Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Størrelse: px
Starte visningen fra side:

Download "Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?"

Transkript

1 Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange højden med grundlinien og gange med ½. Her kan man se, at arealet af en trekant kun er bestemt af højden og grundlinien. Man kan sagtens to forskellige trekanter, der har samme højde og grundlinie, se bare her: Disse to trekanter har tydeligvis samme grundlinie (4) og samme højde (2), så derfor har de samme areal: ½*4*2 = 4. Her er et spørgsmål, du sikkert aldrig har overvejet: kan man finde to retvinklede trekanter med samme areal? Det er et (lidt) mere kompliceret problem. Når trekanterne skal være retvinklede, bliver den ene katete automatisk grundlinien og den anden katete højden. Pludselig har vi ikke den frihed, jeg havde lige før. Jeg skal i stedet for ændre på længden af begge kateterne, så arealet ender med at være det samme.

2 Lad os tage et hyggeligt eksempel, den klassiske (3,4,5)-trekant altså den retvinklede trekant med kateter 3 og 4 og hypotenuse 5. (En hurtig gang Pythagoras efterviser, at den rent faktisk er retvinklet: ). Arealet af denne trekant er ½*3*4 = 6.

3 Nu er det ikke så svært at få en idé vi kan f.eks. fordoble længden af den ene katete (til 6) og halvere længden af den anden (2). Så bliver arealet nemlig igen ½*6*2 = 6. Så vi har løst problemet to retvinklede trekanter med samme areal. Her er et spørgsmål, du helt sikkert aldrig har overvejet: kan man finde to retvinklede trekanter med samme areal og hvor alle siderne kan skrives som brøker eller hele tal? Ifølge Pythagoras bliver hypotenusen af den trekant fra før med kateterne 6 og 2 lig med. Det er sådan set fint nok, men er et såkaldt irrationelt tal det kan ikke skrives som en brøk. Der findes ganske enkelt ikke to hele tal p og q, så. Hvis vi altså stiller det krav, at hypotenusen også skal kunne skrives som en brøk, har vi stillet os selv et problem, vi endnu ikke har løst. Kan det lade sig gøre?

4 Svaret er ja. Og det er overhovedet ikke simpelt. Det er også et vigtigt problem, fordi det er et skridt på vejen til at kunne angribe det uløste problem indenfor talteori, der hedder problemet om de kongruente tal, som lyder i sin enkelthed Givet et helt tal n, kan man så finde en retvinklet trekant, hvor alle sider kan skrives som brøker eller hele tal, som har arealet n?. Dette problem blev præsenteret for Phimurerlogen af den anerkendte matematiker John Coates i Cambridge sidste år, og det er farligt svært. Det siges, at det er et sværere problem end Fermats Sidste Sætning, et verdensberømt problem, der forblev uløst i 400 år, før et matematisk bevis på små 200 sider blev produceret af Andrew Wiles (en tidligere studerende under John Coates.) Phimurerlogen har udviklet en metode til at kunne finde flere retvinklede trekanter med rationale sider, der har samme areal. Metoden giver voldsomt præcise resultater, der er helt umulige at gætte sig til. For eksempel er en trekant med følgende sider retvinklet og har arealet 6 (præcist!). Regn selv efter Hypotenusen c er en brøk med ca. 200 cifre i både tæller og nævner! De er i øvrigt alle uforkortelige de kan ikke skrives pænere. Hvordan i alverden kommer man frem til sådan et resultat? Jeg vil i det følgende dokumentere Phimurerlogens arbejdsproces. TRIN 1:En parametricering af alle rationale retvinklede trekanter Hvis der er noget,matematikere godt kan lide at gøre, så er det at opfinde svære ord og symboler til at beskrive ting. Parametricering er et eksempel på et sådant ord. Et andet begreb er et, Phimurerlogen selv indførte, nemlig RRTer, der står for rationale retvinklede trekanter netop den slags retvinklede trekanter med heltallige eller brøk-sider, vi snakker om her. Phimurernes første problem var nemlig overhovedet at kunne skelne RRTer fra alle andre retvinklede trekanter. Trekanten med kateterne 3 og 4 er en RRT, mens trekanten med kateterne 6 og 2 ikke er det. Hvordan kender man forskel?

5 Ideen bestod i at udnytte det begreb, som alle gymnasieelever kommer igennem i løbet af 1.g, nemlig forstørrelsesfaktoren. Man kan kort sagt gange alle siderne i et trekant med det samme tal F (forstørrelsesfaktoren) uden at det ændrer på vinklerne. Det betyder, at så længe man bruger en brøk som en forstørrelsesfaktor på en RRT, får man en ny RRT. (Fordi den rette vinkel bliver ved med at være ret, og eftersom to brøker ganget sammen stadig giver en brøk, ender trekanterne med at have tre sider, der kan skrives som brøker.) Den nye RRT har dog ikke det samme areal som den første. Den skarpe læser kan se, at hvis en trekant med areal T bliver ganget op med forstørrelsesfaktoren F, bliver det nye areal. Eftersom man frit kan gange RRTer op med rationale forstørrelsesfaktorer, er det nok at kigge på RRTer med hypotenuse 1. (Så kan vi få alle andre RRTer ved bare at skalere med den ønskede hypotenuselængde.) Nu er det gode ved retvinklede trekanter med hypotenusen 1, at de alle sammen passer perfekt ind i en enhedscirkel: Det endnu mere smarte er, at kateternes længde netop er punktet C s koordinater. Hvis punktet C altså har rationale koordinater, har vi automatisk en RRT! Og vi har endda samtlige RRTer med hypotenuselængde 1 (og dermed, via skalering, alle andre RRTer også) hvis vi kan finde en måde at finde samtlige rationale punkter på enhedscirklen.

6 Det, vi gjorde, var at erkende, at en ret linie med forskriften, når den skærer enhedscirklen, giver anledning til en andengradsligning. Vi beviste, at en andengradsligning med rationale koefficienter og d>0 har enten to rationale løsninger eller to irrationale løsninger. Hvis vi altså valgte a og b i liniens ligning som rationale tal, og sørgede for at tvinge den ene af de to løsninger til at være et rationalt tal, måtte den anden løsning også være det. Og eftersom løsningerne jo angav x-værdier til skæringspunkter mellem linie og enhedscirkel og dermed altså punkter, der ligger på enhedscirklen kunne man ved at variere hældningen a gennem alle mulige rationale tal, der giver d>0, finde alle rationale punkter på cirklen! (Eftersom hældningen er rational, vil y-værdien til dette skæringspunkt ligeledes være rational.) Ved at vælge en linie, der altid skar igennem (-1,0) og alle rationale hældninger mellem 0 og 1 rammer man hele den del af enhedscirklen, der ligger i 1.kvadrant, som er de interessante punkter. Med almindelig geometri finder man ud af i sidste ende, at: SÆTNING 1 Hvis (a,b,c) er sider i en RRT, findes der rationale tal p og q, således at Altså kan man beskrive alle RRTer ved hjælp af to tal, p og q, i stedet for de tre tal (a,b,c). At problemet hermed bliver todimensionelt, giver anledning til at forvente, at man kan tegne en kurve i et almindeligt (x,y)-koordinatsystem, der siger noget interessant om problemet. TRIN TO: At finde en kurve, der passer. Efter nogle falske starter fandt vi endelig en naturlig måde at konstruere netop sådan en kurve. Hvis man fastholder q i formlerne fra sætning 1 (lad os kalde den N) og lader p variere frit (og omdøber den til x, så vi husker, at det er vores frie variabel), får vi altså trekanter med kateterne og. Det er ikke svært at se, at arealet af sådan en trekant bliver Hvis vi ønsker at beskrive alle trekanter med et fast areal, kan vi faktisk opnå det ved at skalere trekanten ned med en skalafaktor, der er variabel og afhængig af x (den kalder vi af præcist disse grunde for y), som opfylder, at

7 Vi skalerer altså trekanten ned, så siderne bliver Så bliver arealet af trekanten netop Vi kan altså konstatere, at så længe sammenhængen er opfyldt, kan vi bruge de ovenstående formler til at lave retvinklede trekanter med areal N. Der er kun ét problem for at vi skal ende med at have en RRT, skal a,b og c jo være rationale tal, og det bliver de kun, hvis x og y (og N) er rationale. Sammenhængen giver selvfølgelig ikke kun rationale koordinater, så problemet er altså endt med at skulle finde rationale punkter på den kurve, der beskriver denne sammenhæng. For at illustrere problemet, tegner jeg lige grafen for, når arealet N skal være 6:

8 Det er en lidt løjerlig sag. Det bliver ikke bedre af, at vi fra et gammelt bevis af Fermat, som vi læste i starten af året, allerede godt ved, at der findes kurver af denne type (som i øvrigt hedder elliptiske kurver) som slet ikke har et eneste rationelt punkt overhovedet! TRIN TRE: PROCESSEN TIL AT SKABE NYE RATIONALE PUNKTER UD FRA ET GAMMELT En utrolig vigtig erkendelse, som vi fik efter lange studier af elliptiske kurvers egenskaber (vi ved rigtigt meget om dem!) er, at hvis man har givet et rationelt punkt på kurven, kan man finde et nyt rationelt punkt på kurven via en metode, der minder en del om tricket med enhedscirklen fra før. Isolerer man y i sammenhængen, får man nemlig (i den positive halvdel) Differentierer man den, får man

9 Altså bliver hældningen til tangenten til kurven i et rationalt punkt (x,y) selv et rationalt tal. En skæring mellem denne tangent og den elliptiske kurve vil af samme grunde som ovenfor være et nyt rationelt punkt! I princippet er man færdige her, hvis det ikke var fordi, at man løber panden mod en tredjegradsligning af helt ufattelig voldsom kompleksitet. Prøv selv. Vi fik endelig kontrol over ligningen ved at skrive den helt ud og eksplicit opskrive koefficienterne til 2.gradsleddet, 1. Gradsleddet og 0.gradsleddet (og vi sørgede selvfølgelig for, at den ledende koefficient var 1. Man rydder vel op efter sig selv.). Eftersom vi kendte en dobbeltrod til polynomiet i forvejen (røringspunktet mellem tangenten og kurven), vidste vi også, at det samme polynomium kunne skrives som, hvor var tangentens røringspunkt og det nye, ukendte skæringspunkt. Ved at skrive de (meget simplere) koefficienter ud her kunne vi direkte stille tre ligninger op ved at sammenholde koefficienter én for én og isolere. Dette gav en (hysterisk grim) formel for bestemmelse af et nyt rationelt punkt på den elliptiske kurve. Endelig kunne vi regne nye RRTer ud med det samme areal som (3,4,5)-trekanten. Ved at udtrykke x og y ved a,b og c oversætter man trekanten til punktet (12,36) på den elliptiske kurve. Ved at konstruere tangenten i det punkt udregnes så et nyt skæringspunkt, som oversættes tilbage til nye værdier af a,b og c. Ved at gentage denne proces sølle 4 gange får man den vildeste brøk, som TI-interactive kan håndtere (og ingen af os er særligt motiveret til at regne videre i hånden), nemlig de ovenstående, sindssyge brøker. Så vidt jeg ved, er det første gang, at lige netop den trekant med arealet 6 har set dagens lys. Det er da meget sjovt. TRIN FIRE: Videre i teksten Vores arbejde består nu i at undersøge problemet om de kongruente tal lidt nærmere. Som vi har set, er problemet det samme som at spørge, på hvilket elliptiske kurver på formen har rationale punkter på sig. Hertil kan det være væsentligt at kigge på en sætning fra 1922 af Mordell, der siger, at alle rationale punkter på en elliptisk kurve er en linearkombination af et elementer fra en fast endelig mængde af punkter R (ved brug af en komposition på den elliptiske kurve, der skaber en gruppestruktur.) Opgaven er så at bestemme størrelsen af en sådan mængde (og finde ud af, hvornår den mængde indeholder mere end 0 elementer.) Hvis det lyder svært, så er det det også. /Phimurerlogen, april 2010.

10

Archimedes Princip. Frank Nasser. 12. april 2011

Archimedes Princip. Frank Nasser. 12. april 2011 Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Analytisk plangeometri 1

Analytisk plangeometri 1 1 Analytisk plangeometri 1 Kære 1. x, Vi begynder dag vores forløb om analytisk plangeometri. Dette bliver en udvidelse af ting i allerede kender til, så noget ved I i forvejen, mens andet bliver helt

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig

Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig Arealet af en trekant Der er mange formler for arealet af en trekant. Den mest kendte er selvfølgelig som også findes i en trigonometrisk variant, den såkaldte 'appelsin'-formel: Men da en trekants form

Læs mere

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.

Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal. 1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber

Læs mere

Løsninger til eksamensopgaver på A-niveau 2016

Løsninger til eksamensopgaver på A-niveau 2016 Løsninger til eksamensopgaver på A-niveau 2016 24. maj 2016: Delprøven UDEN hjælpemidler Opgave 1: Da trekanterne er ensvinklede, er forholdene mellem korresponderende linjestykker i de to trekanter det

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Løsninger til eksamensopgaver på A-niveau 2017

Løsninger til eksamensopgaver på A-niveau 2017 Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Polynomiumsbrøker og asymptoter

Polynomiumsbrøker og asymptoter Polynomiumsbrøker og asymptoter Frank Villa 9. marts 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

Pythagoras Sætning. Frank Nasser. 20. april 2011

Pythagoras Sætning. Frank Nasser. 20. april 2011 Pythagoras Sætning Frank Nasser 20. april 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Andengradsligninger. Frank Nasser. 12. april 2011

Andengradsligninger. Frank Nasser. 12. april 2011 Andengradsligninger Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

Projekt 2.5 Brændpunkt og ledelinje

Projekt 2.5 Brændpunkt og ledelinje Projekter. Kapitel. Projekt.5 Brændpunkt og ledelinje Projekt.5 Brændpunkt og ledelinje En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen

Læs mere

User s guide til cosinus og sinusrelationen

User s guide til cosinus og sinusrelationen User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Løsninger til eksamensopgaver på B-niveau 2017

Løsninger til eksamensopgaver på B-niveau 2017 Løsninger til eksamensopgaver på B-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: 4x 1 17 5x 4x 5x 17 1 9x 18 x Opgave : N betegner antallet af brugere af app en målt i tusinder. t angiver

Læs mere

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger

Læs mere

Projekt 2.5 Brændpunkt og ledelinje for parabler

Projekt 2.5 Brændpunkt og ledelinje for parabler Hvad er matematik? Projekter: Kapitel. Projekt.5 Brændpunkt og ledelinje for parabler Projekt.5 Brændpunkt og ledelinje for parabler En af de vigtigste egenskaber ved en parabel er, at den har et såkaldt

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Projekt 2.1: Parabolantenner og parabelsyning

Projekt 2.1: Parabolantenner og parabelsyning Projekter: Kapitel Projekt.1: Parabolantenner og parabelsyning En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen for en parabolantenne,

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

1 Geometri & trigonometri

1 Geometri & trigonometri 1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant

Læs mere

Enhedscirklen og de trigonometriske Funktioner

Enhedscirklen og de trigonometriske Funktioner Enhedscirklen og de trigonometriske Funktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

06 Formler i retvinklede trekanter del 2

06 Formler i retvinklede trekanter del 2 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4 Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat

Læs mere

Årsplan matematik 8. klasse

Årsplan matematik 8. klasse Årsplan matematik 8. klasse 2019-2020 Eleverne arbejder med grundbogen Matematrix 8. I undervisningen inddrages digitale undervisningsredskaber såsom Geogebra, Wordmat, MatematikFessor, emat, excel og

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning

VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: Projekt Vejanlæg. Matematik B-niveau Differentialregning VUC Vestsjælland Syd, Slagelse Nr. 2 Institution: 333247 2015 Projekt Matematik B-niveau Differentialregning Anders Jørgensen, Kirstine Irming, Mark Kddafi, Zehra Köse og Tobias Winberg Indledning I dette

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Matematik B Klasse 1.4 Hjemmeopaver

Matematik B Klasse 1.4 Hjemmeopaver Matematik B Klasse 1.4 Hjemmeopaver 1) opgave 336, side 23 Opgaven går ud på at jeg skal finde ud af hvor gamle børnene højst kan være, når forældrene tilsammen er 65 år og de skal være 40 år ældre end

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Lad os prøve GeoGebra.

Lad os prøve GeoGebra. Brug af Geogebra i matematik Programmet Geogebra er et matematisk tegneprogram. Det findes i øjeblikket i flere versioner. Direkte på nettet uden download. http://www.geogebra.org/cms/ Klik på billedet.!

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Løsninger til eksamensopgaver på B-niveau 2018

Løsninger til eksamensopgaver på B-niveau 2018 Løsninger til eksamensopgaver på B-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler Opgave 1: Da trekant ABC er retvinklet, kan længden af hypotenusen bestemmes med Pythagoras: 2 2 2 AB AC BC 2 2

Læs mere

Pythagoras og andre sætninger

Pythagoras og andre sætninger Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Projekt 3.7. Pythagoras sætning

Projekt 3.7. Pythagoras sætning Projekt 3.7. Pythagoras sætning Flere beviser for Pythagoras sætning... Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... Opgave 1: Et kinesisk og et indisk bevis for Pythagoras sætning...

Læs mere

Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler

Matematik B STX 18. maj 2017 Vejledende løsning   De første 6 opgaver løses uden hjælpemidler ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Projekt 6.7. Beviser for Pythagoras sætning - og konstruktion af animationer

Projekt 6.7. Beviser for Pythagoras sætning - og konstruktion af animationer Projekt 6.7. Beviser for Pythagoras sætning - og konstruktion af animationer Flere beviser for Pythagoras sætning 1 Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... 1 Opgave 1 Et

Læs mere

Trekants- beregning for hf

Trekants- beregning for hf Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Korncirkler og matematik

Korncirkler og matematik Korncirkler og matematik I den følgende opgave vil jeg undersøge om korncirkler indeholder matematiske figurer nærmere bestemt det gyldne snit, det gyldne rektangel og den gyldne spiral. Før jeg starter

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

Elementær Matematik. Mængder og udsagn

Elementær Matematik. Mængder og udsagn Elementær Matematik Mængder og udsagn Ole Witt-Hansen 2011 Indhold 1. Mængder...1 1.1 Intervaller...4 2. Matematisk Logik. Udsagnslogik...5 3. Åbne udsagn...9 Mængder og Udsagn 1 1. Mængder En mængde er

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

Vektorer og lineær regression

Vektorer og lineær regression Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden

Læs mere

Projekt 3.4 Fjerdegradspolynomiets symmetri

Projekt 3.4 Fjerdegradspolynomiets symmetri Hvad er matematik? Projekt 3. Fjerdegradspolynomiets symmetri Indledning: Symmetri for polynomier I kapitel har vi set at grafen for et andengradspolynomium p ( x) = a x + x + c altid er symmetrisk omkring

Læs mere

Tema: Kvadrattal og matematiske mønstre:

Tema: Kvadrattal og matematiske mønstre: 2 Indholdsfortegnelse: Tema: Kvadrattal og matematiske mønstre: Side 4: Side 5: Side 9: Side 10: Side 12: Side 14: Side 15: Side 16: Side 19: Side 20: Side 21: Side 23: Problemformulering. En nem tilgang

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Oversigt over undervisningen i matematik 1y 07/08

Oversigt over undervisningen i matematik 1y 07/08 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Geometri, (E-opgaver 9b & 9c)

Geometri, (E-opgaver 9b & 9c) Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...

Læs mere

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden.

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden. Opgave Heltalligt Bestem alle hele tal, n >, for hvilke n + n er et helt tal. Opgave Trekantet I en spidsvinklet trekant ABC skærer vinkelhalveringslinien fra A siden BC i punktet L og den omskrevne cirkel

Læs mere

sprog og arbejdsmetode

sprog og arbejdsmetode brikkerne til regning & matematik sprog og arbejdsmetode F+E+D preben bernitt brikkerne til regning & matematik sprog og arbejdsmetodde F+E+ D ISBN: 978-87-92488-36-7 1. udgave som E-bog til tablets 2012

Læs mere

Matematiske metoder - Opgavesæt

Matematiske metoder - Opgavesæt Matematiske metoder - Opgavesæt Anders Friis, Anne Ryelund, Mads Friis, Signe Baggesen 24. maj 208 Beskrivelse af opgavesættet I dette opgavesæt vil du støde på opgaver, der er markeret med enten 0, eller

Læs mere

Matematik B 2F Mundtlig eksamen Juni - 2011

Matematik B 2F Mundtlig eksamen Juni - 2011 1. Lineære funktioner Du skal vælge dele af dine emneopgave med ovenstående titel og redegøre nærmere herfor Redegør for a og b s betydning for udseendet af grafen for den lineære funktion og bestemmelse

Læs mere

Pointen med Differentiation

Pointen med Differentiation Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Foredrag i Eulers Venner 30. nov. 2004

Foredrag i Eulers Venner 30. nov. 2004 BSD-prosper.tex Birch og Swinnerton-Dyer formodningen Johan P. Hansen 26/11/2004 13:34 p. 1/20 Birch og Swinnerton-Dyer formodningen Foredrag i Eulers Venner 30. nov. 2004 Johan P. Hansen matjph@imf.au.dk

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere