Måling - Fase 3 Bestemme afstande med beregning

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Måling - Fase 3 Bestemme afstande med beregning"

Transkript

1 Navn: Klasse: Måling - Fase 3 Bestemme afstande med beregning Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer Beviser og forslag til forbedring 1. Jeg kan anvende forholdet mellem sider i ligedannede trekanter til at bestemme afstande, som ikke umiddelbart kan måles. 2. Jeg kan anvende Pythagoras læresætning til at bestemme afstande, som ikke umiddelbart kan måles. 3. Jeg kan anvende de trigonometriske funktioner til at bestemme afstande, som ikke umiddelbart kan måles.. Jeg kan vælge en relevant metode til at bestemme afstande, som ikke umiddelbart kan måles, ud fra de givne forudsætninger. 5. Jeg kender til begreberne nederst. Begreber/noter: 11

2 c B a A 60 b C B c a A 60 b C B c a A 60 b C

3 1 0,8 0,6-1 0, 0,2 v=2-0,5 0,5-0,2 1-0, -0,6-0,8-1

4 KOPIARK 51 LIGEDANNEDE RETVINKLEDE TREKANTER 1 Trekant ABC og trekant ADE er ligedannede, retvinklede trekanter. Hvor lang er siden a AE? 2,5 C b BC? c AC? d AB?,5 7,5 6 Skitse A 2 E D 1,5 B 2 Trekant FGH og trekant IJK er ligedannede, retvinklede trekanter. Hvor lang er siden G 2 a IK? b IJ? 2 Skitse F 5 2 H J c FG? 2 2 Skitse I 5 K 3 Trekant LMN og trekant NOP er ligedannede, retvinklede trekanter. Hvor lang er siden L a MN? 9 Skitse b MO? 6 3 P c NP? d NL? 3,16 9,9 M 1 O 3 18 N Tegn to ligedannede, retvinklede trekanter i målestoksforholdet 1 : TRIGONOMETRI

5 KOPIARK 52 REGN MED PYTHAGORAS B 1 2 F A C G 3 D J K E H P I M L O N 1 Beregn længden af siderne og af diagonalen i hver figur. a Figur 1: c Figur 3: AB = 2,2 IJ = 2,83 BC = 2,2 JK = 3,16 AC = JL = 3,16 b Figur 2: d Figur : EF = 2,2 MP =,12 FG = 3,16 PO = 2,83 FH = 3,61 MO = 6,08 2 Trekant ABC er en retvinklet trekant. C = 90 a = 3 c 2 = 25 Tegn trekanten. 3 Trekant EFG er en retvinklet trekant. G = 90 e 2 = 6,25 g 2 = 2,25 Tegn trekanten. 67 TRIGONOMETRI

6 KOPIARK 5 SIDER OG VINKLER I TREKANTER (1) 1 Beregn og skriv de manglende sidelængder og vinkelstørrelser på hver trekant ,66 7,07 3,08 3, A 1 tan (A) = ,8 56, , , A tan (A) = ,36,9 7, ,2 3, Skitser 69 TRIGONOMETRI

7 Ligedannede(trekanter((forhold( ( 1. Ertrekanterneligedannede?Bevishvorfor/hvorforikkemedforholdsberegning. 2. Ertrekanterneligedannede?Bevishvorfor/hvorforikkemedforholdsberegning. 3. Ertrekanterneligedannede?Bevishvorfor/hvorforikkemedforholdsberegning.

8 . Ertrekanterneligedannede?Bevishvorfor/hvorforikkemedforholdsberegning. 5. Errektanglerneligedannede?Bevishvorfor/hvorforikkemedforholdsberegning. 6. Forklarmedordhvorfortrekanterneerligedannede.

9 7. Forklarmedordhvorfortrekanterneerligedannede. 8. Forklarmedordhvorfortrekanterneerligedannede.

10 Pythagoras*øvelser* Beregndeukendtesidelængder. 1. eller 2. 3.

11

12 Pythagoras*øvelser*2* 1. BeregnlængdenafAC. eller 2. BeregnlængdenafCD. 3. Beregnlængdenafx.

13 . A.BeregndiagonalenEC. B.HvadervinklenvedE?

14 KOPIARK 53 TRIGONOMETRI OG LOMMEREGNEREN 1 Brug lommeregner eller et it-program til at beregne a sin (20 ) = 0,3 f cos (0 ) = 0,77 b sin (25 ) = 0,2 g cos (55 ) = 0,57 c sin (30 ) = 0,5 h tan (15 ) = 0,27 d sin (90 ) = 1 i tan (70 ) = 2,75 e cos (35 ) = 0,82 j tan (8 ) = 9,51 2 I trekant ABC er vinkel C = 90 Beregn længden af siden a, når du kender sinus til vinkel A og længden af siden c. a sin (A) = 1, og c = 9. a = 3 3 B b sin (A) = 1, og c = 8. a = 2 c a c sin (A) = 2, og c = 10. a = 5 d sin (A) = 3, og c = 12. a = 9 A b C 3 Tegn tre af trekanterne fra opgave 2. Trekant fra opgave 2a Trekant fra opgave 2c Trekant fra opgave 2b 68 TRIGONOMETRI

15

16 De foregiende opgaver har kun omhandlet retvinklede trekanter. Sinus-funktionen kan ogsfr anvendes til at beregne sider og vinkler i vilkflrlige trekanter. Formlen er: ----.e----.b _ c srn (A) - s'n (B) - sin u Beregn lengden af c. b Tilpas formlen og beregn hngden af a. A lacl = b labl = q lbcl= o Hvor mange grader er ZE og lf? b Beregn langden af f. 1y. *a[ {lo Uuo.langr er der fra Lillehoj til Storhgj i luftlinje?

17 9: 1 Tegningerne viser tre figurer. Den ene er opdelt i retvinklede trekanter. a: Opdel også de to andre figurer i retvinklede trekanter. b: Find arealet af hver af de tre figurer. Tallene skal være i m 2. Du kan fx gøre det således: - beregn så mange vinkler som muligt - beregn de manglende sidelængder i de retvinklede trekanter - beregn arealerne af de retvinklede trekanter 7,50 dm - læg arealerne sammen 70º 65º 125 cm 110º 3,60 m 5,00 m 16,3º 67,º 6,50 m 10: 2 I har sikkert en tavlelineal på præcis 1 m i klasseværelset. Stil linealen på skrå op ad en væg. Mål vinklen med en vinkelmåler som vist på tegningerne. Mål også den vandrette afstand x og den lodrette afstand y. Stil linealen i en ny vinkel og mål igen vinklen, x og y. Fortsæt med flere vinkler. Brug dine målinger til at lave at lave en cosinus- og sinus-tabel. x y

18 11: 2 Skitsen viser to huse, som begge er 18 m lange og 8 m brede. Taget på huset til venstre har en hældning på 25º. Taget på huset til højre har en hældning på 5º. Sammenlign arealet af tagene på de to huse. 25º 5º 12: 3 Tegningen viser en cyklist på vej op ad en bakke. Bakken er indtegnet som en retvinklet trekant ABC. Man kan angive en bakkes stigning på to måder: Som et antal grader og som et antal procent. Antal grader er størrelsen af A. Antal procent er den lodrette stigning som procent af den kørte strækning. Altså a som procent af c. a: Mål længden af a, b og c på tegningen b: Find stigningen på tegningen målt i procent. c: Find stigningen på tegningen målt i grader. Du må gerne måle vinklen på tegningen men prøv også at beregne tallet. d: Vurder om det er realistisk at cykle op ad en sådan stigning. e: Omregn en stigning på 10 til grader. f: Omregn en stigning på 8º til procent. A c b B a C

19 Måling'Fase'3'' ' Opgave' Tegnogfinddemanglendesiderientrekant,hvordenenesideaerlangog vinkelaer5 ogvinkelcer65.bruggeogebra.

20

Måling - Fase 3 Bestemme afstande med beregning

Måling - Fase 3 Bestemme afstande med beregning Navn: Klasse: Måling - Fase 3 Bestemme afstande med beregning Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer Beviser og forslag til forbedring 1. Jeg kan anvende forholdet mellem sider i

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

Pythagoras Ensvinklede trekanter Trigonometri. Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen

Pythagoras Ensvinklede trekanter Trigonometri. Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen MATEMATIKBANKENS P.E.T. KOMPENDIUM Pythagoras Ensvinklede trekanter Trigonometri Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen FORENKLEDE FÆLLES MÅL FOR PYTHAGORAS, ENSVINKLEDE TREKANTER

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L

RENTES REGNING SIMULATION LANDMÅLING MÅLSCORE I HÅNDBO . K R I S T I A N S E N KUGLE G Y L D E N D A L SIMULATION 4 2 RENTES REGNING F I NMED N H REGNEARK. K R I S T I A N S E N KUGLE 5 LANDMÅLING 3 MÅLSCORE I HÅNDBO G Y L D E N D A L Faglige mål: Anvende simple geometriske modeller og løse simple geometriske

Læs mere

TRIGONOMETRI, 4 UGER, 9.KLASSE.

TRIGONOMETRI, 4 UGER, 9.KLASSE. TRIGONOMETRI, 4 UGER, 9.KLASSE. FRA FÆLLES MÅL Målsætninger for undervisningsforløbet er opsat efter kompetence, færdigheds og vidensmål samt læringsmål i lærersprog. Geometri og måling Fase 3 Geometriske

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4

Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4 Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Tegning. Arbejdstegning og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn fra tre synsvinkler

Tegning. Arbejdstegning og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn fra tre synsvinkler Tegning Arbejds og isometrisk Ligedannede figurer Målestoksforhold Konstruktion Perspektiv Kassens højde Bundens bredde dybde Hullets diameter Afstand mellem hul og bund Højde over jorden Musvit 30 10

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

1 Geometri & trigonometri

1 Geometri & trigonometri 1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant

Læs mere

Foreløbig lærervejledning. Version juni 2017

Foreløbig lærervejledning. Version juni 2017 Foreløbig lærervejledning Version juni 2017 Kontext 9 Kapitel 1 Foreløbig lærervejledning juni 2017 Om Afstande og vinkler Kernebogen side 4-23 Fælles Mål Geometriske egenskaber og sammenhænge/fase 3 Måling/Fase

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

Beregning til brug for opmåling, udfoldning og konstruktion

Beregning til brug for opmåling, udfoldning og konstruktion VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages

Læs mere

06 Formler i retvinklede trekanter del 2

06 Formler i retvinklede trekanter del 2 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Geometriske egenskaber & sammenhæng - Fase 3

Geometriske egenskaber & sammenhæng - Fase 3 Nvn: Klsse: Geometriske egensker smmenhæng - Fse 3 Vurdering fr 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer eviser og forslg til foredring 1. Jeg kender til og kn ruge Pythgors lærersætning. 2. Jeg

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Trekants- beregning for hf

Trekants- beregning for hf Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel

Læs mere

Cosinusrelationen. Frank Nasser. 11. juli 2011

Cosinusrelationen. Frank Nasser. 11. juli 2011 Cosinusrelationen Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

Rundt om bordet Tegning

Rundt om bordet Tegning Rundt om bordet - Forfra Fra siden Fra oven Forfra Fra siden Fra oven 58 Quiz runden - A4 A Spørgsmål : Begrund. - Spørgsmål : Hvor høj er flagstangen? - Målepinden er m. 50 m 0 m Spørgsmål : Er alle kvadrater

Læs mere

Pythagoras og andre sætninger

Pythagoras og andre sætninger Pythagoras og andre sætninger Pythagoras Pythagoras fra den græske ø Samos levede i det 6. århundrede f.v.t. fra ca. 580 til ca. 500. Han lægger som sagt navn til den sætning, vi tidligere har nævnt,

Læs mere

Matematik. Meteriske system

Matematik. Meteriske system Matematik Geometriske figurer 1 Meteriske system Enheder: Når vi arbejder i længder, arealer og rummål er udgangspunktet metersystemet: 2 www.ucholstebro.dk. Døesvej 70 76. 7500 Holstebro. Telefon 99 122

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

Enhedscirklen og de trigonometriske Funktioner

Enhedscirklen og de trigonometriske Funktioner Enhedscirklen og de trigonometriske Funktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Matematik. Mål Aktiviteter Øvelser/Evaluering

Matematik. Mål Aktiviteter Øvelser/Evaluering Tema: Plangeometri Uge 34-36 Mål Aktiviteter Øvelser/ 6 Trigonometri Sider og vinkler i retvinklede trekanter: Du kender trekantens linier og kan anvende ligedannethed til beregning af ukendte vinkler

Læs mere

Matematik c - eksamen

Matematik c - eksamen Eksamensnummer: 101364 - Fjernkursist side 1 af 13 Matematik c - eksamen Opgave 1) a) Jeg får af vide, at et par har vundet i Lotto og ønsker at sætte 100.000 kr. ind på en opsparingskonto. I Bank A kan

Læs mere

User s guide til cosinus og sinusrelationen

User s guide til cosinus og sinusrelationen User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

Ib Michelsen: Matematik C, Geometri 2011 Version 7.1 03-10-11 rettet fejl side 47 sin G:\_nyBog\1-2-trig\nyTrigonometri12.odt

Ib Michelsen: Matematik C, Geometri 2011 Version 7.1 03-10-11 rettet fejl side 47 sin G:\_nyBog\1-2-trig\nyTrigonometri12.odt Trigonometri Vinkel v sin(v) Vinkel v sin(v) Vinkel v sin(v) 0,00 0,00 30,00 0,50 60,00 0,87 1,00 0,02 31,00 0,52 61,00 0,87 2,00 0,03 32,00 0,53 62,00 0,88 3,00 0,05 33,00 0,54 63,00 0,89 4,00 0,07 34,00

Læs mere

Trekantsberegning 25 B. 2009 Karsten Juul

Trekantsberegning 25 B. 2009 Karsten Juul Trekantsberegning 7,0 3 5 009 Karsten Juul ette häfte indeholder den del af trekantsberegningen som skal kunnes på - niveau i gymnasiet (stx) og hf ra sommer 0 kräves mere remstillingen undgår at forudsätte

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

FP10. 1 Olivers økonomi 2 Hvor mange arbejder som. 3 Oliver og Albert bygger trapper 4 Oliver bygger en terrasse 5 Talkryds. tømrere?

FP10. 1 Olivers økonomi 2 Hvor mange arbejder som. 3 Oliver og Albert bygger trapper 4 Oliver bygger en terrasse 5 Talkryds. tømrere? FP10 10.-klasseprøven Matematik December 2015 1 Olivers økonomi 2 Hvor mange arbejder som tømrere? 3 Oliver og Albert bygger trapper 4 Oliver bygger en terrasse 5 Talkryds 1 Olivers økonomi Oliver er i

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

Færdigheds- og vidensområder

Færdigheds- og vidensområder Klasse: Mars 6./7. Skoleår: 16/17 Eleverne arbejder med bogsystemet format, hhv. 6. og 7. klasse. Da der er et stort spring i emnerne i mellem disse trin er årsplanen udformet ud fra Format 7, hvortil

Læs mere

Geometri, (E-opgaver 9b & 9c)

Geometri, (E-opgaver 9b & 9c) Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...

Læs mere

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger Eksamensspørgsmål 11q sommer 01. Gør rede for omformningsreglerne for ligninger. Spørgsmål 1: Ligninger Giv eksempler på hvordan forskellige ligninger løses. Du bør her komme ind på flere forskellige ligningstyper,

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. FORELØBIGE eksamensspørgsmål mac7100 og mac710 dec 01 og maj/juni 013. Spørgsmål 1: Ligninger Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Giv eksempler

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Tilhørende: Robert Nielsen, 8b. Geometribog. Indeholdende de vigtigste og mest basale begreber i den geometriske verden.

Tilhørende: Robert Nielsen, 8b. Geometribog. Indeholdende de vigtigste og mest basale begreber i den geometriske verden. Tilhørende: Robert Nielsen, 8b Geometribog Indeholdende de vigtigste og mest basale begreber i den geometriske verden. 1 Polygoner. 1.1 Generelt om polygoner. Et polygon er en figur bestående af mere end

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Matematik. Mål Aktiviteter Øvelser/Evaluering

Matematik. Mål Aktiviteter Øvelser/Evaluering Tema: Plangeometri Uge 34-36 6 Trigonometri Sider og vinkler i retvinklede trekanter: Du kender trekantens linjer og kan anvende ligedannethed til beregning af ukendte vinkler og sidelængder Sider og vinkler

Læs mere

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel

1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel FP10 10.-klasseprøven Matematik December 2014 1 Huspriser 2 Liggetider 3 Flyttepriser 4 Højdemålinger i det gamle hus 5 Helles nye værelse 6 Et ligebenet trapez 7 Kvadrater i en additionstabel 1 Huspriser

Læs mere

Tegning. Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn arbejdstegninger

Tegning. Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn arbejdstegninger Tegning Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning Målestoksforhold bruges når man skal vise noget større eller mindre end det er i virkeligheden.

Læs mere

Mike Vandal Auerbach. Geometri i planen. # b. # a. # a # b.

Mike Vandal Auerbach. Geometri i planen. # b. # a. # a # b. Mike Vandal Auerbach Geometri i planen # a # a www.mathematicus.dk Geometri i planen 1. udgave, 2018 Disse noter dækker kernestoffet i plangeometri på stx A- og B-niveau efter gymnasiereformen 2017. Al

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Kære matematiklærer. Når vi er færdige med dette forløb skal du (eleven):

Kære matematiklærer. Når vi er færdige med dette forløb skal du (eleven): Kære matematiklærer Formålet med denne materialekasse er, at eleverne med konkrete materialer og it får mulighed for at gøre sig erfaringer, der kan føre til, at de erkender de sammenhænge, der gør sig

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

Trigonometri - Facitliste

Trigonometri - Facitliste Trigonometri - Facitliste En del opgaver, undersøgelser og aktiviteter er formuleret, så der er flere mulige facit, da resultatet på forskellig måde afhænger af elevernes valg. I de tilfælde anføres eksempelvis

Læs mere

Matematik Færdigheds- og vidensmål (Geometri og måling )

Matematik Færdigheds- og vidensmål (Geometri og måling ) Matematik Færdigheds- og vidensmål (Geometri og måling ) Kompetenceområde Klassetrin Faser 1 Eleven kan kategorisere Efter klassetrin Eleven kan anvende geometriske begreber og måle Eleven kan kategorisere

Læs mere

Finde midtpunkt. Flisegulv. Lygtepæle

Finde midtpunkt. Flisegulv. Lygtepæle Finde midtpunkt Flisegulv Lygtepæle Antal diagonaler Vinkelsum Vinkelstørrelse Et lille geometrikursus Forudsætninger (aksiomer): Parallelle linjer skærer ikke hinanden uanset hvor meget man forlænger

Læs mere

Årsplan i matematik for 9. klasse 2017/2018

Årsplan i matematik for 9. klasse 2017/2018 Årsplan i matematik for 9. klasse 2017/2018 Undervisningen generelt: Undervisningen tilrettelægges ud fra fagets CKF er og forenklede fællesmål for faget. Undervisning bygges primært op ud fra emnerne

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Trigonometri. for 8. klasse. Geert Cederkvist

Trigonometri. for 8. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsærker, hor der kræes stor nøjagtighed, er der ofte brug for, at man kan beregne sider og inkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

Årsplan i matematik for 9. klasse 2018/2019

Årsplan i matematik for 9. klasse 2018/2019 Årsplan i matematik for 9. klasse 2018/2019 Undervisningen generelt: Undervisningen tilrettelægges ud fra fagets CKF er og forenklede fællesmål for faget. Undervisning bygges primært op ud fra emnerne

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Den Flydende Kran Samson

Den Flydende Kran Samson Den Flydende Kran Samson Formål: Kranen Samson, har en maksimal løfteevne på 900 tons, kranarmen er på 67 meter. Formålet med dette projekt er at løse nogle forskellige opgaver om geometrien for kranen.

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Målebord. Målebord instrumentbeskrivelse og virkemåde

Målebord. Målebord instrumentbeskrivelse og virkemåde Målebord Målebordet består af en bordplade og et trebenet stativ. Tilbehør : en gaffel med lodsnor, en passer, hvidt papir (A3), en diopterlineal, en libelle (vaterpas) og evt. et kompas. Opstilling af

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

10 Elevplan. en tværfaglig læringsaktivitet. Når eleven skal have afvinket en læringsaktivitet eller et læringselement, vil det være samtlige

10 Elevplan. en tværfaglig læringsaktivitet. Når eleven skal have afvinket en læringsaktivitet eller et læringselement, vil det være samtlige 10 Elevplan Organisatoriske forhold Matematik kan i Elevplan udbydes som en selvstændig læringsaktivitet og/eller som elementer i tværfaglige aktiviteter. Beskrivelsen i Elevplan er en uddybning og præcisering

Læs mere

F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade

F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade F-dag om geometri Fremstilling og beskrivelse af stiliserede blade I foråret fejrede Canada at landet havde eksisteret som nation i 150 år. I den anledning blev der fremstillet et logo, der tog afsæt i

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.

Læs mere

Eksamensspørgsmål 4emacff1

Eksamensspørgsmål 4emacff1 Eksamensspørgsmål 4emacff1 1. Funktioner, Lineære funktioner Gør rede for den lineære funktion y ax b. Forklar herunder betydningen af a og b, og kom ind på det grafiske forløb af en lineær funktion. Kom

Læs mere

FP9. Matematisk problemløsning. 9.-klasseprøven. December 2015

FP9. Matematisk problemløsning. 9.-klasseprøven. December 2015 FP9 9.-klasseprøven Matematisk problemløsning December 2015 1 I praktik i en boghandel 2 I praktik som murer 3 I praktik som journalist 4 I praktik som arkitekt 5 Sekskanter 6 Retvinklede og ligesidede

Læs mere

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver

Blandede opgaver (2) Maler-Biksen. Matematik på VUC Modul 3c Opgaver Blandede opgaver (2) 1: Tegningen viser et værelse med skråvæg. To af væggene kaldes A og B. a: Find arealet af væg A. b: Find arealet af væg B. A B 1 m 465 cm 4 m c: Tegn væggene i målestoksforhold 1:50.

Læs mere

Besvarelse af stx_081_matb 1. Opgave 2. Opgave 1 2. Ib Michelsen, 2z Side B_081. Reducer + + = + + = Værdien af

Besvarelse af stx_081_matb 1. Opgave 2. Opgave 1 2. Ib Michelsen, 2z Side B_081. Reducer + + = + + = Værdien af Ib Michelsen, z Side 1 7-05-01 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 Besvarelse af stx_081_matb 1 Opgave 1 Reducer ( x + h) h( h + x) ( x h) h( h x) + + = x h xh h h x x + + = Værdien

Læs mere

Geometriske tegning - Fase 2 Fremstille præcise tegninger

Geometriske tegning - Fase 2 Fremstille præcise tegninger Navn: Klasse: Geometriske tegning - Fase 2 Fremstille præcise tegninger Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer eviser og forslag til forbedring 1. Jeg kan tegne isometrisk tegninger

Læs mere

Introduktion til cosinus, sinus og tangens

Introduktion til cosinus, sinus og tangens Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,

Læs mere

Stx matematik B maj 2009

Stx matematik B maj 2009 Ib Michelsen Svar stxb maj 2009 1 Stx matematik B maj 2009 Opgave 1 Bestem f ' ( x), idet f (x )=2 x 3 +4 x 2 f ' ( x)=(2 x 3 +4 x 2 )'=(2 x 3 )'+(4 x 2 )'=2 ( x 3 )' +4 ( x 2 )'=2 3 x 3 1 +4 2 x 2 1 =6

Læs mere

Vektorer og lineær regression

Vektorer og lineær regression Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål i ma til 1p sommeren 2009 (revideret) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar formlen til kapitalfremskrivning

Læs mere

Løsning til aflevering - uge 12

Løsning til aflevering - uge 12 Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store

Læs mere

Ligningsløsning som det at løse gåder

Ligningsløsning som det at løse gåder Ligningsløsning som det at løse gåder Nedenstående er et skærmklip fra en TI-Nspirefil. Vi ser at tre kræmmerhuse og fem bolsjer balancerer med to kræmmerhuse og 10 bolsjer. Spørgsmålet er hvor mange bolsjer,

Læs mere

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver

Maria Solstar Vestergaard 30-11-2006 Roskilde Tekniske Gymnasium Klasse 1.4g. Matematik B Klasse 1.4g Hjemmeopgaver Matematik B Hjemmeopgaver 1) opgave 107c, side 115 Jeg skal tegne en trekant og estemme vinklerne A og C og siderne a, og c. Jeg har følgende mål: Jeg har ikke nok mål til at kunne regne nogle af vinklerne

Læs mere

Formler & algebra - Fase 3 Sammenligne algebraiske udtryk

Formler & algebra - Fase 3 Sammenligne algebraiske udtryk Navn: Klasse: Formler algebra - Fase 3 Sammenligne algebraiske udtryk Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer Beviser og forslag til forbedring 1. Jeg kan vurdere og bevise, om to

Læs mere

Matematik A. Bind 1. Mike Auerbach. c h A H

Matematik A. Bind 1. Mike Auerbach. c h A H Matematik A Bind 1 B c h a A b x H x C Mike Auerbach Matematik A, bind 1 1. udgave, 2014 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar 12 juni 12 Institution HTX Sukkertoppen, Københavns tekniske Skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag [1] Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag 2009 Alinea København Kopiering af denne bog er kun tilladt ifølge aftale med COPY-DAN Forlagsredaktion: Heidi Freiberg

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Opgave 1 - Eksponentiel funktion/procent og renter

Opgave 1 - Eksponentiel funktion/procent og renter Alle beregninger er, hvis ikke andet angivet, udført med WordMat. Opgave 1 - Eksponentiel funktion/procent og renter Jeg vil nu finde ud af hvor stort et beløb der står på kontoen efter 1 år med en starts

Læs mere

Facitliste til elevbog

Facitliste til elevbog Facitliste til elevbog Algebra a 8x 4 b 6x c 7x 8 d 0 5x e x 54 f 8x 6 x a x 7x + 4 b 48a 4 + 8a c 56x + x d 6a 4 5a e 4x 80x f 6a 4 4a a 8(x + ) b 5x(4x 7) c 4( a) d 9a ( a) e 4( + 7a ) f 6(x + y) 4 a

Læs mere

Thomas Bugge "De første grunde til Regning, Geometrie, Plan-Trigonometrie og Landmaaling". Kiøbenhavn Andet Kapitel.

Thomas Bugge De første grunde til Regning, Geometrie, Plan-Trigonometrie og Landmaaling. Kiøbenhavn Andet Kapitel. Thomas Bugge "De første grunde til Regning, Geometrie, Plan-Trigonometrie og Landmaaling". Kiøbenhavn 1795. Andet Kapitel. Opløsning af retvinklede Triangler. Tab.16. Fig.253. 13 Naar der i en retvinklet

Læs mere