1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

Størrelse: px
Starte visningen fra side:

Download "1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side."

Transkript

1 Geometrinoter 1, januar 009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt grundlæggende sætninger om indskrivelige firkanter. Noterne forudsætter kendskab til ensvinklede trekanter samt sinusog cosinusrelationerne. 1 Trekantens linjer De vigtigste linjer i en trekant er udover siderne, medianerne, midtnormalerne, vinkelhalveringslinjerne og højderne. De har alle hver deres særlige egenskaber. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Sætning om medianer De tre medianer i en trekant går igennem samme punkt, og dette punkt deler medianerne i forholdet 1:. Medianernes skæringspunkt betegnes normalt M. Lad ABC være en trekant, og kald medianerne for henholdsvis m a, m b og m c, og medianernes fodpunkter på siderne a, b og c for henholdsvis M a, M b og M c. Medianerne m a og m b skærer hinanden i et punkt vi kalder M. Vi vil nu vise at de skærer hinanden i forholdet 1 :. Da M a og M b er midtpunkter på henholdsvis BC og AC, er M a M b parallel med AB, dvs. at trekant ABC og trekant M b M a C er ensvinklede med forholdet 1 :, og specielt er M a M b = AB. Desuden er trekanterne ABM og M a M b M ensvinklede da M a M b og AB er parallelle, og forholdet mellem treknaterne er netop forholdet mellem M a M b og AB dvs. 1 :. Her af ses at m a og m b deler hinanden i forholdet 1 :. Da m a og m b var vilkårlige medianer, må m a og m c også skære hinanden i forholdet 1 :, dvs. at alle tre medianer går gennem samme punkt M. Definition af midtnormal En midtnormal til et linjestykke AB er det geometriske sted for de punkter P der har samme afstand til A og B, altså mængden af punkter P som opfylder at AP = BP. Midtnormalen er dermed en linje som går gennem midtpunktet af linjestykket AB og står vinkelret på AB, da det netop er punkterne på denne linje som opfylder betingelsen. Sætning om midtnormaler I en trekant går de tre midtnormaler gennem samme punkt, og dette punkt er centrum for den omskrevne cirkel, dvs. den cirkel

2 Geometrinoter 1, januar 009, Kirsten Rosenkilde som går gennem trekantens tre vinkelspidser. Midtnormalernes skæringspunkt betegnes normalt O. Opgave 1.1 (Om midtnormaler). ovenstående sætning om midtnormalerne i en trekant. (Hint: Betragt to af midtnormalerne, og vis at deres skæringspunkt ligger i samme afstand til alle tre vinkelspidser i trekanten.) Definition af vinkelhalveringslinje En vinkelhalveringslinje til en vinkel er det geometriske sted for de punkter P der har samme afstand til vinklens ben. Vinkelhalveringslinjen er altså en linje som deler en vinkel i to lige store vinkler, da det netop er punkterne på denne linje som opfylder betingelsen. Sætning om vinkelhalveringslinjer I en trekant går de tre vinkelhalveringslinjer gennem samme punkt, og dette punkt er centrum for den indskrevne cirkel, dvs. den cirkel som tangerer alle tre sider i trekanten. Vinkelhalveringslinjernes skæringspunkt betegnes normalt I. Opgave 1. (Om vinkelhalveringslinjer). ovenstående sætning om vinkelhalveringslinjer i en trekant. (Hint: Første del: Betragt to vinkelhalveringslinjer, og vis at deres skæringspunkt har samme afstand til alle tre sider i trekanten. Anden del: Benyt sinusrelationen på trekant AV C og trekant AV B.) Definition af højde En højde i en trekant er en linje der går gennem en vinkelspids og er ortogonal med modstående side. Sætning om højder I en trekant går højderne gennem samme punkt. Tegn linjer gennem henholdsvis A, B og C som er parallelle med modstående sider. En vinkelhalveringslinje deler modstående side i trekanten i samme forhold som forholdet mellem vinklens to hosliggende sider, dvs. at hvis fodpunktet for vinkelhalveringslinjen v a fra A til siden BC betegnes V, da er CV V B = b c. Firkant ACBC 1 og firkant ACA 1 B er parallelogrammer, dvs. at C 1 B = AC = BA 1. Tilsvarende ses at C 1 A = AB 1 og B 1 C = CA 1. Højderne i ABC er derfor midtnormaler i A 1 B 1 C 1, og de går ifølge sætningen om midtnormaler gennem samme punkt.

3 Geometrinoter 1, januar 009, Kirsten Rosenkilde 3 Definition af cevian En cevian er en linje i en trekant fra en vinkelspids til den modstående side (eller dens forlængelse). Fx er højder, medianer og vinkelhalveringslinjer alle cevianer. Cevas sætning Cevas sætning siger at cevianerne AA, BB og CC (hvor A ligger på BC eller dens forlængelse osv.), skærer hinanden i samme punkt, netop hvis AC C B BA A C CB B A = 1. Her beviser vi kun sætningen i tilfældet hvor alle tre cevianer ligger inden for trekanten. Hvis nogle af cevianerne falder uden for trekanten, foregår beviset stort set på samme måde, men det kræver lidt flere overvejelser undervejs. Først viser vi at hvis de tre cevianer går gennem samme punkt, så vil AC C B BA A C CB B A = 1. Antag at cevianerne går gennem samme punkt P. Der gælder at hvis to trekanter har samme højde, da er forholdet mellem arealerne det samme som forholdet mellem grundlinjerne. Lad T ( ABC) betegne arealet af en trekant. Dermed er Samlet får vi AB B C = T ( ABB ) T ( CBB ) og AB B C = T ( AP B ) T ( B P C). AB B C = T ( ABB ) T ( AP B ) T ( CBB ) T ( B P C) = T ( ABP ) T ( BP C). Her har vi benyttet brøkregnereglen der siger at hvis a b = s t og a b = u v, hvor t v, da er a b = s u t v. Tilsvarende fås BC C A = T ( BCP ) T ( CP A) Samlet giver dette og CA A B = T ( CAP ) T ( AP B). AB B C BC C A CA A B = T ( ABP ) T ( BP C) T ( BCP ) T ( CP A) T ( CAP ) T ( AP B) = 1. Nu viser vi den modsatte vej. Antag at AC C B BA A C CB B A = 1. Kald skæringspunktet mellem AA og BB for P, og betragt cevianen CD fra C gennem P. Da cevianerne AA, BB og CD går gennem samme punkt, gælder ifølge det vi lige har vist, at AD DB BA A C CB B A = 1.

4 Geometrinoter 1, januar 009, Kirsten Rosenkilde 4 Ifølge vores antagelse er AC C B BA A C CB B A = 1, dvs. at AD DB = AC C B. Af dette ses at D og C er samme punkt, og dermed at cevianerne AA, BB og CC skærer hinanden i samme punkt P. Opgave 1.3. Før benyttede vi sætningen om midtnormaler til at bevise at højderne skærer hinanden i samme punkt. Benyt nu i stedet Cevas sætning til at bevise dette. Sætning om medianernes længde Længden af medianerne kan udtrykkes ved trekantens sidelængder. I en trekant ABC er længden af medianen m a fra vinkelspids A til siden a givet ved m a = b + c a 4. Kald fodpunktet for m a for M og vinklen BMA for v. Ifølge cosinusrelationen gælder at og c = m a + a 4 m aa cos v, b = m a + a 4 + m aa cos v. Her har vi udnyttet at cos(180 v) = cos(v). Ved addition af de to ligninger får man m a = b + c a 4. Opgave 1.4. I en trekant ABC betegnes medianerne henholdsvis m a, m b og m c. Find en formel for beregning af længderne af trekantens sider a, b og c udtrykt ved medianernes længde. Opgave 1.5. Vis at medianerne i en trekant deler trekanten i seks små trekanter med samme areal. Opgave 1.6. Lad I være vinkelhalveringslinjernes skæringspunkt i en trekant ABC, og lad yderligere A 1, B 1 og C 1 være refleksionen af I i henholdsvis a, b og c. Cirklen gennem A 1, B 1 og C 1 går også gennem B. Bestem vinklen ABC. Opgave 1.7. Fra vinkelspidsen C i trekant ABC tegnes en ret linie der halverer medianen fra A. I hvilket forhold deler denne linie siden AB? (Georg Mohr 1995) Opgave 1.8. Lad I være centrum i den indskrevne cirkel til trekant ABC, og lad yderligere A 1 og A være to forskellige punkter på linjen gennem B og C således at AI = A 1 I = A I, B 1 og B

5 Geometrinoter 1, januar 009, Kirsten Rosenkilde 5 være to forskellige punkter på linjen gennem A og C således at BI = B 1 I = B I, og C 1 og C være to forskellige punkter på linjen gennem A og B således at CI = C 1 I = C I. Vis at A 1 A + B 1 B + C 1 C er trekantens omkreds. Opgave 1.9. I en trekant ABC med areal 1 indtegnes medianerne. Midtpunktet af medianen m a kaldes for A, midtpunktet af medianen m b kaldes for B, og midtpunktet af medianen m c kaldes for C. Cirkler og vinkler Definition af centervinkel En centervinkel er en vinkel der har toppunkt i centrum og radier som vinkelben. En centervinkel måles ved den bue den spænder over. På figuren er AOB en centervinkel som spænder over buen AB, og vi skriver AOB = AB. Bestem arealet af trekant A B C. Definition af periferivinkel En periferivinkel er en vinkel der har toppunkt på cirklen og korder som vinkelben. Sætning om periferivinkler En periferivinkel er halvt så stor som den bue den spænder over. Dermed er to periferivinkler som spænder over samme bue, lige store, og en periferivinkel der spænder over en halvcirkel, er ret. Lad v være en centervinkel og w en periferivinkel der begge spænder over buen AB. Kald centrum for O og punktet hvor w rører periferien, for C.

6 Geometrinoter 1, januar 009, Kirsten Rosenkilde 6 Antag først at vinkelbenene for vinkel v kun skærer vinkelbenene for w i punkterne A og B. Da deler diameteren gennem C vinklerne v og w i to vinkler som vi kalder hendholdsvis v A og v B og w A og w B. Trekant AOC er nu en ligebenet trekant med to lige s- tore vinkler w A, og den sidste vinkel er 180 v A. Da vinkelsummen i en trekant er 180, er w A = v A. Tilsvarende fås w B = v B, dvs. w = v. Sætning om korde-tangent-vinkel En korde-tangent-vinkel er halvt så stor som den bue korden spænder over. Opgave.1 (Om korde-tangent-vinkler). sætningen om korde-tangent-vinkler. (Hint: Husk at AO står vinkelret på tangenten.) Opgave.. følgende om vinkel v og w på figurerne: v = AB + CD CD AB og w =. Antag nu at w s ene vinkelben CB skærer v s vinkelben OA. Diameteren gennem C skærer da yderligere periferien i et punkt vi kalder for D. Ifølge det vi lige har vist, er BCD = BOD og ACD = AOD, og dermed w = ACD BCD = AOD BOD = v. Definition af korde-tangent-vinkel En korde-tangent-vinkel er en vinkel der har toppunkt på cirklen og en korde samt en tangent som vinkelben. (Hint: Se på trekanter, og udnyt at vinkelsummen er 180.) Definition af et punkts potens. I en given cirkel betegnes centrum O og radius r. Et punkt P s potens mht. cirklen er tallet P O r. Hvis P ligger på cirkelperiferien, er P s potens derfor 0, mens den er positiv hvis P ligger uden for cirklen, og negativ hvis P ligger inden for cirklen.

7 Geometrinoter 1, januar 009, Kirsten Rosenkilde 7 Sætning om et punkts potens I en given cirkel betegnes centrum O og radius r. Lad P være et punkt og l og m være to linjer gennem P, hvor l skærer cirklen i A og B, og m skærer cirklen i C og D. (Hvis en af linjerne tangerer cirklen, er de to punkter sammenfaldende.) P QA er lige så stor som periferivinklen P BQ, ifølge sætningerne om periferivinkler og korde-tangent-vinkler. Dermed er AQP og QBP ensvinklede, og dette giver P Q = AP BP. Samlet har vi at AP BP netop er punktet P s potens mht. cirklen. Lad nu m være endnu en linje gennem P som skærer cirklen i punkterne C og D. Ifølge det vi netop har vist, må også CP DP være punktet P s potens mht. til cirklen, dvs. at AP BP = CP DP. Da gælder at AP BP = CP DP. Hvis P ligger uden for cirklen, er AP BP netop punktets potens mht. cirklen, og hvis P ligger inden for cirklen, er AP BP netop punktets potens. i tilfældet hvor punktet ligger uden for cirklen. Lad P være et punkt uden for cirklen, og lad l være en vilkårlig linje gennem P som skærer cirklen i punkterne A og B. Vi viser først at AP BP netop er P s potens mht. cirklen. Opgave.3 (Om et punkt potens). sætningen om et punkts potens i det tilfælde hvor punktet ligger inden i cirklen. Opgave.4. Lad to cirkler C 1 og C skære hinanden i punkterne A og B. Tangenten til C 1 gennem B skærer C i punktet C, og tangenten til C gennem B skærer C 1 i punktet D. Desuden oplyses at AC = 3 og AD = 4. Bestem længden af AB. Opgave.5. En halvcirkel med diameter AB bevæger sig langs en ret vinkel således at A bevæger sig langs det ene vinkelben, og B langs det andet. Vis at et fast punkt P på halvcirklen bevæger Tegn tangenten til cirklen gennem P som vist på figuren, og kald røringspunktet for Q. Ifølge Pythagoras sætning er P Q = P O r. Betragt nu trekanterne AQP og QBP. Korde-tangent-vinklen sig langs en ret linje. (Hint: Betragt cirklen med diameter AB, og overvej hvilke punkter der ligger på cirklen.)

8 Geometrinoter 1, januar 009, Kirsten Rosenkilde 8 3 Indskrivelige firkanter Definition af indskrivelige firkanter En firkant kaldes indskrivelig hvis den har en omskreven cirkel. Antag at firkant ABCD er indskrivelig, og lad M være punktet på diagonalen BD som opfylder at DCM = ACB. Sætning om indskrivelige firkanter En firkant er indskrivelig netop hvis summen af modstående vinkler er 180. Antag at en firkant er indskrivelig. To modstående vinkler spænder da tilsammen over hele cirkelperiferien, og summen er derfor 180. Antag at det for en given firkant ABCD gælder at summen af to modstående vinkler er 180. Betragt nu den omskrevne cirkel til trekant ABC, og lad punktet E være skæringen mellem cirklen og linjen gennem C og D. Hvis firkanten er indskrivelig, er D lig E. Vi ved at AEC = 180 ABC = ADC. Hvis D ligger uden for cirklen, vil ADC være mindre end AEC, og hvis den ligger indenfor, vil den være større. Dermed må D = E. Opgave 3.1 (Om indskrivelige firkanter). Vis at hvis begge diagonaler i en firkant ABCD står vinkelret på en side, da er firkanten indskrivelig. Ptolemæus sætning For en indskrivelig firkant ABCD gælder at AC BD = AB CD + BC DA. Der gælder at CDM = CAB da de spænder over samme bue. Dermed er trekant CDM og trekant CAB ensvinklede med AB DC = DM AC. Tilsvarende er trekant CAD og trekant CBM ensvinklede med AD CB = BM AC. I alt giver dette AB CD + BC DA = AC ( DM + MB ) = AC BD. Ptolemæus ulighed For alle firkanter ABCD gælder Ptolemæus ulighed AC BD AB CD + BC DA med lighedstegn netop hvis firkant ABCD er indskrivelig. (Denne sætning bevises ikke her.) Additionsformlen for sinus Ptolemæus sætning kan benyttes til at vise additionsformlen for sinus sin(x + y) = sin x cos y + cos x sin y. Vi viser sætningen i tilfældet hvor x og y er spidse vinkler. Lad A, B, C og D være punkter på en cirkel med radius 1 og centrum O således at DB er diameter, ADB = x og CDB = y.

9 Geometrinoter 1, januar 009, Kirsten Rosenkilde 9 Trekanterne DAB og DCB er retvinklede da både DAB og DCB spænder over diameteren, og dette giver at AB = sin x, AD = cos x, BC = sin y og DC = cos y. Trekant AOC er en ligebenet trekant hvor AO = OC = 1 og AOC = (x + y). Dermed er 1 AC = sin(x + y). Ifølge Ptolemæus sætning gælder Opgave 3.4. En ligesidet trekant ABC er indskrevet i en cirkel. Lad M være et vilkårligt punkt på cirkelbuen BC. Vis at MA = MB + MC. Opgave 3.5. En firkant ABCD er indskreven i en cirkel med radius 1, AB = 1, AC = og AD =. Bestem BC. sin(x + y) = sin(x) cos(y) + sin(y) cos(x) hvoraf additionsformlen følger. Korollar Af additionsformlen for sinus får man direkte formlen for sinus til den dobbelte vinkel sin(x) = sin x cos x. Opgave 3.. Lad H a og H b være fodunkterne for højderne fra henholdsvis A og B i trekant ABC. Vis at firkant ABH a H b er indskrivelig. Opgave 3.3. Tre cirkler skærer hinanden som vist på figuren. Lad A være et punkt på cirkelbuen P Q som vist på figuren. Linjen gennem A og P skærer cirklen C i punktet B, og linjen gennem A og Q skærer cirklen C 3 i C. Vis at punkterne B, C og R ligger på linje.

10 Geometrinoter 1, januar 009, Kirsten Rosenkilde 10 4 Oversigt Trekantens linjer Median: En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Medianernes skæringspunkt: De tre medianer i en trekant går igennem samme punkt som normalt betegnes M, og dette punkt deler medianerne i forholdet 1:. Midtnormal: En midtnormal til et linjestykke AB er det geometriske sted for de punkter P der har samme afstand til A og B. Midtnormalernes skæringspunkt: I en trekant går de tre midtnormaler gennem samme punkt som normalt betegnes O, og dette punkt er centrum for den omskrevne cirkel. Vinkelhalveringslinjer: En vinkelhalveringslinje til en vinkel er det geometriske sted for de punkter P der har samme afstand til vinklens ben. Vinkelhalveringslinjen er altså en linje som deler en vinkel i to lige store vinkler. Vinkelhalveringslinjernes skæringspunkt: I en trekant går de tre vinkelhalveringslinjer gennem samme punkt som normalt betegnes I, og dette punkt er centrum for den indskrevne cirkel. Vinkelhalveringslinjen deler modstående side i trekanten i samme forhold som forholdet mellem vinklens to hosliggende sider. Højder: En højde i en trekant er en linje der går gennem en vinkelspids og er ortogonal med modstående side. Højdernes skæringspunkt: I en trekant går højderne gennem samme punkt som normalt betegnes H. Cevian: En cevian er en linje i en trekant fra en vinkelspids til den modstående side (eller dens forlængelse). Cevas sætning: Cevianerne AA, BB og CC (hvor A ligger på BC eller dens forlængelse osv.), skærer hinanden i samme punkt, netop hvis AC C B BA A C CB B A = 1. Cirkler og vinkler Centervinkel: En centervinkel er en vinkel der har toppunkt i centrum og radier som vinkelben. En centervinkel måles ved den bue den spænder over. Periferivinkel: En periferivinkel er en vinkel der har toppunkt på cirklen og korder som vinkelben. Sætning om periferivinkler: En periferivinkel er halvt så stor som den bue den spænder over, to periferivinkler som spænder over samme bue, er lige store, og en periferivinkel der spænder over en halvcirkel, er ret. Korde-tangent-vinkel: En korde-tangent-vinkel er en vinkel der har toppunkt på cirklen og en korde samt en tangent som vinkelben. Sætning om korde-tangent-vinkel: En korde-tangent-vinkel er halvt så stor som den bue korden spænder over. Punkts potens: I en given cirkel betegnes centrum O og radius r. Et punkt P s potens mht. cirklen er tallet P O r. Sætning om et punkts potens. Lad P være et punkt og l og m være to linjer gennem P, hvor l skærer en given cirklen i A og B, og m skærer cirklen i C og D. (Hvis en af linjerne tangerer cirklen, er de to punkter sammenfaldende.) Da gælder at AP BP = CP DP.

11 Geometrinoter 1, januar 009, Kirsten Rosenkilde 11 Indskrivelige firkanter: Indskrivelige firkanter: En firkant kaldes indskrivelig hvis den har en omskreven cirkel. Sætning om indskrivelige firkanter: En firkant er indskrivelig netop hvis summen af modstående vinkler er 180. En firkant er indskrivelig hvis begge diagonaler står vinkelret på hver deres side i firkanten. Ptolemæus ulighed: For en firkant ABCD gælder at AC BD AB CD + BC DA med lighedstegn netop når firkanten er indskrivelig. 5 Løsningsskitser Opgave om midtnormaler 1.1 Lad ABC være en trekant, tegn midtnormalerne på AB og BC, og kald deres skæringspunkt for O. Da midtnormalen på AB er det geometriske sted for de punkter der har samme afstand til A og B, og midtnormalen på BC er det geometriske sted for de punkter der har samme afstand til B og C, må afstandene fra O til henholdsvis A, B og C være lige store. Punktet O er dermed centrum for den omskrevne cirkel, og midtnormalen på AC vil på tilsvarende vis gå gennem O. Opgave om vinkelhalveringslinjer 1. Lad ABC være en trekant, tegn vinkelhalveringslinjerne fra A og B, og kald deres skæringspunkt for I. Da vinkelhalveringslinjerne er det geometriske sted for de punkter der har samme afstand til vinklens ben, må afstandene fra I til alle tre sider være lige store. Punktet I er dermed centrum for den indskrevne cirkel, og vinkelhalveringslinjen fra C vil på tilsvarende vis gå gennem I.

12 Geometrinoter 1, januar 009, Kirsten Rosenkilde 1 Ved at udnytte at sin( CV A) = sin( AV B) får vi b sin( CV A) sin( BV A) = CV sin( A ) = sin( A ) = c V B. Heraf ses at vinkelhalveringslinjen deler modstående side i samme forhold som forholdet mellem de hosliggende sider. Opgave 1.3 Kald fodpunkterne for højderne i trekant ABC for H a, H b og H c. Opgave 1.5 Lad M betegne medianernes skæringspunkt og M a betegne fodpunktet for medianen på siden a. Da 3 MM a = AM a, er højden fra A i trekant ABC tre gange så stor som højden fra M i trekant MBC. Dermed udgør trekant MBC en tredjedel af arealet af trekant ABC. Desuden har trekant MM a B og trekant MM a C samme areal da de har samme højde og lige store grundlinjer. Dermed deler medianerne en trekant i seks små trekanter med samme areal. Opgave 1.6 Lad A være skæringspunktet mellem IA 1 og BC. Trekant BA I er retvinklet, og BI = A I. Dermed er IBA = 30. Da BI er vinkelhalveringslinje, er vinkel B = 60. Da er cos A = AH b c = AH c, og dermed AH b b AH c = c b. Opgave 1.7 Kald fodpunktet for m a på a for M. Tegn en linje gennem B parallel med MA, og lad A 1 være skæringspunktet mellem denne linje og forlængelsen af AC. Det tilsvarende gælder for de andre sider. Derfor er AH b BH c CH a H b C H c A H a B = abc abc = 1. Ifølge Cevas sætning går højderne dermed gennem samme punkt. Opgave 1.4 Ved at kombinere formlerne for m a, m b og m c får man c = 4 9 (m a + m b m c). Tilsvarende for de andre to sider. Trekanterne ACM og A 1 CB er ensvinklede med forholdet 1 :, dvs. at CA = AA 1. Linjen gennem C som halverer m a, halverer også A 1 B da m a og A 1 B er parallelle. Denne linje og AB er derfor begge medianer i trekant A 1 BC, og linjen deler dermed AB i forholdet 1 :.

13 Geometrinoter 1, januar 009, Kirsten Rosenkilde 13 Opgave 1.8 Lad A, B og C være den indskrevne cirkels røringspunkter med henholdsvis a, b og c. Trekanterne IC C 1, IC C, IA C og IB C er kongruente, dvs. at C 1 C = C 1 C + C C = A C + CB. På tilsvarende vis fås A 1 A = B A + AC og B 1 B = A B + BC. Dette giver det ønskede. Opgave 1.9 Først viser vi at siderne i trekant A B C er parallelle med siderne i trekant ABC. Indtegn midtpunktstransversalen m gennem siderne AB og AC. er w = 90 OAB = v = v. Opgave. Betragt trekant ABP. Da vinkelsummen i en trekant er 180, er ( v = 180 BC + AD ) = AB + CD. Denne midtpunktstransversal går gennem A og er parallel med BC. Punkterne B og C ligger lige langt fra linjen m og linjen gennem B og C, og dermed er siden B C parallel med BC. Tilsvarende gælder for de andre to sider i trekant A B C. Vi har nu at siderne i trekant ABC og siderne trekant A B C er parallelle. Da midtpunktstransversalen m deler siden AB på midten, må linjen gennem B og C dele siden AB i forholdet 1 : 3, dvs. at AB = 4 A B. Dermed er forholdet mellem siderne i trekant A B C og siderne i trekant ABC 1 : 4, dvs. at forholdet mellem arealerne er ( 1 4 ) = Arealet af trekant A B C er derfor Opgave om korde-tangent-vinkler.1 Vi skal vise at korde-tangentvinklen w er halvt så stor som den centervinkel v der spænder over korden. Da linjestykket fra centrum til tangentens røringspunkt står vinkelret på tangenten, Bemærk først at P BD = 180 DBC = 180 CD. Betragt nu trekant P BD. Da vinkelsummen i en trekant er 180, er w = 180 AB ( 180 CD ) = CD AB Opgave om et punkt potens.3 Lad P være et punkt inden i cirklen. Vi viser at AP BP netop er P s potens mht. cirklen, da det giver det ønskede. Tegn linjen gennem P og O, og kald skæringspunkterne med cirklen for M og N. Trekanterne AMP og NBP er ensvinklede ifølge sætningen om periferivinkler, dvs. at AP BP = MP NP = (r OP )(r + P O ) = r P O. Opgave.4 Ifølge sætningen om korde-tangentvinkler er trekant ABD og.

14 Geometrinoter 1, januar 009, Kirsten Rosenkilde 14 trekant ACB ensvinklede. Dette giver AB = AC AD = 1. Opgave.5 Kald punktet i den rette vinkels spids for O, og betragt en vilkårlig placering af diameteren AB. Da vinkel O er ret, ligger den på cirklen med AB som diameter, dvs. AOP = ABP da de spænder over samme cirkelbue. Punktet P ligger derfor på en ret linje gennem O uanset placeringen af AB. at DB = 3 og CD =. Ved at anvende Ptolemæus sætning får vi nu at BC = 6. Opgave 3.1 Lad ABCD være en firkant hvor diagonalen BD står vinkelret på siden BC, og diagonalen AC står vinkelret på siden AD. Tegn den omskrevne cirkel til trekant ACD. Da DAC er ret, er AD diameter i cirklen. Desuden er vinkel DBC ret og spænder over diameteren AD, og dermed må B ligge på cirkelperiferien. Opgave 3. Firkant AH b H a B er indskrivelig da begge diagonaler står vinkelret på en side i firkanten (se opgave 3.1). Opgave 3.3 Kald punktet hvor alle tre cirkler skærer hinanden, for S. Da summen af modstående vinkler i indskrivelige firkanter er 180, er BRS = AP S = SQC og SQC + SRC = 180. Dermed er SRC + SRB = 180 som ønsket. Opgave 3.4 Ifølge Ptolemæus sætning gælder at M A BC = M B AC + M C AB, og da trekant ABC er ligesidet, fås MA = MB + MC. Opgave 3.5 Bemærk at AD er diameter i cirklen, og dermed at trekanterne ACD og ABD er retvinklede. Pythagoras sætning giver dermed

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. Definition af median En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter 1, januar 2009, Kirsten Rosenkilde 1 Geometrinoter 1 Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, samt

Læs mere

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side.

1 Trekantens linjer. 1.1 Medianer En median er en linje i en trekant der forbinder en vinkelspids med midtpunktet af modstående side. Geometrinoter, maj 007, Kirsten Rosenkilde 1 Geometrinoter Disse noter omhandler grundlæggende sætninger om trekantens linjer, sammenhængen mellem en vinkel og den cirkelbue den spænder over, indskrivelige

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter, januar 009, Kirsten Rosenkilde 1 Geometrinoter Disse noter omhandler sætninger om trekanter, trekantens ydre røringscirkler, to cirklers radikalakse samt Simson- og Eulerlinjen i en trekant.

Læs mere

Sorø 2004. Opgaver, geometri

Sorø 2004. Opgaver, geometri Opgaver, geometri 1. [Balkan olympiade 1999]. For en given trekant ABC skærer den omskrevne cirkel BC s midtnormal i punkterne D og E, og F og G er spejlbillederne af D og E i BC. Vis at midtpunkterne

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion Transformationsgeometri: Inversion. Kirsten Rosenkilde, august 2007 1 Inversion Inversion er en bestemt type transformation af planen, og ved at benytte transformation på en geometrisk problemstilling

Læs mere

1 Trekantens linjer. Indhold

1 Trekantens linjer. Indhold Geometri - Teori og opgaveløsning Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer. Noterne forudsætter

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Finde midtpunkt. Flisegulv. Lygtepæle

Finde midtpunkt. Flisegulv. Lygtepæle Finde midtpunkt Flisegulv Lygtepæle Antal diagonaler Vinkelsum Vinkelstørrelse Et lille geometrikursus Forudsætninger (aksiomer): Parallelle linjer skærer ikke hinanden uanset hvor meget man forlænger

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

Trekants- beregning for hf

Trekants- beregning for hf Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

Projekt 2.4 Euklids konstruktion af femkanten

Projekt 2.4 Euklids konstruktion af femkanten Projekter: Kapitel Projekt.4 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære femkant. 0. Forudsætninger, definitioner og

Læs mere

Geometri. 1 Trekantens linjer. Indhold

Geometri. 1 Trekantens linjer. Indhold Geometrinoter, 2012, Kirsten Rosenkilde 1 Geometri Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer.

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på

Læs mere

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber:

8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: 8. 8.1 Lav en ordbog med tegninger og/eller definitioner af de geometriske begreber: Kvadrat Rektangel Parallelogram Trapez Ligebenet trekant Ligesidet trekant Retvinklet trekant Rombe Polygon Ellipse

Læs mere

Geometri - Teori og opgaveløsning

Geometri - Teori og opgaveløsning Geometri - Teori og opgaveløsning Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer. Noterne forudsætter

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

1 Trekantens linjer. Indhold

1 Trekantens linjer. Indhold Geometri - Teori og opgaveløsning Formålet med disse noter er at give en grundig introduktion til geometri med fokus på hvad man har brug for til internationale matematikkonkurrencer. Noterne forudsætter

Læs mere

Løsningsforslag til Geometri 4.-10. klasse

Løsningsforslag til Geometri 4.-10. klasse Løsningsforslag til Geometri 4.-0. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser, dem

Læs mere

Svar på opgave 322 (September 2015)

Svar på opgave 322 (September 2015) Svar på opgave 3 (September 05) Opgave: En sekskant har sidelængder 7 7. Bestem radius i den omskrevne cirkel hvis sekskanten er indskrivelig. Besvarelse: ny version 6/0-05. metode. Antag at sekskanten

Læs mere

1 Geometri & trigonometri

1 Geometri & trigonometri 1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant

Læs mere

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 - 2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Geometrisk tegning - Facitliste

Geometrisk tegning - Facitliste Geometrisk tegning - Facitliste Om kapitlet I dette kapitel om geometrisk tegning skal eleverne arbejde med forskellige tegneteknikker og hjælpemidler. De skal gengive og undersøge muligheder og begrænsninger

Læs mere

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser *HRPHWUL PHG *HRPH7ULFNV q2nodvvh - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser INFA 1998 1 Forord I den nye læseplan for matematik og i den tilhørende undervisningsvejledning

Læs mere

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden.

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden. Opgave Heltalligt Bestem alle hele tal, n >, for hvilke n + n er et helt tal. Opgave Trekantet I en spidsvinklet trekant ABC skærer vinkelhalveringslinien fra A siden BC i punktet L og den omskrevne cirkel

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

brikkerne til regning & matematik geometri F+E+D preben bernitt

brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri F+E+D preben bernitt brikkerne til regning & matematik geometri, F+E+D ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering er kun

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Matematik. Meteriske system

Matematik. Meteriske system Matematik Geometriske figurer 1 Meteriske system Enheder: Når vi arbejder i længder, arealer og rummål er udgangspunktet metersystemet: 2 www.ucholstebro.dk. Døesvej 70 76. 7500 Holstebro. Telefon 99 122

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen. Geometri. Georg Mohr-Konkurrencen

Tip til 1. runde af Georg Mohr-Konkurrencen. Geometri. Georg Mohr-Konkurrencen Tip til. runde af Georg Mohr-Konkurrencen Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en teoretisk indføring, men der i stedet fokus på

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på bagsiden).

Læs mere

Tilhørende: Robert Nielsen, 8b. Geometribog. Indeholdende de vigtigste og mest basale begreber i den geometriske verden.

Tilhørende: Robert Nielsen, 8b. Geometribog. Indeholdende de vigtigste og mest basale begreber i den geometriske verden. Tilhørende: Robert Nielsen, 8b Geometribog Indeholdende de vigtigste og mest basale begreber i den geometriske verden. 1 Polygoner. 1.1 Generelt om polygoner. Et polygon er en figur bestående af mere end

Læs mere

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A)

Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Projekt 10.1 Er der huller i Euklids argumentation? Et moderne aksiomsystem (især for A) Indhold Introduktion... 2 Hilberts 16 aksiomer Et moderne, konsistent og fuldstændigt aksiomsystem for geometri...

Læs mere

GEOMETRI og TRIGONOMETRI del 2

GEOMETRI og TRIGONOMETRI del 2 GEOMETRI og TRIGONOMETRI del x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse COS, SIN, TAN og RETVINKLEDE TREKANTER... 3 Vinkler målt i radianer:... 6 Grundrelationen:... 8 Overgangsformler:...

Læs mere

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner

Læs mere

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014

Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Sæt 05 Geometri 01 Navn: Klasse: HTx1A Opgaver: 067, 068, 069, 070, 071, 072, 073 & 074 Afleveringsdato: 03-12-2014 Rettes: Karakter: Rettes ikke: Set og godkendt: Samlet elevtid: 165 min. = 2,75 time

Læs mere

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag

Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag [1] Facitliste til Trigonometri i praksis 8.-9. klasse Erik Bilsted 1.udgave, 1. oplag 2009 Alinea København Kopiering af denne bog er kun tilladt ifølge aftale med COPY-DAN Forlagsredaktion: Heidi Freiberg

Læs mere

Ligedannede trekanter

Ligedannede trekanter Ib Michelsen: Matematik C, Geometri, 1. kapitel 2011 Version 7.1 22-08-11 Rettet: tempel.png inkorporeret / minioverskrift rettet D:\Appserv260\www\2011\ligedannedeTrekanter2.odt Arven fra Grækenland Arven

Læs mere

brikkerne til regning & matematik geometri trin 2 preben bernitt

brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

GEOMETRI. Generelt om vinkler. Notation for vinkler: u, A, BAC. Topvinkler er lige store, x = y

GEOMETRI. Generelt om vinkler. Notation for vinkler: u, A, BAC. Topvinkler er lige store, x = y GEOMETRI Generelt om inkler Nottion for inkler: u, A, BAC Topinkler er lige store, x y Komplementinkler er inkler, der tilsmmen er 90 u + 90 Supplementinkler er inkler, der tilsmmen er 180 (I stedet for

Læs mere

Mike Vandal Auerbach. Geometri i planen. # b. # a. # a # b.

Mike Vandal Auerbach. Geometri i planen. # b. # a. # a # b. Mike Vandal Auerbach Geometri i planen # a # a www.mathematicus.dk Geometri i planen 1. udgave, 2018 Disse noter dækker kernestoffet i plangeometri på stx A- og B-niveau efter gymnasiereformen 2017. Al

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Projekt 3.3 Linjer og cirkler ved trekanten

Projekt 3.3 Linjer og cirkler ved trekanten Projekt 3.3 Linjer og cirkler ved trekanten Midtnormalerne i en trekant Konstruer et linjestykke (punkt-menuen) og navngiv endepunkterne A og B (højreklik og vælg: Etiket), dvs. linjestykket betegnes AB.

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

Elevark Niveau 2 - Side 1

Elevark Niveau 2 - Side 1 Elevark Niveau 2 - Side 1 Opgave 2-1 Brug (Polygon-værktøjet) og tegn trekanter, der ligner disse: Brug (Tekstværktøjet) til at skrive et stort R under de retvinklede trekanter Se Tip 1 og 2 Elevark Niveau

Læs mere

Ib Michelsen: Matematik C, Geometri 2011, Euklid Version 7.2 03-10-11 G:\_nyBog\1-3-euklid\nyEuclid4.odt Sidetal starter med 65

Ib Michelsen: Matematik C, Geometri 2011, Euklid Version 7.2 03-10-11 G:\_nyBog\1-3-euklid\nyEuclid4.odt Sidetal starter med 65 Euklid Ib Michelsen: Matematik C, Geometri 2011, Euklid Version 7.2 03-10-11 G:\_nyBog\1-3-euklid\nyEuclid4.odt Sidetal starter med 65 Indledning "Matematikeren Euklid levede og virkede omtrent 300 aar

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres.

Trekanttypespil. 7 Trekanter. En trekant, hvor to af vinklerne er 90. En retvinklet trekant med siderne 3, 4, og 5. Kan ikke konstrueres. .01 Trekanter Trekanttypespil En retvinklet trekant med siderne,, og. Kan ikke konstrueres. En trekant, hvor to af vinklerne er 90. En ligesidet trekant med siden. En spidsvinklet trekant hvor den ene

Læs mere

06 Formler i retvinklede trekanter del 2

06 Formler i retvinklede trekanter del 2 06 Formler i retvinklede trekanter del 2 I del 2 udledes (nogle af) de generelle formler, der gælder for sinus, cosinus og tangens i retvinklede trekanter. Sætning 1 For enhver vinkel v gælder der BEVIS

Læs mere

Matematik A Vejledende opgaver 5 timers prøven

Matematik A Vejledende opgaver 5 timers prøven Højere Teknisk Eksamen 007 Matematik A Vejledende opgaver 5 timers prøven Undervisningsministeriet Prøvens varighed er 5 timer. Opgavebesvarelsen skal dokumenteres/begrundes. Opgavebesvarelsen skal udformes

Læs mere

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og

Læs mere

Afstandsformlerne i Rummet

Afstandsformlerne i Rummet Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Trigonometri. for 9. klasse. Geert Cederkvist

Trigonometri. for 9. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsværker, hvor der kræves stor nøjagtighed, er der ofte brug for, at man kan beregne sider og vinkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

GeomeTricks Windows version

GeomeTricks Windows version GeomeTricks Windows version Elevarbejdsark MI 130 En INFA-publikation - 1998 GeomeTricks - Elevarbejdsark Viggo Sadolin 16 september 1997 Oversigt over elevarbejdsarkene Klassetrin Type ark 3 4 5 6 7 8

Læs mere

En forenklet model af Ptolemaios palnet model ses til venstre.

En forenklet model af Ptolemaios palnet model ses til venstre. Claudius Ptolemaios levede i Alexandria omkring 50 e.v.t., og han var en meget betydningsfuld astronom, geograf og matematiker. Hans mesterværk Almagest er en omfattende afhandling om alle aspekter af

Læs mere

Opgave 1 Til denne opgave anvendes bilag 1.

Opgave 1 Til denne opgave anvendes bilag 1. Opgave 1 Til denne opgave anvendes bilag 1. a) Undersøg figur 1. Mål og noter vinklerne Mål og noter længderne b) Undersøg figur 2. Mål og noter vinklerne Mål og noter længderne c) Undersøg figur 3. Mål

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 4 Proportionalitet... 4 Rentesregning...

Læs mere

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter

Projekt 8.12 Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekter: Kapitel 8 Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Projekt 8. Firkantstrigonometri og Ptolemaios sætning i cykliske firkanter Trigonometrien til beregning af

Læs mere

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier:

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier: Løsningsvejledning til eksamenssæt fra januar 2009 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - To linjer Vi får opgivet linjen m: Vi skal bestemme en ligning til linjen l, som er parallel med

Læs mere

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x))

4x + 3y + k 4(x + 3y + k) 2(y + x) + 2(xy + k) 7(2y + 3x) 2(k + 2(y + x)) A.0 A Algebradans x + y + k (x + y + k) (y + x) + (xy + k) (y + x) (k + (y + x)) k + k + k + (y +xy + k) (y + x) + k x + x + x + x + x + k (xy + (y + x) xy + xy + k (k + y + k) (xy + x) + y 6(x + xy) k

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Rettevejledning til Georg Mohr-Konkurrencen runde

Rettevejledning til Georg Mohr-Konkurrencen runde Rettevejledning til Georg Mohr-Konkurrencen 2006 2. runde Det som skal vurderes i bedømmelsen af en opgave, er om deltageren har formået at analysere problemstillingen, kombinere de givne oplysninger til

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri

VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Matematik B. Bind 1. Mike Auerbach. c h A H

Matematik B. Bind 1. Mike Auerbach. c h A H Matematik B Bind 1 B c h a A b x H x C Mike Auerbach Matematik B, bind 1 1. udgave, 2014 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne

Læs mere

Thomas Bugge "De første grunde til Regning, Geometrie, Plan-Trigonometrie og Landmaaling". Kiøbenhavn 1795. Tredje Kapitel

Thomas Bugge De første grunde til Regning, Geometrie, Plan-Trigonometrie og Landmaaling. Kiøbenhavn 1795. Tredje Kapitel Thomas Bugge "De første grunde til Regning, Geometrie, Plan-Trigonometrie og Landmaaling". Kiøbenhavn 1795. Tredje Kapitel Skievvinklede Trianglers Opløsning Tab.17. Fig.259. 21 I enhver retlinet flad

Læs mere

Grundlæggende Opgaver

Grundlæggende Opgaver Grundlæggende Opgaver Opgave 1 En retvinklet trekant har sine vinkelspidser i (,4),(4, 4) og (, 4). a) Hvor store er kateterne? b) Hvor store er hypotenusen? c) Beregn trekantens areal. d) Bestem kateterne,

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1) Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,

Læs mere

Løsningsforslag til Geometri 1.-6. klasse

Løsningsforslag til Geometri 1.-6. klasse 1 Løsningsforslag til Geometri 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

Matematik Eksamensprojekt

Matematik Eksamensprojekt Matematik Eksamensprojekt Casper Wandrup Andresen, 2.F I dette projekt arbejdes der bl.a. med parabler, vektorer, funktioner, sinus, cosinus, tangens, differentialregning, integralregning samt de øvrige/resterende

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori

Grafteori, Kirsten Rosenkilde, september 2007 1. Grafteori Grafteori, Kirsten Rosenkilde, september 007 1 1 Grafteori Grafteori Dette er en kort introduktion til de vigtigste begreber i grafteori samt eksempler på opgavetyper inden for emnet. 1.1 Definition af

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Tab.23. Fig.63 og Fig.64

Tab.23. Fig.63 og Fig.64 Thomas Bugge "De første grunde til den rene eller abstrakte mathematik. Tredje og sidste Deel. Den oekonomiske og den militaire Landmaaling". Kiøbenhavn 1814.. Fig.63 og Fig.64 76 Naar der gives en ret

Læs mere

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve

5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve 5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2011 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2011 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 20 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere