Kapitel 1. statusseminar HERE GOES TEXT

Størrelse: px
Starte visningen fra side:

Download "Kapitel 1. statusseminar HERE GOES TEXT"

Transkript

1 Kapitel 1 statusseminar HERE GOES TEXT 1

2 Kapitel Problemanalyse.1 Indledning I mange år har evolutionsteorien været centrum for en stærk debat. De som er enige om en evolution, er dog ikke altid enige om detaljerne i evolutionsprocessen. Denne diskussion har ført til en debat centreret omkring begreberne gradualisme og punkteret ligevægt. Begge sider af denne debat har argumenter, som gør deres forklaring troværdig, og det er derfor meget svært at bestemme, hvilken der er den korrekte. Moderne hardware har gjort det muligt at udføre meget krævende simuleringer, som muligvis vil kunne kaste l ys over problemer somq dette i fremtiden. Vores interesse for datalogi så vel som for evolutionsteorien har været en stærk faktor i vores valg af emne, derudover ønskede gruppen at arbejde med et specifikt fænomen indenfor biologi. I løbet af denne rapport vil vi arbejde med analyser samt implementeringer af matematiske modeller og simuleringer. I denne proces ønsker vi at belyse koncepterne i denne debat og danne os et billede af de to forklaringers plausibilitet. Evolution er en meget kompleks proces med mange variable (muligvis ukendte variable), derfor har vi udvalgt de væsentlige variable, der har indflydelse for hvilke og hvor mange celler, der overlever. Disse variable vil vi bruge i vores udvidede version af Game of Life. Vores version vil kunne blive brugt til at simulere livs overlevelse gennem generationer indenfor vores fastsatte rammer. Det vil blandt andet være brugbart indenfor biologien, når man ser på simple livsformer, som f.eks. bakteriers udvikling gennem generationer. Selvfølgelig er problemet her, at modellen ikke svare til virkeligheden, da variablene er fastsat. Med modellen er målet, at den kan fortælle noget om evolutionsprocessen kan følge teorien om gradualisme eller punkteret ligevægt. Dermed kan man udvide sin viden om evolution og hvordan variablene spiller ind på artens overlevelse og formering.

3 . Problemformulering Hvordan kan plausibiliteten af koncepterne gradualisme og punkteret ligevægt indenfor evolutionsteorien vurderes ved hjælp af matematiske modeller og datalogiske hjælpemidler?.3 Projektdesign En problemformulering er en af de vigtigste dele af et projekt. For at hjælpe gruppen med at holde fokus og undgå afvigelser fra projektets struktur har gruppen valgt at udarbejde en model der skal hjælpe os hertil. Modellen fungere som en disposition der hjælper gruppen til at holde os på sporet. Figuren er bygget op af følgende kerneelementer: Emne Emnet er det emne som gruppen har valgt ud fra projektkataloget, motiverne for at vælge netop dette emne kan ses i afsnittet ovenfor Problemfelt Problemfeltet er det specifikke emne indenfor kunstigt liv som gruppen har valgt. Gruppen har valgt evolution, da gruppen gerne ville se på evolutionen i et datalogisk perspektiv. Problemformulering Vi har indkredset emnet og fundet frem til en problemformulering som er relevant for gruppens mål. (se evt. delmål for projektet og læring nedenfor) Underspørgsmål Disse spørgsmål fungere som hjælpespørgsmål der skal hjælpe gruppen frem til besvarelsen den egentlig problemformulering. Formål Formålet beskriver hvad formålet med underspørgsmålene er. Teknisk gennemførsel Den måde vi vil komme frem til besvarelsen af underspørgsmålene. Delkonklusioner I delkonklusionerne bestræber gruppen på at besvare underspørgsmålene Konklusioner I konklusionen bestræber gruppen sig på at lave en samlet besvarelse af projektet. Kontekstualisering I kontekstualiseringen vil gruppen sætte problemstilling i kontekst med andre problemstillinger..4 Afgrænsning Som afgrænsning af projektet har gruppen valgt kun at beskæftige sig med evolutions teorierne punkteret ligevægt og gradualisme. Hvorfor har gruppen så valgt netop disse to? Vi har valgt disse da den ene udelukker den anden, så hvis vores implementering viser tegn på punkteret ligevægt kan vi konkludere at 3

4 4

5 vores model har en evolution som matcher punkteret ligevægt og kan frasortere gradualisme. Gruppen vil i projektet beskrive og analysere disse to evolutionsteorier samt emner som er vigtige at forstå, for at få en fuld forståelse for disse teorier. Indenfor disse teorier vil vi komme ind på følgende underemner. Historie Grundteori/definition Diskussion Derudover vil gruppen lave en grundig beskrivelse af vores matematiske model som ligger til grund for vores implementering. Om den matematiske vil gruppen lave en beskrivelse af: Definition.5 Projekt delmål Vi vil foretage en problemanalyse. Vi vil beskrive evolutionsteori med fokus på gradualisme og punkteret ligevægt. Vi vil beskrive cellulære automater med fokus på Game of Life. Vi vil opstille en model over evolution med udgangspunkt i Conway s Game of Life, hvor vi vil forsøge at videreudvikle denne til at inkludere begreber nødvendig for at skabe en fyldestgørende model. Vi vil foretage modelkritik. Vi vil med udgangspunkt i denne model, foretage en implementation af denne i software. Vi vil ud fra implementationen, foretage en vurdering af, hvorvidt vores model viser at evolution har tendens til at foregå via gradualisme eller punkteret ligevægt. 5

6 Kapitel 3 Lærings delmål Vi ønsker at erhverve os en bedre forståelse af matematiske modeller, og hvordan de kan bruges til at beskrive virkelige koncepter. Vi vil gerne udvikle vores evner indenfor programmering, dvs. at kunne skrive et program fra bunden som led i en analyse/løsning af et reelt problem. Vi ønsker en bedre forståelse af evolutionsteorien i forhold til de to termer: gradualisme og punkteret ligevægt. Vi ønsker at blive bedre til at arbejde sammen om et projekt på større skala. Vi vil lære mere om cellulære automater, mere specifikt hvordan de kan benyttes i opstilling af modeller. 6

7 Kapitel 4 Modellen 4.1 Game of Life Modellen vil tage udgangspunkt i en cellulær automat kaldet Game of Life, i hvilken man har et uendeligt todimensionelt gitter, hvor hvert tern kan være enten tændt eller slukket, levende eller død om man vil. Systemet udvikler sig udelukkende baseret på den tilstand det er i når man starter, og kræver ikke ydeligere input, man skaber en startkonfiguration og observerer hvordan systemet udvikler sig. Traditionelt har Game of Life følgende regler. En levende celle med færre end to levende naboer dør som ved ensomhed En levende celle med mere end tre levende naboer dør som ved overpopulation En levende celle med præcis to eller tre levende naboer lever videre i næste generation En død celle med præcis tre levende naboer bliver til en levende celle I vores model følger vi konventionen med at et tern enten kan være tændt eller slukket, alt efter om der henholdsvis eksisterer et individ derpå eller ikke, men individerne kan i vores model variere, vi introducerer dermed konceptet om en art i Game of Life. Vi vil herudover også indbygge koncepterne formering, mutation, naturlig selektion og miljø som disse arter lever i, alle vil blive beskrevet i efterfølgende sektioner. 4. Individer Vi vælger at definere et individ ved en farve, som vi beskriver med en RGB værdi. Et individ kan kun befinde sig i ét felt ad gangen i gitteret. 7

8 RGB-værdien i dette dokument defineres som: RGB = (x, y, z) Den matematiske notation for dette er: Navn Beskrivelse Forkortelse Individ = (x, y, z) - Felt (i, j) Z x Z f Omegn Mængde af felter (eks. G. of L.) O((i, j)) = O(f) (i, j ) i 1 i i + 1, j 1 j j Arter I vores model har vi besluttet, at en art er bestående af individer, der kan formere sig med hinanden. Vi har valgt at inddele de forskellige arter alt efter deres R, G og B-værdier. Vi antager, at alle tre kan have en værdi mellem 0 og 55. Vi indeler disse værdier i 5 lige store intervaller, en art definerer vi så ved en kombination af alle værdier der ligger indenfor de samme intervaller i R, G og B. Det vil sige, at en art er et tripel af intervaller. Dette kan opskrives sådan: (x lav ; x høj, y lav ; y høj, z lav ; z høj ) d vil tilhøre arten A, hvis d = (x, y, z) og x x lav ; x høj y x lav ; y høj z z lav ; z høj Dette giver os så mange mulige forskellige arter: = Generation I vores model er en generation et fastfrosset billede af, hvordan situationen ser ud, ligesom i Game of Life. Hvis vi ser på reglerne fra Game of Life, kan vi konkluderer, at intet kan bevæge sig i en generation. Alle bevægelser der sker i Game of Life, er basseret på et generationsskift pga. af de opstillede regler. I denne model, vil en generation blive beskrevet med superskriften k. Altså x k er x-værdien for et individ i generation k. Den generelle notation bliver altså som følger: RGB = (x k, y k, z k ) Den matematiske notation for dette er: 8

9 Navn Beskrivelse Forkortelse Generation Konfiguration af felter med C i og C m C k Individet i feltet f ved generation k Ci k(f) Miljøet i feltet f ved generation k Cm(f) k Startkonfiguration Felternes placering ved generation k = 0 C 0 Overføringsfunktion Def. af hvordan C k+1 findes ud fra C k (uddybes *) C k+t (f) Mutation i modellen I modellen er en mutation implementeret som en vektor med 3 komponenter nøjagtig som et individ. Hvis en mutation opstår ved reproduktion vil en sådan vektor genereres og lægges til mutantens vektor. Da de fleste mutationer er neutrale eller af lav betydning, og kun få meget markante mutationer ses hos levedygtige og reproduktionsdygtige individer, har vi valgt at betragte mutationens styrke (vektorens komponenter) som en kontinuert stokastisk variabel normalfordelt omkring et neutralt gennemsnit. Jvf. tæthedsfunktionen for en normalfordeling kan den procentvise mængde af udfald for en given værdi beskrives som: f(x) = 1 (x µ) exp πσ σ hvor x er værdien af det testede udfald, σ er standardafvigelsen og µ er middelværdien. Ved hjælp af denne model kan vi sikre at størstedelen af alle mutationer vil være tæt på neutrale ved at vælge 0 som vores middelværdi. Hvis vi ændrer på standardafvigelsen, kan vi påvirke mængden af stærke mutationer og på den måde sammenligne data fra simulationer og forsøge at tilnærme et realistisk scenarie. For at kunne implementere denne type fordeling i vores model, skal vi bruge en fordelingsfunktion. Fordelingsfunktionen (F ) for tæthedsfunktionen beskriver den kumulative frekvens og kan findes ved integration således: x x ( ) 1 (t µ) F (x) = f(t)dt = exp πσ σ dt, x R Denne funktion kan ud fra et tilfældigt genereret tal bestemme en værdi for mutationens styrke. For hver af komponenterne i et nyt individs vektor kan vi ud fra en fastsat sandsynlighed bestemme, om en mutation skal finde sted, og ud fra vores fordelingsfunktion kan vi så generere mutationsvektorens værdi Miljø Vi har i modellen valgt også at beskrive miljøet i form af en farve, også som en RGB-værdi. Hvert felt i vores gitter vil også have en farve associeret med det, som repræsenterer miljøet i feltet. 9

10 For at kunne skelne mellem de forskellige RGB-værdier, definerer vi nu, at miljøets RGB-værdi kommer til at hedde: RGB = (x k m, y k m, z k m) Samt at individets RGB-værdi kommer til at hedde: RGB = (x k i, y k i, z k i ) Vi har valgt at det ideelle miljø, er den farve der ligger tættest på den farve et individ selv har. Når vi har en ide om miljøtilpasning, kan vi beskrive hvordan naturlig selektion forekommer i vores model. 4.5 Naturlig Selektion Vi har i vores model beskrevet mekanismer der sørger for at disse tre forudsætninger er til stede, mutation giver variation, reglerne opstillet for reproduktion sørger for at træk nedarves gennem generationer, og vi vil her beskrive det aspekt af modellen der sørger for at ikke alle individer har lige stor chance for at reproducere sig. Vi betragter her naturlig selektion, som en mekanisme der fremkommer af det miljø et individ befinder sig i, med andre ord, det er miljøet der udøver det selektive pres på et individ, jo bedre tilpasset et miljø individet er, jo større er det selektive pres for udvælgelse til at fortsætte til næste generation og jo mindre tilpasset, jo større er presset for fravælgelse. Vi vælger her at betragte det selektive pres som en samlet kraft. Igen, jo tættere farven på et individ ligger på farven for et miljø, jo bedre tilpasset er individet. For hver generation vil følgende beregning foretages: Man sammenligner hver R, G og B værdi fra miljø og individ. Vi introducerer nu en parameter vi kalder P død. Vi opstiller nu ulighederne: x k m x k i P død y k m y k i P død z k m z k i P død Hvis disse uligheder er opfyldt overlever individet. Dette vil medføre, at hvis forskellen mellem miljøet og individet er for stor, vil individet ikke kunne leve i det miljø, hvilket betyder, at individet vil dø. Hermed har vi indført, at individets overlevelse er baseret på hvor godt tilpasset det er til et bestemt miljø(hvor tæt farverne ligger på hinanden). Vi har indført dette som en parameter, der vil kunne ændres, da dette føltes som en god idé rent praktisk. 10

11 4.5.1 Vekselvirkning mellem individ og miljø Vi ønsker at introducere en vekselvirkning mellem miljø, og det der end måtte leve i miljøet. Måden vi har valgt at vægte denne vekselvirkning på, er ved at sige, at når noget lever i et miljø, vil det have en naturlig tendens til at gøre miljøet mindre beboeligt. Vi tænker her på forbruget af miljøets resourcer, og eventuelt forurening af miljøet osv. Vi introducerer nu en parameter kaldet. Med denne beskriver vi måden, hvorpå miljøet udvikler sig væk fra det, der lever i miljøet. Det gør vi på følgende måde: Hvis noget lever i et miljø, vil miljøet blive påvirket af individet. Dette gøres ved, at vi tager de 3 værdier R, G og B fra miljøet og individet, og substituerer som gjort med P død. Miljøets værdier vil dermed ændre sig på følgende måde i en generation: x k+1 m y k+1 m z k+1 m = x k m + xk m x k i = y k m + yk m y k i = z k m + zk m z k i Samtidig vil en livsform også prøve at tilpasse sig til et ændrende miljø. Derfor siger vi nu at, hver gang der sker en formering, vil afkommet være bedre tilpasset til, det miljø, det bliver født i. Vi bruger samme beregning til at udregne et nyt individs tilpasning til miljøet, blot i revers: x k+1 i y k+1 i z k+1 i = x k i + xk i xk m = y k i + yk i yk m = z k i + zk i zk m Det sidstnævnte bliver dermed en del af reproduktionssreglen, som før så sådan ud: ( x k+1, y k+1, z k+1) = ( x k 1 + x k, yk 1 + y k, zk 1 + z k ) (4.1) Reproduktionsreglen kommer nu til at se sådan ud: 11

12 ( x k+1, y k+1, z k+1) = ( x k 1 + x k + x k 1 +xk x k m, yk 1 + y k + y k 1 +yk ym k, zk 1 + z k (4.) + ) z k 1 +zk zm k 1

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Bilag 7. SFA-modellen

Bilag 7. SFA-modellen Bilag 7 SFA-modellen November 2016 Bilag 7 Konkurrence- og Forbrugerstyrelsen Forsyningssekretariatet Carl Jacobsens Vej 35 2500 Valby Tlf.: +45 41 71 50 00 E-mail: kfst@kfst.dk Online ISBN 978-87-7029-650-2

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

1 Sandsynlighed Sandsynlighedsbegrebet Definitioner Diskret fordeling Betinget sandsynlighed og uafhængighed...

1 Sandsynlighed Sandsynlighedsbegrebet Definitioner Diskret fordeling Betinget sandsynlighed og uafhængighed... Indhold 1 Sandsynlighed 1 1.1 Sandsynlighedsbegrebet................................. 1 1.2 Definitioner........................................ 2 1.3 Diskret fordeling.....................................

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Eksamen 2014/2015 Mål- og integralteori

Eksamen 2014/2015 Mål- og integralteori Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt

Læs mere

4 Oversigt over kapitel 4

4 Oversigt over kapitel 4 IMM, 2002-09-14 Poul Thyregod 4 Oversigt over kapitel 4 Introduktion Hidtil har vi beskæftiget os med data. Når data repræsenterer gentagne observationer (i bred forstand) af et fænomen, kan det være bekvemt

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Michael Jokil 11-05-2012

Michael Jokil 11-05-2012 HTX, RTG Det skrå kast Informationsteknologi B Michael Jokil 11-05-2012 Indholdsfortegnelse Indledning... 3 Teori... 3 Kravspecifikationer... 4 Design... 4 Funktionalitet... 4 Brugerflade... 4 Implementering...

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 0. maj 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen

Læs mere

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version university of copenhagen University of Copenhagen Notat om statistisk inferens Larsen, Martin Vinæs Publication date: 2014 Document Version Peer-review version Citation for published version (APA): Larsen,

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side?? af?? sider Skriftlig prøve, den: 6. december 2004 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kapitel 8.1-8.3 Tilfældig stikprøve (Random Sampling) Likelihood Eksempler på likelihood funktioner Sufficiente statistikker Eksempler på sufficiente statistikker 1 Tilfældig stikprøve Kvantitative

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Højde af kvinder 2 / 18

Højde af kvinder 2 / 18 Hvorfor er normalfordelingen så normal? og er den nu også det? Søren Højsgaard (updated: 2019-03-17) 1 / 18 Højde af kvinder 2 / 18 Inddeler man i mindre grupper kan man forestille sig at histogrammet

Læs mere

Energibalance og overvægt (Matematik/Idræt)

Energibalance og overvægt (Matematik/Idræt) Energibalance og overvægt (Matematik/Idræt) Indledning og forudsigelse Sundhedsstyrelsen fastslår på deres hjemmeside, at Svær overvægt er et stigende problem, der vokser for hver dag. Hvis ikke denne

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 27. maj 2011 Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side af 6 sider Skriftlig prøve, den: 27. maj 20 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift) (bord

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Efterspørgselsforecasting og Leveringsoptimering

Efterspørgselsforecasting og Leveringsoptimering Efterspørgselsforecasting og Leveringsoptimering 26.05.2011 Bjørn Nedergaard Jensen Berlingske Media 2 En af Danmarks største medieudgivere og leverandør af både trykte og digitale udgivelser. Koncernen

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte fordelinger, Afsnit 5.1-5.2: - Fordelingsfunktion - Tæthedsfunktion - Eksempel:

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Forelæsning 2: Kapitel 4, Diskrete fordelinger

Forelæsning 2: Kapitel 4, Diskrete fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: XY. december 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: XY. december 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Approksimation af binomialsandsynligheder, Afsnit 4.5 Multinomial fordeling, Afsnit 4.8 Negativ binomialfordeling, Afsnit 4.4 Poisson fordeling og Poisson process, Afsnit 4.6 Kontinuerte

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2016 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. december 206 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd I dag Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik SaSt) Helle Sørensen Først lidt om de sidste uger af SaSt. Derefter statistisk analyse af en enkelt

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Reproduktion Dødelighed Tommelfingerregler... 2

Reproduktion Dødelighed Tommelfingerregler... 2 Mårhund: Biologi, bestandsudvikling og bekæmpelse Indhold Mårhund: Biologi, bestandsudvikling og bekæmpelse... 1 Konklusioner... 1 Hvad afgør mårhundebestandens størrelse?... 1 Reproduktion... 2 Dødelighed...

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Kiosk-modellen (News vendor s model) og EOQ modellen

Kiosk-modellen (News vendor s model) og EOQ modellen Kiosk-modellen (News vendor s model) og EOQ modellen Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet September 17, 2014 1/15 Stokastiske modeller i økonomi Fundamentale modeller i

Læs mere

Lad os som eksempel se på samtidigt kast med en terning og en mønt:

Lad os som eksempel se på samtidigt kast med en terning og en mønt: SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Kapitel 13 Reliabilitet og enighed

Kapitel 13 Reliabilitet og enighed Kapitel 13 Reliabilitet og enighed Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 Version 11. april 2011 1 / 23 Indledning En observation er sammensat af en sand værdi og en målefejl

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 40, 2010 Produceret af Hans J. Munkholm bearbejdet af JC 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen s.445-8 dx Eksempler

Læs mere

Bilag A. Dexia-obligationen (2002/2007 Basis)

Bilag A. Dexia-obligationen (2002/2007 Basis) Bilag A Dexia-obligationen (2002/2007 Basis) Også kaldet A.P. Møller aktieindekseret obligation (A/S 1912 B). Dette værdipapir som i teorien handles på Københavns Fondsbørs (omend med meget lille omsætning)

Læs mere

En statistikstuderendes bekendelser Søren Wengel Mogensen

En statistikstuderendes bekendelser Søren Wengel Mogensen Oplysning 23 En statistikstuderendes bekendelser Søren Wengel Mogensen Om at skrive BSc-opgave i anvendt statistik. Der findes matematikere (i hvert fald matematikstuderende), der mener, at den rene matematik

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kontinuerte fordelinger Ventetider i en Poissonproces Beskrivelse af kontinuerte fordelinger: - Median og kvartiler - Middelværdi - Varians Simultane fordelinger 1 Ventetider i en Poissonproces

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Hjemmeopgavesæt 1, løsningsskitse

Hjemmeopgavesæt 1, løsningsskitse Hjemmeopgavesæt 1, løsningsskitse Teacher 26. oktober 2008 OPGAVE 1 1. Den samlede efterspørgsel, Z findes ved: Z = C + I + G = 40 + 0.8(Y 150 0.25Y ) + 80 + 400 = 0.6Y + 400 Ligevægtsindkomsten bliver:

Læs mere

Notat. Det Sociale Udvalg. 20100414 - Status på ernæringsstatus i Fleksibelt madtilbud

Notat. Det Sociale Udvalg. 20100414 - Status på ernæringsstatus i Fleksibelt madtilbud Notat Til: Fra: Notat til sagen: Det Sociale Udvalg Malene Herbsleb 20100414 - Status på ernæringsstatus i Fleksibelt madtilbud Byrådsservice Rådhusgade 3 8300 Odder Tlf. 8780 3333 www.odder.dk Baggrund

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Eksamensspørgsmål til BiB biologi B 2015

Eksamensspørgsmål til BiB biologi B 2015 Eksamensspørgsmål til BiB biologi B 2015 Med udgangspunkt i de udleverede bilag og temaet evolution skal du: 1. Redegøre for nogle forskellige teorier om evolution, herunder begrebet selektion. 2. Analysere

Læs mere

Karakteristiske funktioner og Den Centrale Grænseværdisætning

Karakteristiske funktioner og Den Centrale Grænseværdisætning E6 efterår 1999 Notat 10 Jørgen Larsen 20. oktober 1999 Karakteristiske funktioner og Den Centrale Grænseværdisætning Karakteristiske funktioner som er nære slægtninge til Fourier-transformationen) er

Læs mere

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 28 Kgs. Lyngby Danmark Email: bfn@dtu.dk Dagens emner afsnit 4.5 og 4.6 (Kumulerede) fordelingsfunktion

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 4.5 og 4.6 (Kumulerede)

Læs mere

MM501/MM503 forelæsningsslides

MM501/MM503 forelæsningsslides MM501/MM503 forelæsningsslides uge 50, 2009 Produceret af Hans J. Munkholm 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen dx Eksempler = et udtryk, der indeholder

Læs mere

Reeksamen 2014/2015 Mål- og integralteori

Reeksamen 2014/2015 Mål- og integralteori Reeksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål. Ved bedømmelsen indgår de spørgsmål med samme vægt.

Læs mere

Hvorfor er normalfordelingen så normal?

Hvorfor er normalfordelingen så normal? Hvorfor er normalfordelingen så normal? Søren Højsgaard Institut for Matematiske Fag, Aalborg Universitet October 24, 2018 normalfordelingen så normal? October 24, 2018 1 / 13 Højde af kvinder Histogram

Læs mere

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)

Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1) ; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians

Læs mere

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 4.5 og 4.6 (Kumulerede)

Læs mere

LP-HÆFTE 2010 - SOCIAL ARV

LP-HÆFTE 2010 - SOCIAL ARV LP-HÆFTE 2010 - SOCIAL ARV Indhold Indledning... 1 Forståelsen af social arv som begreb... 1 Social arv som nedarvede sociale afvigelser... 2 Arv af relativt uddannelsesniveau eller chanceulighed er en

Læs mere

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard

Mandags Chancen. En optimal spilstrategi. Erik Vestergaard Mandags Chancen En optimal spilstrategi Erik Vestergaard Spilleregler denne note skal vi studere en optimal spilstrategi i det spil, som i fjernsynet går under navnet Mandags Chancen. Spillets regler er

Læs mere