En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby

Størrelse: px
Starte visningen fra side:

Download "En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby"

Transkript

1 24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder generelt. Men hvad kan man sige om den afledte af en differentiabel funktion? Det er nemt at se, at man ikke nødvendigvis kan konkludere differentiabilitet af f : find et eksempel på en kontinuert funktion g, som ikke er differentiabel. Hvis f er en stamfunktion til g (en sådan findes, fordi g er kontinuert), så er f differentiabel, og den afledte f = g ikke er differentiabel. Den afledte er dog stadig kontinuert. Vi skal nu se et eksempel, hvor dette ikke er tilfældet. Vi skal altså finde en differentiabel funktion, hvis afledte ikke er kontinuert. Lad f : R R være givet ved forskriften f( = { ( x 2 sin 1, x 0 0, x = 0. På Figur 1 vises grafen for f i en omegn af x = 0. Figur 1: Grafen for f.

2 Søren Knudby 25 Det er oplagt, at f er differentiabel i intervallerne ], 0[ og ]0, [ med en differentialkvotient givet ved ( ( 1 1 f ( = 2x sin cos, x 0. Lad os undersøge, om f er differentiabel i x = 0. Vi opskriver derfor differenskvotienten ( f(0 + h) f(0) = h2 sin 1 ( h) 1 = h sin, (1) h h h) hvor h er et (lille) tal forskelligt fra 0. Eftersom sin(t) 1 for alle t R, ser man, at udtrykket i (1) går mod 0, når h går mod 0. Altså er f differentiabel i x = 0, med f (0) = 0. Tilbage står at vise, at f ikke er kontinuert, og det er selvfølgelig i punktet x = 0, at det går galt med kontinuiteten. Udtrykket ( ( 1 1 2x sin cos (2) har nemlig ingen grænseværdi, når x nærmer sig 0. Lad os præcisere argumentet: Første led i (2) nærmer sig 0 ud fra samme argumentation som ovenfor. Men ligegyldigt hvor lille vi vælger ɛ > 0, vil der i intervallet ]0, ɛ[ ( være ) uendeligt mange tal af formen 1 nπ, hvor n N. Derfor vil cos 1 x antage værdierne 1 og 1 vilkårligt tæt på 0, og udtrykket i (2) kan derfor ikke nærme sig en grænse, når x 0. Derfor er f diskontinuert i x = 0. En illustration af f ses på Figur 2. I eksemplet ovenfor, så vi, at funktionen f ikke var kontinuert, fordi den opførte sig ganske vildt i nærheden af diskontinuitetspunktet x = 0. Man kan spørge sig selv, om det altid vil være tilfældet, eller om man kan finde eksempler, hvor den afledte blot 22. årgang, nr. 1

3 26 En differentiabel funktion hvis afledte ikke er kontinuert Figur 2: Grafen for f. har et spring. Svaret på dette spørgsmål er, at diskontinuitetspunkter for den afledte altid vil være vilde, i den forstand at f ( ikke har nogen grænseværdi, når x nærmer sig det kritiske punkt. Mere formelt gælder følgende sætning: Sætning 1 Lad f : ]a, b[ R være en differentiabel funktion, og lad x 0 ]a, b[. Hvis grænseværdien lim f ( eksisterer, er den nødvendigvis lig f (x 0 ). Beviset for Sætning 1 er en anvendelse af middelværdisætningen, som vi for god ordens skyld repeterer (uden bevis): Sætning 2 (Middelværdisætningen) Lad f : [a, b] R være en kontinuert funktion, som er differentiabel i alle indre punkter x ]a, b[. Da findes et punkt c ]a, b[, så f (c) = f(b) f(a). b a

4 Søren Knudby 27 Bevis for Sætning 1. For hvert n N stort nok til at x n < b, kan vi ifølge middelværdisætningen finde et c n, så x 0 < c n < x n, samt f (c n ) = f(x n ) f(x 0) 1. (3) n Bemærk, at følgen (c n ) nærmer sig x 0 fra højre, når n (overvej), så antagelsen, om at lim x x + f ( eksisterer, får os til 0 at konkludere, at lim f (c n ) = lim f (. (4) n Højresiden i (3) genkendes som en differenskvotient for f i punktet x 0, med x = 1 n. Derfor vil højresiden i (3) konvergere mod f (x 0 ), når n, og følgelig må venstresiden i (3) konvergere mod det samme, altså lim f (c n ) = f (x 0 ). (5) n Sammenholdes (5) med (4), når vi konklusionen lim f ( = f (x 0 ). Indholdet af Sætning 1 er, at man kun kan finde eksempler på differentiable funktioner, hvor et diskontinuitetspunkt for f er vildt. 22. årgang, nr. 1

5 28 En differentiabel funktion hvis afledte ikke er kontinuert Bemærkning 3 Beviset for Sætning 1 kan uden videre overføres til at vise den tilsvarende sætning, hvor vi antager, at eksisterer. lim f ( Korollar 4 Lad f : ]a, b[ R være en funktion, lad x 0 ]a, b[ være givet, og antag at f er differentiabel i alle punkter i intervallet ]a, b[ måske med undtagelse af punktet x 0. Hvis grænseværdierne lim f ( og lim f ( findes, men er forskellige, er f ikke differentiabel i punktet x 0. Bevis. Hvis f var differentiabel i punktet x 0, ville lim f ( = f (x 0 ) = lim f ( ifølge Sætning 1 og Bemærkning 3. Vores eksempel fra tidligere på en differentiabel funktion, hvis afledte ikke var kontinuert, havde kun et enkelt diskontinuitetspunkt. Man kan spørge sig selv, om det er muligt at finde en differentiabel funktion uden et eneste kontinuitetspunkt. Dette er ikke muligt. Faktisk vil mængden af kontinuitetspunkter for den afledte ligge tæt i R. Det vil dog gå for vidt at bevise den påstand her. Resultatet hører hjemme i den deskriptive mængdelære.

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Partielle afledede og retningsafledede

Partielle afledede og retningsafledede Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsholm 6. oktober 2008 1 Funktion af flere variable 1.1 Punktmængder i R k : Definitioner Punktmængder i flerdimensionale rum: Definitioner q Normen af x 2 R k er kxk

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleord og begreber Differentiabel funktion i en variabel Partielle afledede i flere variable Notation og regneregler for partielle afledede Test partielle afledede Grafisk

Læs mere

Differentiation af sammensatte funktioner

Differentiation af sammensatte funktioner 1/7 Differentiation af sammensatte funktioner - Fra www.borgeleo.dk En sammensat funktion af den variable x er en funktion, vor x først indsættes i den såkaldte indre funktion. Resultatet fra den indre

Læs mere

Taylors formel. Kapitel Klassiske sætninger i en dimension

Taylors formel. Kapitel Klassiske sætninger i en dimension Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Newton-Raphsons metode

Newton-Raphsons metode Newton-Raphsons metode af John V. Petersen Indhold Indledning: Numerisk analyse og Newton-Raphsons metode... 2 Udlede Newtons iterations formel... 2 Sætning 1 Newtons metode... 4 Eksempel 1 konvergens...

Læs mere

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar

Læs mere

Mike Vandal Auerbach. Differentialregning (2) (1)

Mike Vandal Auerbach. Differentialregning (2) (1) Mike Vandal Auerbach Differentialregning f () www.mathematicus.dk Differentialregning. udgave, 208 Disse noter er skrevet til matematikundervisningen på stx A- og B-niveau efter gymnasiereformen 207. Noterne

Læs mere

Differentialkvotient af cosinus og sinus

Differentialkvotient af cosinus og sinus Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises

Læs mere

Besvarelse, Eksamen Analyse 1, 2013

Besvarelse, Eksamen Analyse 1, 2013 Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 23 Besvarelse, Eksamen Analyse, 23 Opgave Lad, for n N, funktionen f n : [, ) R være givet ved NB. Trykfejl. Burde være x. f n (x)

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Differentiation. Frank Nasser. 11. juli 2011

Differentiation. Frank Nasser. 11. juli 2011 Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

Grænseværdier og Kontinuitet

Grænseværdier og Kontinuitet Grænseværdier og Kontinuitet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Differentiabilitet. f(h) = f(x 0 +h) f(x 0 ). y = f(x) f(h) df(h) Figur 1: Tangent, tilvækst og differential. lim. df(h) = f (x 0 )h.

Differentiabilitet. f(h) = f(x 0 +h) f(x 0 ). y = f(x) f(h) df(h) Figur 1: Tangent, tilvækst og differential. lim. df(h) = f (x 0 )h. Differentiabilitet 1 Funktioner af én reel variabel Tilvækstfunktionen f med udgangspunkt i x 0 er en reel funktion af tilvæksten : f() = f(x 0 +) f(x 0 ). y = f(x) Tangent (x 0,f(x 0 )) df() f() x 0 x

Læs mere

Indhold. Litteratur 11

Indhold. Litteratur 11 Indhold Forord ii 00-sættet 1 Opgave 1....................................... 1 Spørgsmål (a).................................. 1 Spørgsmål (b).................................. 1 Spørgsmål (c)..................................

Læs mere

Grænseværdier og Kontinuitet

Grænseværdier og Kontinuitet Grænseværdier og Kontinuitet Frank Villa 11. august 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger

Kalkulus 2 - Grænseovergange, Kontinuitet og Følger Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

Kapitel 2. Differentialregning A

Kapitel 2. Differentialregning A Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation

Læs mere

Største- og mindsteværdi Uge 11

Største- og mindsteværdi Uge 11 Uge 11 : Definitioner Efterår 2009 : Definitioner Lad A R n og f : A R en reel funktion af n. : Definitioner : Definitioner Lad A R n og f : A R en reel funktion af n. Punktet a = (a 1, a 2,..., a n )

Læs mere

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning EKSISTENS- OG ENTYDIGHEDSSÆTNINGEN Vi vil nu bevise eksistens- og entydighedssætningen for ordinære differentialligninger. For overskuelighedens skyld vil vi indskrænke os til at undersøge een 1. ordens

Læs mere

matx.dk Mikroøkonomi

matx.dk Mikroøkonomi matx.dk Mikroøkonomi Dennis Pipenbring 31. august 2011 Indold 1 Udbuds- og efterspørgselskurver 3 1.1 Lineær.............................. 4 1.2 Eksponentiel........................... 5 1.3 Potens..............................

Læs mere

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Integration. Frank Nasser. 15. april 2011

Integration. Frank Nasser. 15. april 2011 Integration Frank Nasser 15. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en arkiveret

Læs mere

Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. 2 n. n=1 2n (n + 1)2 1 = 2(n + n+1

Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. 2 n. n=1 2n (n + 1)2 1 = 2(n + n+1 Analyse Reeksamen 00 Rasmus Sylvester Bryder 5. august 0 Opgave Afgør for hver af følgende rækker om den er divergent, betinget konvergent eller absolut konvergent. ( ) n n +3n+7 n= n + For alle n N vil

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 35-del 1, 2010 Redigeret af Jessica Carter efter udgave af Hans J. Munkholm 1 Nogle talmængder s. 4 N = {1,2,3, } omtales som de naturlige tal eller de positive heltal. Z =

Læs mere

Analyse 1, Prøve 4 Besvarelse

Analyse 1, Prøve 4 Besvarelse Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 2011 1 Analyse 1, Prøve 4 Besvarelse Lad Opgave 1 (50%) M = {T R 2 T er en åben trekant} og lad A : M R være arealfunktionen, dvs.

Læs mere

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007 Funktionalligninger Anders Schack-Nielsen 5. februar 007 Disse noter er en introduktion til funktionalligninger. En funktionalligning er en ligning (eller et ligningssystem) hvor den ubekendte er en funktion.

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

BEVISER TIL KAPITEL 3

BEVISER TIL KAPITEL 3 BEVISER TIL KAPITEL 3 Alle beviserne i dette afsnit bruger følgende algoritme fra side 88 i bogen. Algoritme: Fremgangsmåde til udledning af forskellige regneregler for differentiation af forskellige funktionstyper

Læs mere

er en n n-matrix af funktioner

er en n n-matrix af funktioner Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Ligning og løsning Nøgleord og begreber Eksistens og entdighed Elementære funktioner Eksponential af matrix Retningsfelt Hastighedsfelt for sstem for sstem Stabilitet

Læs mere

Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig

Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig Analyse : Eulers formel Sebastian rsted 9. maj 015 Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig for øje, hvor de matematiske resultater kommer fra, og hvad de baseres på;

Læs mere

Grænseværdier og Kontinuitet

Grænseværdier og Kontinuitet Grænseværdier og Kontinuitet Frank Villa 17. marts 2015 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Archimedes Princip. Frank Nasser. 12. april 2011

Archimedes Princip. Frank Nasser. 12. april 2011 Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet

Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt

Læs mere

Den harmoniske svingning

Den harmoniske svingning Den harmoniske svingning Teori og en anvendelse Preben Møller Henriksen Version. Noterne forudsætter kendskab til sinus og cosinus som funktioner af alle reelle tal, dvs. radiantal. I figuren nedenunder

Læs mere

Funktioner af flere variable

Funktioner af flere variable Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,

Læs mere

Gamle eksamensopgaver (MASO)

Gamle eksamensopgaver (MASO) EO 1 Gamle eksamensopgaver (MASO) Opgave 1. (Vinteren 1990 91, opgave 1) a) Vis, at rækken er divergent. b) Vis, at rækken er konvergent. Opgave 2. (Vinteren 1990 91, opgave 2) Gør rede for at ligningssystemet

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner f : R R En funktion f : R R er differentiabel

Læs mere

3. Differentialregning

3. Differentialregning 3. Differentialregning 3.1. Differentiabilitet Lad os for en lille stund se lidt på det velkendte, klassiske tangentbegreb, som allerede var kendt i antikkens græske geometri. Tangenter var kun knyttet

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Differentiation af Potensfunktioner

Differentiation af Potensfunktioner Differentiation af Potensfunktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 10. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 10. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 10. september 2018 Oversigt Relle tal Notation Tal Største og mindste element, mindste overtal og største undertal

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

ANALYSE 1, 2014, Uge 5

ANALYSE 1, 2014, Uge 5 ANALYSE, 204, Uge 5 Afleveringsfrist for Prøve 2 er Tirsdag den 20/5 kl 0:5. Forelæsninger Tirsdag Vi går videre med Afsnit 4 om uniform konvergens af Fourierrækker, hvor hovedsætningen er Sætning 4.3.

Læs mere

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2005 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

Funktionsundersøgelse. Rasmus Sylvester Bryder

Funktionsundersøgelse. Rasmus Sylvester Bryder Funktionsundersøgelse Rasmus Sylvester Bryder 7. november 2008 Dette projekt aeveres i forbindelse med LA T EX 2ε-kurset vejledningsuge 2, 2008-09 på KU; til projektet benyttes noter givet til opgaveløsning.

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 7. september 2016 Formålet med MASO Integer sequences Oversigt Relle tal Notation Tal Overtal og undertal Største

Læs mere

Eksamen 2014/2015 Mål- og integralteori

Eksamen 2014/2015 Mål- og integralteori Eksamen 4/5 Mål- og integralteori Københavns Universitet Institut for Matematiske Fag Formalia Eksamensopgaven består af 4 opgaver med ialt spørgsmål Ved bedømmelsen indgår de spørgsmål med samme vægt

Læs mere

Pointen med Differentiation

Pointen med Differentiation Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

Matematik og dam. hvordan matematik kan give overraskende resultater om et velkendt spil. Jonas Lindstrøm Jensen

Matematik og dam. hvordan matematik kan give overraskende resultater om et velkendt spil. Jonas Lindstrøm Jensen Matematik og dam hvordan matematik kan give overraskende resultater om et velkendt spil Jonas Lindstrøm Jensen (jonas@imf.au.dk) March 200 Indledning Det klassiske spil dam spilles på et almindeligt skakbræt.

Læs mere

A U E R B A C H M I K E (2) (1)

A U E R B A C H M I K E (2) (1) M A T E M A T I K A 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f 4 () Matematik A2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Nøgleord og begreber Eksistens og entydighed Elementære funktioner Eksponential af matrix Retningsfelt Eulers metode Hastighedsfelt for system Eulers metode for

Læs mere

Funktioner af to variable

Funktioner af to variable enote 15 1 enote 15 Funktioner af to variable I denne og i de efterfølgende enoter vil vi udvide funktionsbegrebet til at omfatte reelle funktioner af flere variable; vi starter udvidelsen med 2 variable,

Læs mere

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver Optimeringsteori Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver 20/12/2012 Institut for Matematiske Fag Matematik-Økonomi Fredrik Bajers Vej

Læs mere

ANALYSE 1. Uge 7, 4. juni juni, 2007

ANALYSE 1. Uge 7, 4. juni juni, 2007 ANALYSE 1 Uge 7, 4. juni - 10. juni, 2007 Forelæsninger Mandag 4. juni Formålet med denne dags forelæsninger er at etablere en overgang til emnet metriske rum, hvis hovedformål er at udvide begreber som

Læs mere

Indhold. Forord. Det græske alfabet. 1. Kontinuitet og grænseværdi Indledning Kontinuitet Opgaver til 1.2

Indhold. Forord. Det græske alfabet. 1. Kontinuitet og grænseværdi Indledning Kontinuitet Opgaver til 1.2 Indhold Forord Det græske alfabet 1. Kontinuitet og grænseværdi 1.1. Indledning 1.2. Kontinuitet Opgaver til 1.2 1.3. Regning med kontinuerte funktioner Opgaver til 1.3 1.4. Kontinuerte funktioners egenskaber

Læs mere

Differentiation af Trigonometriske Funktioner

Differentiation af Trigonometriske Funktioner Differentiation af Trigonometriske Funktioner Frank Villa 15. oktober 01 Dette dokument er en del af MatBog.dk 008-01. IT Teaching Tools. ISBN-13: 978-87-9775-00-9. Se yderligere betingelser for brug her.

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Matematik B2. Mike Auerbach. (2) f (1)

Matematik B2. Mike Auerbach. (2) f (1) Matematik B2 Mike Auerbach (2) f a b () Matematik B2. udgave, 205 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet vha. tekstformateringsprogrammet

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Integration. Frank Villa. 8. oktober 2012

Integration. Frank Villa. 8. oktober 2012 Integration Frank Villa 8. oktober 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1

Læs mere

Oversigt [S] 4.5, 5.10

Oversigt [S] 4.5, 5.10 Oversigt [S] 4.5, 5.0 Nøgleord og begreber Ubestemte udtryk l Hospitals regel l Hospitals regel 2 Test l Hospitals regel Uegentlige integraler Test uegentlige integraler Uegentlige integraler 2 Test uegentlige

Læs mere

M A T E M A T I K A 2

M A T E M A T I K A 2 M A T E M A T I K A 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f 4 () Matematik A2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X). Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

M A T E M A T I K B 2

M A T E M A T I K B 2 M A T E M A T I K B 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f a x b () Matematik B2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

A U E R B A C H. (2) f. a x b

A U E R B A C H. (2) f. a x b M A T E M A T I K B 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f a x b () Matematik B2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Matematik A2. Mike Auerbach (2) (1)

Matematik A2. Mike Auerbach (2) (1) Matematik A2 Mike Auerbach (2) f () Matematik A2. udgave, 205 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet vha. tekstformateringsprogrammet

Læs mere

Førsteordens lineære differentialligninger

Førsteordens lineære differentialligninger enote 16 1 enote 16 Førsteordens lineære differentialligninger I denne enote gives først en kort introduktion til differentialligninger i almindelighed, hvorefter hovedemnet er en særlig type af differentialligninger,

Læs mere

Matematikprojekt. Differentialregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 4 Oktober 2010

Matematikprojekt. Differentialregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 4 Oktober 2010 Matematikprojekt om Differentialregning Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen 4 Oktober 2010 Indhold I Del 1................................ 3 I Differentialregningens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 2009 Institution Silkeborg Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik, niveau

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

2. Fourierrækker i en variabel

2. Fourierrækker i en variabel .1. Fourierrækker i en variabel I Kapitel II 7 blev der indført, dels funktionsrummene L p (X, µ) (mere udførligt skrevet L p (X, E, µ)), dels rummene L p (X, µ), der fås af L p (X, µ) ved at funktioner

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

Stamfunktionsproblemet

Stamfunktionsproblemet Stamfunktionsproblemet Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Implicit givne og inverse funktioner

Implicit givne og inverse funktioner Implicit givne og inverse funktioner Morten Grud Rasmussen 1 11. april 2016 1 Implicit givne funktioner I lineær algebra har vi lært meget om at løse lineære ligningsystemer og om strukturen af løsningsmængden.

Læs mere