,

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

CL, individuelle opgaver, par arbejde lege opgaver. Arbejde parvis og individuelt med skriftlige opgaver og opgaver på PC.

CL, individuelle opgaver, par arbejde lege opgaver. Arbejde parvis og individuelt med skriftlige opgaver og opgaver på PC. Årsplan matematik 2016/17 Periode/ Timetal Emne Mål Arbejdsformer, Organisering og samarbejde Materialer Evaluering August Repetition, procentregning, regneregler og ligninger 2 ligninger med 2 ubekendte*

Læs mere

Her følger en række opmærksomhedsfelter i relation til undervisningens form og elevens læring:

Her følger en række opmærksomhedsfelter i relation til undervisningens form og elevens læring: BRØK 1 Vejledning Udvidelsen af talområdet til også at omfatte brøker er en kvalitativt anderledes udvidelse end at lære om stadigt større tal. Det handler ikke længere bare om nye tal af samme type, som

Læs mere

Årsplan matematik 6.A. Lærer: Jens Frederik Horsens fh@roserskolen.dk

Årsplan matematik 6.A. Lærer: Jens Frederik Horsens fh@roserskolen.dk Årsplan matematik 6.A Lærer: Jens Frederik Horsens fh@roserskolen.dk Undervisningen rettelægge jeg med den hensigt på at opfylde formålet for faget Matematik. Det overordnede formål lyder: Formålet med

Læs mere

Årsplan for matematik i 1. klasse 2011-12

Årsplan for matematik i 1. klasse 2011-12 Årsplan for matematik i 1. klasse 2011-12 Klasse: 1. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 5 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen.

Basisblokke addition Programmet viser enere, 10-bunker, 100- bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke addition bunker osv. Det kan bruges til at visualisere, hvordan man lægger tal sammen. Basisblokke - decimaltal bunker osv. Det kan desuden vise decimaler og dermed give eleven visuel støtte

Læs mere

Årsplan for matematik 4. klasse 14/15

Årsplan for matematik 4. klasse 14/15 Årsplan for matematik 4. klasse 14/15 Status: 4.b er en klasse der består af ca. 20 elever. Der er en god fordeling mellem piger og drenge i klasser. Klassen har 5 matematiktimer om ugen. Vi fortsætter

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

LÆRERVEJLEDNING Cooperative Learning til matematik i overbygningen

LÆRERVEJLEDNING Cooperative Learning til matematik i overbygningen LÆRERVEJLEDNING Cooperative Learning til matematik i overbygningen Learnhow v/rikke Josiasen Dygtige elever, aktive elever, engagerede elever, sociale elever eller ikke Ved at bruge strukturerne fra cooperative

Læs mere

Fysisk aktivitet i den boglige undervisning

Fysisk aktivitet i den boglige undervisning Fysisk aktivitet i den boglige undervisning 1 Battle Øve begreber, teorier og beregninger i de naturvidenskabelige fag Besvare redegørende eller analyserende spørgsmål af tekster i fx historie, samfundsfag

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

Årsplan matematik 5 kl 2015/16

Årsplan matematik 5 kl 2015/16 Årsplan matematik 5 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat7 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Matematika rsplan for 8. kl

Matematika rsplan for 8. kl Matematika rsplan for 8. kl 2015-2016 Årsplanen tager udgangspunkt i fællesmål (færdigheds- og vidensmål) efter 9. klassetrin. Desuden tilrettelægges undervisningen efter læseplanen for matematik. Formålet

Læs mere

Klasse: 3. årgang Fag: Matematik År: 2016/17. Læringsmål Hvad er de overordnet læringsmål for klassen?

Klasse: 3. årgang Fag: Matematik År: 2016/17. Læringsmål Hvad er de overordnet læringsmål for klassen? Årsplan Klasse: 3. årgang Fag: Matematik År: 2016/17 Periode Fælles Mål Hvilke kompetencemål og områder sigtes der mod? Læringsmål Hvad er de overordnet læringsmål for klassen? Tiltag Hvad skal eleverne

Læs mere

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder.

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder. Dette tema lægger forskellige vinkler på temaet biografen. Udgangspunktet er således ikke et bestemt matematisk område, men et stykke virkelighed, der bl.a. kan beskrives ved hjælp af matematik. I dette

Læs mere

http://www.uvm.dk/service/publikationer/publikationer/folkeskolen/2009/faelles-maal-2009- Matematik/Formaal-for-faget-matematik

http://www.uvm.dk/service/publikationer/publikationer/folkeskolen/2009/faelles-maal-2009- Matematik/Formaal-for-faget-matematik Årsplan Matematik Skoleåret 2012-2013 4. klasse Undervisningen i matematik i 4. klasse følger Fælles Mål, som er de overordnede bestemmelser for, hvad vi skal nå. Fælles Mål opstiller målene i hhv. indskoling,

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Årsplan for matematik

Årsplan for matematik Årsplan for matematik 2016-17 Uge Tema/emne Metode/mål 33 Brøker + talforståelse Matematiske arbejdsmåder(metode) 34 Brøker + procent 35 Excel 35 GeoGebra/Geometri 36 Geometri 37 Emneuge 38 Geometri 39

Læs mere

2. KLASSE UNDERVISNINGSPLAN MATEMATIK!

2. KLASSE UNDERVISNINGSPLAN MATEMATIK! 2014-15 2. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: Sussi Sønnichsen Forord til matematik i 2. Klasse. Vi vil arbejde med bogsystemet Matematrix 2A & 2B, Alinea, samt kopiark til systemet. Jeg vil differentiere

Læs mere