Eksaminanderne på hf tilvalg forventes ikke at kunne udnytte grafregnerens muligheder for regression.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Eksaminanderne på hf tilvalg forventes ikke at kunne udnytte grafregnerens muligheder for regression."

Transkript

1 Bilag 3: Uddrag af Matematik Skriftlig eksamen og større skriftlig opgave ved studentereksamen og hf. Kommentarer på baggrund af censorernes tilbagemeldinger HF-tilvalgsfag (opgavesæt HF ) 'Grafregnerkravet' - og elevernes brug af grafregner Med hensyn til brugen af grafregnere ved de skriftlige prøver på hf-tilvalg forventes eksaminanderne - ud over at kunne foretage de sædvanlige beregninger som på en traditionel lommeregner - at kunne benytte grafregnerens faciliteter til at tegne graf for en eller flere funktioner i samme grafvindue ud fra givne forskrifter vælge et passende grafvindue og ændre det valgte vindue aflæse funktionsværdier og foretage andre grafiske aflæsninger, f.eks. bestemme nulpunkt / ekstremer for en funktion samt skæringspunkter mellem grafer. Eksaminanderne på hf tilvalg forventes ikke at kunne udnytte grafregnerens muligheder for regression. I situationer, hvor f.eks. et nulpunkt / maksimum ikke kan bestemmes ved beregning, eller kun vanskeligt lader sig bestemme uden en grafregner, vil der - som en hjælp til eleverne - kunne forekomme formuleringer som: "Benyt grafregneren til at bestemme nulpunkt / maksimum for... " Som følge af indførelse af grafregner på hf tilvalg er der ikke længere på dette niveau krav om, at lommeregnerens hukommelse skal være tom ved prøvens start. Det helt centrale problem har været: Hvordan dokumenteres de resultater, kursisterne opnår ved hjælp af grafregneren? Kursisterne er MEGET dårlige til at forklare, hvordan grafregneren bruges. Mange dygtige drenge bruger grafregneren, hvor det overhovedet er muligt - men ikke altid hvor det er 'lovligt', som fx ved BEREGN. Derved og pga. manglende begrundelser mister de en del point. I undervisningsvejledningen inkl. supplementet til undervisningsvejledningen, dec. 97: 'Principper for formulering af skriftlige eksamensopgaver i matematik på B-niveau' kan man finde nogen hjælp. Her står der, at eksaminandens tankegang skal fremgå klart af besvarelsen, og at det i forbindelse med brug af lommeregner er særlig vigtigt, at der gøres rede for den anvendte fremgangsmåde: "Hvis der har været anvendt specielle faciliteter på grafregneren, bør det fremgå af besvarelsen, på hvilken måde dette er sket - dog er det ikke tanken, at dette skal ske ved at angive indtastningssekvenser."

2 En besvarelse der blot består i, at eksaminanden skriver: 'Jeg har brugt min lommeregner og får x = -0,76 ' er altså ikke fyldestgørende; der skal mere til. I tilfældet med opg. 5 sidste spørgsmål bør der ved SOLVE opskrives, hvilken ligning, der løses. ved INTERSECT forklares, at man finder skæringspunktet mellem de to nærmere angivne grafer i det og det vindue, eller man skal referere til en grafskitse (og i opgave 5 har mange eksaminander allerede i det foregående spørgsmål fået tegnet en pæn graf på mm-papir, som de kan henvise til), hvoraf der skal fremgå en relevant dimensionering af vinduet, ligesom det skal fremgå, hvilket gæt / hvilket punkt man går ud fra, samt hvilke afgrænsninger der er foretaget. ved TRACE kombineret med ZOOM bør man skitsere det, der ses i vinduet, med angivelse af en form for dimensionering af 'slut'-vinduet, og man bør angive grafregnerens resultat med mange cifre. Lige som ved tabelopslag bør man angive det resultat, man faktisk ser på sit hjælpemiddel - her grafregneren; derefter kan man afrunde og forsøge at tilpasse resultatet til den givne problemstilling. Flere censorer har givet udtryk for, at de i opg. 5 i sidste spørgsmål kunne have ønsket sig en angivelse af den præcision, hvormed skæringspunktets x-værdi skulle angives. Dette problem har været diskuteret indgående i opgavekommissionerne, og vi har ikke kunnet finde en hensigtsmæssig måde at stille et sådant krav på: For hvad sker der egentlig i de forskellige lommeregnere, og hvad sker der ved benyttelse af alle de forskellige faciliteter? Det skal eleverne i hvert fald ikke have overblik over. I opgave 3, andet spørgsmål brugte næsten ingen eksaminander grafregnerens facilitet til regression, selvom det var tilladt - der står 'bestem tallene a og b' i opgaveformuleringen. I supplementet til undervisningsvejledningen af dec. 97: 'Principper for formulering af skriftlige eksamensopgaver i matematik på B-niveau', står der, at når modellen er givet, kan konstanterne bestemmes ved: 1) beregning af konstanterne 2) regression på basis af samtlige punkter i datasættet 3) aflæsning på den tilhørende rette linje tegnet i et passende koordinatsystem. I første spørgsmål i opgave 3, hvor modellen skal bestemmes, "er det ikke nok at se på størrelsen af korrelationskoefficienten. Der kræves dokumentation baseret på indtegning af datasættet i et relevant koordinatsystem." At dømme efter besvarelserne og censorkommentarerne lå det meget tungt med dokumentation af brug af grafregner. Det ser ud som om, at arbejdet med at integrere grafregneren i undervisningen ikke helt har fået den plads, som det burde have haft: Det er mit indtryk, at grafregneren ikke er anvendt som støtte ved spørgsmål, hvor den kunne være nyttig. Opgavesættet er et godt signal til lærerne om, at integration af grafregneren i undervisningen er en absolut nødvendighed, hvis man vil 'gøre det godt' for sine elever. Men 'ting tager tid', også at indarbejde et sådant nyt hjælpemiddel i undervisningen. Dette blev der taget hensyn til ved karakterfastsættelsen. Censorerne blev i år bedt om at se mildt på

3 'spinkle' grafregnerforklaringer - specielt når det drejede sig om karakteren 5 eller 6: Skal en elev bestå eller ej? Kunne kursisten trods alt bruge grafregneren, selvom der savnedes dokumentation og forklaringer? Nogle censorer har spurgt, om de nu er forpligtede til at kende hver eneste grafiske lommeregner på markedet for at kunne vurdere elevernes brug af den. Det er naturligvis ikke tanken, og en fyldestgørende dokumentation og forklaring af problemstillingen i forbindelse med brug af grafregneren skulle gerne overflødiggøre dette problem. I afsnittet om det 2-årige forløb til B-niveau findes et afsnit om eksaminandernes brug af grafregnere. I det afsnit er der givet eksempler på såvel utilstrækkelige som på fyldestgørende besvarelser af et grafregnerspørgsmål. 2-årigt forløb til B-niveau (opgavesæt ) 'Grafregnerkravet' - og elevernes brug af grafregner Elevernes brug af grafregner kommenteres udførligt af censorerne, og elevernes usikkerhed over for, hvilke krav der stilles til en besvarelse baseret på brug af grafregner, illustreres med mange eksempler. Mange tror, at "ved anvendelse af grafregner" er en beskrivende sætning. Der er ingen tradition for at forklare, hvordan en grafregner benyttes ved opgaveløsning. Her er fx to besvarelser af sidste spørgsmål i opgave 6a: "Mindste tidsforbrug = 902 s er fundet på GR" og "Menuen CALC-Minimum benyttes til at finde min(f) i intervallet 0<x<200. Resultat fmin = 901,6 s dvs. ca. 902 s for x = 48,98 m" Eleverne fortæller ikke meget om, hvordan de bruger grafregneren. Hvordan vurderes fx følgende besvarelse af opgave 3: "Funktionen tegnet på grafregner, monotoni: voksende i [-1;0,8], aftagende i [0,7;3], voksende i [3;4] og Vm =[0,5;-9]"? I mange tilfælde, hvor man kan se, at et resultat må være fremkommet ved brug af grafregner, savnes forklaring og/eller dokumentation. Nogle af opgaverne kunne være løst alene ved brug af grafregner ledsaget af en passende forklaring, men det har jeg nu ikke set eksempler på. Det kan skyldes, at der endnu hersker stor usikkerhed - også blandt lærere - om de krav, der stilles til en fuldt acceptabel besvarelse på grafregner. Flere spørgsmål bliver 'knald eller fald', når eleverne skriver, at de har brugt SOLVER. Enten er facit rigtigt eller forkert. Det er især de to valgfri opgaver 6a og 6b, der giver mulighed for brug af grafregner. Begge opgaver indeholder spørgsmål, hvor løsning ved hjælp af grafregner, vil være tilstrækkeligt. I opgave 6a står dette eksplicit i spørgsmålet "Bestem ved hjælp af grafregneren...", mens der i 6b fx blot står "Bestem de tidspunkter...". Nogle censorer noterer, at de havde foretrukket, at der i begge opgaver var refereret direkte til grafregneren. Som hovedregel er opgaverne formuleret, så der ikke stilles krav om, at der anvendes en ganske bestemt løsningsmetode. Det er kun i situationer, hvor løsningen ikke kan bestemmes ved beregning eller kun vanskeligt lader sig bestemme uden grafregner, at grafregneren nævnes eksplicit i opgaveformuleringen, jf. brev til skolerne af 29. okt. 99: 'Vedr. lommeregnere'.

4 For at illustrere de fremtidige krav til dokumentation i en besvarelse baseret på grafregner gives i det følgende en række eksempler på besvarelser af det sidste spørgsmål i opgave 6a med tilhørende kommentar og forslag til pointtildeling. Ud fra den foreslåede pointtildeling kunne dette spørgsmål maksimalt give 5 point. Da ikke alle af de nedenfor anvendte grafregnerfaciliteter findes på alle lommeregnere, vil relevansen af de forskellige eksempler afhænge af, hvilken grafregner man benytter. Det mindste tidsforbrug er 1187 s. Fundet ved grafregner. Et forkert svar og helt udokumenteret. 0 point. Det mindste tidsforbrug er 902 s. Fundet ved grafregner. Et korrekt svar, men helt udokumenteret. Ca. 1 point. Ved at bruge ZOOM og TRACE på min grafregner, har jeg fundet, at t = 900 s. Et næsten korrekt svar uden synlig dokumentation. Ca. 1 point. Jeg har tegnet grafen for f på min grafregner og aflæst det mindste tidsforbrug til ca. 902 s. Et korrekt svar uden synlig dokumentation. Ca. 2 point. Jeg har brugt CALC-minimum til at finde det mindste tidsforbrug. Det er 902 s. Et korrekt svar uden forklaring på, hvordan den nævnte lommeregnerrutine er benyttet. Ca. 2 point. Menuen CALC-Minimum benyttes til at finde min(f) i intervallet 0<x<200. Resultat fmin =901,6 s ~ 902 s for x = 48,98 m. Her savnes en graf-skitse som dokumentation, ca. 3 point. Ved at bruge ZOOM og TRACE på min lommeregner har jeg fundet t = 900 s. Se figuren [korrekt figur med enheder på akserne og minimum er markeret]. Dokumentationen er der, men pga. manglende angivelse af grafregnerens resultat - dvs. en nedskrivning af de relevante tal - og manglende kommentar om vinduet ved det sidste ZOOM gives ca. 3 point. Jeg har skrevet funktionsudtrykket for f ind i Y1. Ved at tegne grafen for f og se i tabellen kan jeg se, at det mindste tidsforbrug angivet i et helt antal sekunder er ca. 902 s, idet Y1=901,69, når x = 49. Ved x=48 er Y1=901,7, og ved x=50 er Y1 = 901,7.

5 Denne besvarelse er stort set fyldestgørende, ca. 4 point. Eleven tager sit udgangspunkt i, at der er tale om en anvendelsesopgave og går efter at aflevere resultatet i et helt antal sekunder. Man kunne have ønsket sig en kommentar om, at x-værdierne kun undersøges for heltallige værdier, og at man kun interesserer sig for et helt antal meter. 0<y<1200, se figuren. Ved at bruge TRACE har jeg aflæst f's mindsteværdi til 901,95627, når x = 55, Dvs. det mindste tidsforbrug er ca. 902 s. Med en korrekt figur indeholdende de relevante markeringer er dette en god besvarelse. Der optræder dog en lille unøjagtighed på x i forbindelse med brug af TRACE, og der kunne med fordel have været forsøgt med et mindre vindue/et ZOOM. Ca. 5 point. 0<y<1200, se figuren. Ved at bruge ZOOM og TRACE har jeg aflæst f's mindsteværdi til 901,69299, når x = 48, Dvs. det mindste tidsforbrug er ca. 902 s. Denne besvarelse er også fyldestgørende. Ca. 5 point. 0<y<1200, se figuren. Ved at bruge minimum i CALC-menuen har jeg fundet f's mindsteværdi til 901,69117, når x = 48, Dvs. det mindste tidsforbrug er ca. 902 s. Her savnes en kommentar om grafregnerens afgrænsning af det interval, der skal søges i, altså om brugeren skal markere et interval, eller om grafregneren automatisk starter en søgning i hele grafområdet. Ca. 5 point. Figuren viser en skitse af grafen for f i vinduet 40<x<60 og 800<y<920. På figuren kan man se, at minimum for f ligger omkring 900. Ved brug af TRACE har jeg fundet det til 902, hvilket så er det mindste tidsforbrug. 0<y<1200, se figuren. Ved at bruge minimum i CALC-menuen har jeg fundet f's mindsteværdi til 901,69117, når x = 48, Jeg brugte x=30, som venstre endepunkt og x=91, som højre endepunkt. Dvs. det mindste tidsforbrug er ca. 902 s. 0<y<1200, se figuren. Ved at bruge ZOOM og TRACE har jeg aflæst f's mindsteværdi til 901,69299 når x = 48, Dvs. det mindste tidsforbrug er ca. 902 s. Det sidste vindue, jeg brugte, var 48,1012<x<65,8227 og 868,42105<y<915,7894. Jeg finder minimumsstedet ved at brug fmin på funktionen f. x=fmin(y1,x,0,200)=48, Det mindste tidsforbrug er så y-værdien. y=y1(fmin(y1,x,0,200))=901, Dvs. tidsforbruget er ca. 902 s.

Grafregnerkravet på hf matematik tilvalg

Grafregnerkravet på hf matematik tilvalg Grafregnerkravet på hf matematik tilvalg Dette dokument er en sammenskrivning af uddrag af følgende skrifter: Undervisningsvejledning nr. 21 for matematik i HF (september 1995); findes på adressen: http://us.uvm.dk/gymnasie/almen/vejledninger/undervishf/hfvej21.htm;

Læs mere

http://us.uvm.dk/gymnasie/almen/eksamen/opgaver/sommer04/vurderingsgrundlag-b-niveau2004-8- 2og2004-8-2-sf.pdf?menuid=150560

http://us.uvm.dk/gymnasie/almen/eksamen/opgaver/sommer04/vurderingsgrundlag-b-niveau2004-8- 2og2004-8-2-sf.pdf?menuid=150560 http://us.uvm.dk/gymnasie/almen/eksamen/opgaver/sommer04/vurderingsgrundlag-b-niveau2004-8- 2og2004-8-2-sf.pdf?menuid=150560 Vurderingsgrundlag ved Skriftlig studentereksamen i matematik 2004. Det betyder

Læs mere

Vejledning til bedømmelse af eksamensopgaver i matematik

Vejledning til bedømmelse af eksamensopgaver i matematik Vejledning til bedømmelse af eksamensopgaver i matematik I Læreplanen for Matematik stx A og Matematik stx B er der i afsnit 4.3 angivet en række bedømmelseskriterier, som alle lægges til grund for vurderingen

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

Evaluering Matematik på htx

Evaluering Matematik på htx Evaluering af Matematik på htx Sommeren 2006 1 Indholdsfortegnelse Forord... 3 Eksamensresultaterne i tal... 4 Matematik B... 4 Matematik A (ordinær prøve)... 5 Matematik A (forsøgsprøve)... 6 Vurdering

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Progression frem mod skriftlig eksamen

Progression frem mod skriftlig eksamen Progression frem mod skriftlig eksamen Ikke alle skal have 12 Eksamensopgavernes funktion i det daglige og til eksamen Progression i sættet progression i den enkelte opgave Hvornår inddrages eksamensopgaver

Læs mere

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden Brug af TI-83 Løsning af andengradsligninger med TI-83 Indtast formlerne for d, og rødderne og gem dem i formellagrene u,v eller w. Gem værdierne for a, b og c i lagrene A, B og C Nedenstående display

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU Onsdag den 13 august 2008 Kl 0900 1300 STX082-MAB Opgavesættet er delt i to dele Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål Delprøven

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.

Læs mere

HØJERE FORBEREDELSESEKSAMEN MAJ 2008 MATEMATIK B-NIVEAU. Onsdag den 14. maj 2008. Kl. 09.00 13.00 HFE081-MAB

HØJERE FORBEREDELSESEKSAMEN MAJ 2008 MATEMATIK B-NIVEAU. Onsdag den 14. maj 2008. Kl. 09.00 13.00 HFE081-MAB HØJERE FORBEREDELSESEKSAMEN MAJ 2008 MATEMATIK B-NIVEAU Onsdag den 14. maj 2008 Kl. 09.00 13.00 HFE081-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014

Løsning til opgave 7, 9, 10 og 11C Matematik B Sommer 2014 Vejledning til udvalgte opgave fra Matematik B, sommer 2014 Opgave 7 Størrelsen og udbudsprisen på 100 fritidshuse på Rømø er indsamlet via boligsiden.dk. a) Grafisk præsentation, der beskriver fordelingen

Læs mere

Ordbog Biologi Samfundsfag Kemi: Se bilag 1 Matematik: Se bilag 2

Ordbog Biologi Samfundsfag Kemi: Se bilag 1 Matematik: Se bilag 2 Fremstillingsformer Fremstillingsformer Vurdere Konkludere Fortolke/tolke Diskutere Ordbog Biologi Samfundsfag Kemi: Se bilag 1 Matematik: Se bilag 2 Udtrykke eller Vurder: bestemme På baggrund af biologisk

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2stx111-MAT/B-24052011 Tirsdag den 24. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Differentialregning. Et oplæg Karsten Juul L P

Differentialregning. Et oplæg Karsten Juul L P Differentialregning Et oplæg L P A 2009 Karsten Juul Til eleven Dette hæfte kan I bruge inden I starter på differentialregningen i lærebogen Det meste af hæftet er små spørgsmål med korte svar Spørgsmålene

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx132-mat/b-16082013 Fredag den 16. august 2013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Matematik A. Studentereksamen. Fredag den 6. december 2013 kl stx133-mat/a

Matematik A. Studentereksamen. Fredag den 6. december 2013 kl stx133-mat/a Matematik A Studentereksamen stx133-mat/a-06122013 Fredag den 6. december 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

GUX. Matematik Niveau B. Prøveform b

GUX. Matematik Niveau B. Prøveform b GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Generelle kommentarer omkring løsning af fysikopgaver

Generelle kommentarer omkring løsning af fysikopgaver Generelle kommentarer omkring løsning af fysikopgaver Det skal tydeligt fremgå af besvarelsen hvilken tankegang, der ligger bag løsningen. Dvs. fyldestgørende og præcis forklaring, men samtidig så kort

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

Matematik B. Højere forberedelseseksamen. Skriftlig prøve (4 timer) Fredag den 11. december 2009 kl. 9.00-13.00 HFE093-MAB

Matematik B. Højere forberedelseseksamen. Skriftlig prøve (4 timer) Fredag den 11. december 2009 kl. 9.00-13.00 HFE093-MAB Matematik B Højere forberedelseseksamen Skriftlig prøve (4 timer) HFE093-MAB Fredag den 11. december 2009 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

fagkonsulentens sammenfatning

fagkonsulentens sammenfatning : fagkonsulentens sammenfatning Forbemærkning... 2 Karaktergennemsnit og normalfordeling for skriftlig eksamen i engelsk 2012... 3 Karaktergennemsnit for skriftlig eksamen i engelsk på niveauerne stx A,

Læs mere

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014 Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx141-MATn/A-22052014 Torsdag den 22. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 1stx111-MAT/A-18052011 Onsdag den 18. maj 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs101-matn/a-605010 Onsdag den 6 maj 010 kl 0900-1400 Opgavesættet er delt i to dele Delprøve 1: timer med autoriseret

Læs mere

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU Tirsdag den 18. december 2007 Kl. 09.00 13.00 STX073-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Differentialregning 2

Differentialregning 2 Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()

Læs mere

Evaluering Matematik A på htx

Evaluering Matematik A på htx Evaluering af Matematik A på htx Sommeren 2013 1 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 6 Årets prøve i tal... 6 Vurdering af opgavesættet... 9 Forberedelsesmaterialet...

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2st101-MAT/B-01062010 Tirsdag den 1. juni 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx141-MATn/A-27052014 Tirsdag den 27. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-stx132-mat/a-14082013 Onsdag den 14. august 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Lommeregnerkursus 2008

Lommeregnerkursus 2008 Mikkel Stouby Petersen Lommeregnerkursus 008 Med gennemregnede eksempler og øvelser Materialet er udarbejdet til et kursus i brug af TI-89 Titanium afholdt på Odder Gymnasium. april 008 1. Ligningsløsning

Læs mere

Brugervejledning til Graph (1g, del 1)

Brugervejledning til Graph (1g, del 1) Graph (brugervejledning 1g, del 1) side 1/8 Steen Toft Jørgensen Brugervejledning til Graph (1g, del 1) Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet

Læs mere

Bedømmelse af den skriftlige prøve efter matematik D

Bedømmelse af den skriftlige prøve efter matematik D Bedømmelse af den skriftlige prøve efter matematik D Bedømmelseskriterierne til den skriftlige prøve efter D findes i læreplanen (Bilag 28 til avu-bekendtgørelsen) som punkt 4.3 Der lægges vægt på, at

Læs mere

Sammenhæng mellem variable

Sammenhæng mellem variable Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...

Læs mere

TANKERNE BAG DE NYE VEJLEDENDE SÆT I MATEMATIK

TANKERNE BAG DE NYE VEJLEDENDE SÆT I MATEMATIK TANKERNE BAG DE NYE VEJLEDENDE SÆT I MATEMATIK De foreliggende vejledende sæt i matematik er gældende fra sommeren 2012 på matematik B og sommeren 2013 på matematik A. Der er en del ændringer i forhold

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Opgaver med hjælp Funktioner 2 - med Geogebra

Opgaver med hjælp Funktioner 2 - med Geogebra Opgaver med hjælp Funktioner 2 - med Geogebra Nulpunkter, monotoniforhold og ekstrema Formålet med denne note er at tegne os frem til nulpunkter, monotoniforhold og ekstrema for en funktion ved hjælp af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C MIHY (Michael

Læs mere

Matematik A. Studentereksamen. Tirsdag den 23. maj 2017 kl Digital eksamensopgave med adgang til internettet. 2stx171-MATn/A

Matematik A. Studentereksamen. Tirsdag den 23. maj 2017 kl Digital eksamensopgave med adgang til internettet. 2stx171-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet stx171-matn/a-305017 Tirsdag den 3. maj 017 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

Start-mat. for stx og hf Karsten Juul

Start-mat. for stx og hf Karsten Juul Start-mat for stx og hf 0,6 5, 9 2017 Karsten Juul Start-mat for stx og hf 2017 Karsten Juul 1/8-2017 (7/8-2017) Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet frs111-matn/a-405011 Tirsdag den 4. maj 011 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

Evaluering Matematik på htx

Evaluering Matematik på htx Evaluering af Matematik på htx Sommeren 2010 1 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 6 Årets prøve i tal... 6 Vurdering af opgavesættet... 9 Forberedelsesmaterialet...

Læs mere

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7

Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Træningsopgaver 1 Indhold Ligninger... 1 Funktioner & modeller... 3 Regression... 6 Sjove opgaver... 7 Ligninger Opgave L0) Opgave L1) Opgave L2) a) 2x 5 5x 7 b) 3x 7 3x 11 c) 3 (2x 3) 2( x 1) d) En funktion

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx101-MAT/B-26052010 Onsdag den 26. maj 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4

Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 BH Test for normalfordeling i WordMat Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 Grupperede observationer Vi tager udgangspunkt i

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Funktionsterminologi

Funktionsterminologi Funktionsterminologi Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

24. maj 2013. Kære censor i skriftlig fysik

24. maj 2013. Kære censor i skriftlig fysik 24. maj 2013 Kære censor i skriftlig fysik I år afvikles den første skriftlig prøve i fysik den 27. maj, mens den anden prøve først er placeret den 3. juni. Som censor vil du normalt kun få besvarelser

Læs mere

Skriftlighed Matematik C. Olav Lyndrup og Ib Michelsen

Skriftlighed Matematik C. Olav Lyndrup og Ib Michelsen Skriftlighed Matematik C Olav Lyndrup og Ib Michelsen 2009 3 Indholdsfortegnelse Forord...5 Bedømmelsen af det skriftlige eksamenssæt...6 Gode råd...7 Elevsvar...9 Indledning...11 Vækstopgaver - 3...12

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Bioteknologi Evaluering af skriftlig eksamen bioteknologi A htx og stx. Maj juni 2016

Bioteknologi Evaluering af skriftlig eksamen bioteknologi A htx og stx. Maj juni 2016 Bioteknologi 216 Evaluering af skriftlig eksamen bioteknologi A htx og stx Maj juni 216 Ministeriet for Børn, Undervisning og Ligestilling Styrelsen for Undervisning og Kvalitet Juli 216 Hermed udsendes

Læs mere

Eksponentielle funktioner

Eksponentielle funktioner Eksponentielle funktioner http://en.wikipedia.org/wiki/rabbits_in_australia 4. udg. 2011 12-12-2011 Eksponentielle funktioner Vækst Udfyld tabellen ved: at skrive begyndelsesværdien b = f(0) = 30 under

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Ny skriftlighed - Matematik

Ny skriftlighed - Matematik Ny skriftlighed - Matematik Indhold Andres tanker og ideer:... 2 Andre nyttige links:... 2 Kompetencer:... 2 Eksempler på opgaver der træner forskellige kompetencer... 3 Eksempel 1: Opgaveløsning med forskellige

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007 07-0-6-U Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen htx112-mat/a-30082011 Tirsdag den 30. august 2011 kl. 9.00-14.00 Side 1 af 7 sider Matematik A 2011 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen

Læs mere

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB

HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december Kl HFE083-MAB HØJERE FORBEREDELSESEKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU Fredag den 12. december 2008 Kl. 09.00 13.00 HFE083-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med

Læs mere

Kemi 2015. Evaluering af skriftlig eksamen kemi A, htx Maj juni 2015

Kemi 2015. Evaluering af skriftlig eksamen kemi A, htx Maj juni 2015 Kemi 2015 Evaluering af skriftlig eksamen kemi A, htx Maj juni 2015 Ministeriet for Børn, Undervisning og Ligestilling Styrelsen for Undervisning og Kvalitet August 2015 Hermed udsendes evalueringsrapporten

Læs mere

Kommentarer til matematik B-projektet 2015

Kommentarer til matematik B-projektet 2015 Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver

Læs mere

AVU trin 2 prøver i matematik Facitforslag Dec. 2005. ISBN: 87-90652-65-7 ISSN: 1603-9432 EH-Mat 2006

AVU trin 2 prøver i matematik Facitforslag Dec. 2005. ISBN: 87-90652-65-7 ISSN: 1603-9432 EH-Mat 2006 Denne udgave på internettet er ment som en gennemsynsudgave. Ønsker du at anvende materialet, kan du købe materialet i en trykt version. Et VUC eller en anden undervisningsinstitution kan købe en digital

Læs mere

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a gl. Matematik A Studentereksamen gl-stx142-mat/a-14082014 Torsdag den 14. august 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Eksamensopgaver i matematik

Eksamensopgaver i matematik Eksamensopgaver i matematik med TI-Nspire CAS ver. 2.0 Udarbejdet af: Brian M.V. Olesen Marts 2010 Indholdsfortegnelse Indledning...1 Bedømmelse af besvarelse...2 Eksempel 1 Lineære sammenhænge...3 Eksempel

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-2stx131-mat/a-29052013 Onsdag den 29. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Vejledning til matematik A og B hhx Maj 2016

Vejledning til matematik A og B hhx Maj 2016 Vejledning til matematik A og B hhx Maj 2016 Censorkorpset skriftlig matematik, hhx Denne skrivelse skal tjene til almindelig orientering og vejledning for censorerne om forhold vedrørende skriftlig eksamen,

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx103-mat/b-10122010 Fredag den 10. december 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleåret 13/14 Institution Herning HF oh VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik

Læs mere

Matematik B. Studentereksamen. Skriftlig prøve (4 timer)

Matematik B. Studentereksamen. Skriftlig prøve (4 timer) Matematik B Studentereksamen Skriftlig prøve (4 timer) STX093-MAB Fredag den 11. december 2009 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau HHX Matematik C Lærer(e) LSP ( Liselotte Strange-Pedersen

Læs mere

Matematik B. Studentereksamen. Torsdag den 22. maj 2014 kl stx141-MAT/B

Matematik B. Studentereksamen. Torsdag den 22. maj 2014 kl stx141-MAT/B Matematik B Studentereksamen 1stx141-MAT/B-22052014 Torsdag den 22. maj 2014 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx132-mat/a-14082013 Onsdag den 14. august 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

gl-matematik B Studentereksamen

gl-matematik B Studentereksamen gl-matematik B Studentereksamen gl-1stx121-mat/b-25052012 Fredag den 25. maj 2012 kl. 9.00-13.00 Side 1 af 5 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Matematik B. Højere Teknisk Eksamen. Projektoplæg

Matematik B. Højere Teknisk Eksamen. Projektoplæg Matematik B Højere Teknisk Eksamen Projektoplæg htx113-mat/b-11011 Udleveres mandag den 1. december 011 Side 1 af 10 sider Vejledning til eleven Du skal nu i gang med matematikprojektet Gokartkørsel. Projektbeskrivelsen

Læs mere

GUX Matematik Niveau B prøveform b Vejledende sæt 1

GUX Matematik Niveau B prøveform b Vejledende sæt 1 GUX-013 Matematik Niveau B prøveform b Vejledende sæt 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Matematik B. Studentereksamen. Tirsdag den 27. maj 2014 kl stx141-MAT/B

Matematik B. Studentereksamen. Tirsdag den 27. maj 2014 kl stx141-MAT/B Matematik B Studentereksamen 2stx141-MAT/B-27052014 Tirsdag den 27. maj 2014 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 1stx131-MAT/A-24052013 Fredag den 24. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Evaluering. Matematik på hhx 1/16

Evaluering. Matematik på hhx 1/16 Evaluering af Matematik på hhx Sommeren 2008 1/16 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabeller... 4 A-niveau... 4 B-niveau... 4 Årets prøve i tal... 5 Matematik A... 5

Læs mere

Evaluering Matematik A på htx

Evaluering Matematik A på htx Evaluering af Matematik A på htx Sommeren 2011 1 Indholdsfortegnelse Forord... 3 Generelle bemærkninger... 4 Omsætningstabel... 6 Årets prøve i tal... 6 Vurdering af opgavesættet... 8 Forberedelsesmaterialet...

Læs mere

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a Matematik A Højere handelseksamen hhx14-mat/a-1808014 Mandag den 18. august 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe102-mat/b-31082010 Tirsdag den 31. august 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere