A Hvor mange omgange skal hjulene rulle for at komme hele vejen?

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "A Hvor mange omgange skal hjulene rulle for at komme hele vejen?"

Transkript

1

2

3 A Hvor mange omgange skal hjulene rulle for at komme hele vejen? B Tegn den vej, som hjulene kan rulle på tre omgange. Skriv vejens længde med én decimal. C Tegn det hjul, der kan rulle to omgange på vejen. Skriv hjulets diameter med én decimal. C I R K L E R

4

5

6 A Til venstre skal du lægge tallene fra Fibonaccis talfølge sammen. Til højre skal du trække fra et tal i Fibonaccis talfølge. = = + = = + + = = = = = = = = = = = = = = = = = = B Hvad opdager du? C Brug din opdagelse til at bestemme summen af de første fi bonaccital. D Hvad er summen af de første fi bonaccital? D E N A T U R L I G E T A L

7 A Afsæt punkterne A(, ), B(, ) og C(, ) i koordinatsystemet. B Afsæt et punkt D, så ABCD danner et kvadrat. Punktet D har koordinatsættet (, ). C Afsæt punkterne E(, ), F(, ) og G(, ) i koordinatsystemet. D Afsæt et punkt H, så EFGH danner et kvadrat. Punktet H har koordinatsættet (, ). E Afsæt punkterne I(, ) og J(, ) i koordinatsystemet. F Asæt et punkt K, så IJK danner en ligebenet trekant. Punktet K har koordinatsættet (, ). A Afsæt punkterne A(, ) og B(, ) i koordinatsystemet. B Afsæt to punkter C og D, så ABCD danner et parallelogram. Koordinatsættene til de to punkter er C(, ) og D(, ). C Afsæt punkterne E(, ), F(, ) og G(, ) i koordinatsystemet. D Afsæt punkterne H, I og J, så EFGHIJ danner en sekskant med to spejlingsakser. E Koordinatsættene til de tre punkter er H(, ), I(, ) og J(, ). K O O R D I N A T S Y S T E M

8 I idræt skal.c løbe orienteringsløb i parken. A Tegn ruten fra post til post ind på kortet. Post (, ) (, ) ( 4, 9) (, ) (, ) (, ) (, ) (, ) (, ) post (, ). B Post skal eleverne fi nde ved at løse denne opgave: Sæt kryds i punkterne (, ) og (, ). Tegn en linje gennem de to punkter. Sæt kryds i punkterne (, ) og (, ). Tegn en linje gennem de to punkter. Der, hvor linjerne skærer hinanden, ligger post. Post har koordinatsættet (, ). K O O R D I N A T S Y S T E M

9 C Post ligger i WC. Tegn en rute, som går fra post til WC. Skriv koordinatsættene til de punkter, hvor ruten skifter retning. Post 3(, ) (, ) (, ) (, ) (, ) (, ) (, ) (, ). D Post skal eleverne fi nde ved at løse denne opgave: Tegn en linje gennem krydserne i WC og WC. Sæt et kryds i punktet (2, ). Tegn en linje gennem punktet og huset i søen. Der, hvor linjerne skærer hinanden, ligger post. Post har koordinatsættet (, ). E Den sidste post skal eleverne fi nde ved at løse denne opgave: Summen af første og andenkoordinaten er 24. Begge koordinater er primtal. Førstekoordinaten er mindre end andenkoordinaten. Post 6 har koordinatsættet (, ). F Lav en rute, der går fra post 5 til post 6. Post 5(, ) (, ) (, ) (, ) ( (, ) (, ) (, ) (, )., ) Tegn ruten på kortet. A Skriv koordinatsættene til punkterne A-F. A( ; ), B( ; ), C( ; ), D( ; ), E( ; ), F( ; ). B Afsæt punkterne G-M i koordinatsystemet. J M G L I H K K O O R D I N A T S Y S T E M

10 A Skriv koordinatsættene til figurernes hjørnepunkter. Figur ABCD: (, ), (, ), (, ), (, ) Figur EFG: (, ), (, ), (, ) B Spejl fi gurerne i den røde linje, og skriv koordinatsættene til de nye fi gurers hjørnepunkter. Figur A r B r C r D r : (, ), (, ), (, ), (, ) Figur E r F r G r : (, ), (, ), (, ) C Hvad kan du sige om koordinatsættene til en figurs hjørnepunkter, når du spejler fi guren i den røde linje? D Spejl de to fi gurer fra spørgsmål A i den grå linje, og skriv koordinatsættene til de nye fi gurers hjørnepunkter. Figur A g B g C g D g : (, ), (, ), (, ), (, ) Figur E g F g G g : (, ), (, ), (, ) E Hvad kan du sige om koordinatsættene til en figurs hjørnepunkter, når du spejler fi guren i den grå linje? K O O R D I N A T S Y S T E M

11 A Tallene viser, hvor mange elever der går i de forskellige klasser på en skole. Udfyld hyppighedstabellen. Observation Hyppighed B Tegn et pindediagram, der viser resultatet. C Hvad er undersøgelsens typetal? mindsteværdi? størsteværdi? variationsbredde? middeltal? D Hvilke af de fem tal i spørgsmål C er lettest at bestemme ved at se på pindediagrammet? hyppighedstabellen? S T A T I S T I K

12 Opgave 2 26 De fl este har oplevet, at det kan være svært at slå en sekser med en terning, når de lige har brug for den i et spil. A Slå med en terning, indtil du får en sekser. Gentag forsøget 30 gange. Hvis du fx får en sekser i 4. forsøg, er observationen 4. Skriv dine 30 observationer.,,,,,,,,,,,,,,,,,,,,,,,,,,, B Tegn et pindediagram, der viser resultatet. C Hvad er din undersøgelses typetal? mindsteværdi? variationsbredde? middeltal? størsteværdi? D Hvor mange gange tror du, at du skal slå med en terning for at få en sekser? Hvorfor? 12 S T A T I S T I K

13 A Tegn et søjlediagram, der viser ti børns alder. Middeltallet skal være. Typetallet skal være. Størsteværdien skal være. Mindsteværdien skal være. År Adam Bente Clara Dennis Emil Gitte Frederikke Henrik Ida Jakob B Hvad er variationsbredden? A Tegn et søjlediagram, der viser ti andre børns alder. Middeltallet skal være. Variationsbredden skal være. År Anna Birte Carl Ditte Emma Frederik Gunnar Hans Ivan Jens B Hvad er typetallet? mindsteværdien? størsteværdien? S T A T I S T I K

14

15 A Tegn ligedannede fi gurer i det rigtige forhold. B Bestem arealet af hver fi gur, og skriv resultatet ved dem. L I G E D A N N E D E F I G U R E R

16

17

18 Afsæt de viste mål på mm-papir i målestoksforholdet :. Find afstanden fra krydset til det røde punkt. m m m m cm 7,3 cm cm H Ø J D E - O G L A N D M Å L I N G

19 Afsæt de viste mål på mm-papir i målestoksforholdet :. Find afstanden fra krydset til det røde punkt. m m m m ,8 cm 47 5,5 cm ,8 cm 32 0,5 cm 52 H Ø J D E - O G L A N D M Å L I N G

20

21

22

23

24 A Bestem arealet af hvert parallelogram ved at tælle dig frem. B Kontroller arealet af hver fi gur ved at bruge den formel, du lavede på side i grundbogen. A Tegn, for hvert parallelogram, et andet parallelogram med samme areal. B Forbind parallelogrammer med samme areal. A R E A L

25 A Tegn et rektangel, et kvadrat, en retvinklet trekant og et parallelogram. Hver figur skal have arealet cm. B Tegn et rektangel, et kvadrat, en retvinklet trekant og et parallelogram. Hver figur skal have arealet cm. A R E A L

26

27

28 Tegn en udfoldning af et ikosaeder. P O L Y E D R E

29 A Udfyld skemaet. Figur Navn Antal flader f Antal hjørner h Antal kanter k f + h k Kugle Kasse Cylinder med kegle i begge ender Keglestub Pyramidestub Pyramide Prisme Prisme Cylinder B Gælder Eulers regel for sammenhæng mellem antallet af fl ader, hjørner og kanter i et polyeder på alle fi gurer? C På hvilken slags figurer gælder reglen? P O L Y E D R E

30 Regn plusstykkerne ved at tegne. Eksempel: _ Regn minusstykkerne ved at tegne. R E G N M E D B R Ø K E R O G D E C I M A L T A L

31

32 Udfyld skemaet. Brug evt. lommeregner til at regne præcist og fi nde forskellen. Stykke Overslag Præcist Forskel, +, +,, +, +,,,,,,, =,, =,,,,,, :, : Sæt komma i resultatet, så det bliver rigtigt. R E G N M E D B R Ø K E R O G D E C I M A L T A L

33 Bestem gennemsnitsprisen på de forskellige varer. Pris i kr. Pris i kr. Supermarked Supermarked Supermarked Supermarked I alt: 3 2, 0 0 Gennemsnitspris: 3 2, 0 0 : 4 = Supermarked Supermarked Supermarked Supermarked Supermarked Pris i kr. Pris i kr. Supermarked Supermarked Supermarked Supermarked Supermarked Supermarked,,,,,, Supermarked Supermarked Supermarked Supermarked Supermarked Supermarked R E G N M E D B R Ø K E R O G D E C I M A L T A L

34

35 Alle børnene skal hilse på hinanden. Vis med streger, og skriv, hvor mange håndtryk der skal gives, når der er A fi re børn. Antal håndtryk: B fem børn. C seks børn. Antal håndtryk: Antal håndtryk: D Prøv at gætte, hvor mange håndtryk der skal gives for syv børn ved at se på resultaterne i A-C. Kontroller evt. ved at lave en tegning. Antal håndtryk: H V O R M A N G E?

36

37 A Læs artiklen. Sæt fi rkant om ord du ikke forstår, slå evt. ordene op. Sæt streg under de steder i teksten, hvor der er matematiske oplysninger. Brug oplysningerne til at svare på spørgsmålene herunder. B Hvor mange liter vand bruger en gennemsnitsdansker om året? C Hvor mange liter vand bruger I hjemme hos dig om året, hvis I hver bruger lige så meget vand som en gennemsnitsdansker? D Hvor mange liter vand bruger alle eleverne på din skole på et år, hvis de hver bruger lige så meget vand som en gennemsnitsdansker? E Hvordan fordeler forbruget af vand sig om året hos en gennemsnitsfamilie på fire? Hvor mange liter vand svarer det til? Udfyld skemaet. Bad og vask Toilet Tøjvask Opvask og rengøring Køkken Andet Procent Antal liter F Udfyld diagrammet, så det viser fordelingen. Bad og vask Toilet Tøjvask Opvask og rengøring Køkken Andet T A L F R A A V I S E N

38 Her er en arbejdstegning af et køleskab. A Lav to isometriske tegninger af køleskabet i målestoksforholdet B Lav en perspektivtegning af køleskabet. Vælg selv, om det skal tegnes i frontperspektiv eller X-perspektiv. M A T E M A T I S K T E G N I N G

39 Her er en perspektivtegning af et garderobeskab. A Lav en arbejdstegning af garderobeskabet i målestoksforholdet. B Lav en isometrisk tegning af garderobeskabet i målestoksforholdet. M A T E M A T I S K T E G N I N G

40 Find midten af computerskærmene og af vinduerne. Sæt kryds. Tegn en vase på midten af bordet. Bestem selv vasens form. M A T E M A T I S K T E G N I N G

41

42 Forbind de fi re regnehistorier med de rigtige ligninger. Skriv løsningen til ligningen. Omkredsen af et kvadrat er 6 cm. Hvor lang er hver side? Asger og Anton skal dele 6 kr. Hvor mange penge får de hver, hvis de får lige meget? Arealet af et kvadrat er 6 cm 2. Hvor lang er hver side? Camilla og Andreas har tilsammen 6 km til skole. Andreas skal køre 4 km længere end Camilla til skole. Hvor langt har Camilla til skole? Skriv en regnehistorie til mindst to af ligningerne. x 5 = 4 x + 5 = 8 x + 9 = L I G N I N G E R O G F O R M L E R

43

44 A Tegn friserne færdige ved at fortsætte efter samme system. B Farv i hver frise den del, som bliver parallelforskudt. D E K O R A T I O N E R

45 Tegn rosetternes spejlingsakser. Tegn fi re rosetter. Den første skal have netop én spejlingsakse. Den anden skal have netop to spejlingsakser, osv. D E K O R A T I O N E R

46 Tegn rosetterne færdige ved at spejle i alle spejlingsakserne. Tegn rosetterne færdige ved at dreje figuren det viste antal grader om centrum. Fortsæt, indtil figuren vender tilbage. D E K O R A T I O N E R

47 Beregn rumfanget af prismerne, evt. ved at tegne kasser. R U M F A N G

48 Tegn forskellige prismer med rumfanget 24 cm 3. R U M F A N G

49 Beregn rumfanget af hvert akvarium. L x B x H 60 cm 30 cm 25 cm 50 cm 30 cm 30 cm 60 cm 30 cm 30 cm 60 cm 30 cm 35 cm 60 cm 35 cm 35 cm 70 cm 30 cm 35 cm 70 cm 35 cm 35 cm 80 cm 35 cm 40 cm 80 cm 40 cm 40 cm 80 cm 40 cm 50 cm 00 cm 40 cm 50 cm 20 cm 40 cm 50 cm 00 cm 50 cm 50 cm 20 cm 50 cm 50 cm 30 cm 50 cm 50 cm 50 cm 50 cm 50 cm 30 cm 55 cm 60 cm Liter Tegn forskellige akvarier, som kan indeholde 60 liter. Tegn i målestoksforholdet 0. R U M F A N G

50

51 A Tegn et tælletræ, der viser alle de mulige udfald med den røde og den hvide snurretop. B Hvor mange mulige udfald er der i alt? C Hvad er sandsynligheden for at få udfaldet (2,4)? D Tegn et tælletræ, der viser alle de mulige udfald med den røde, den hvide og den sorte snurretop. E Hvor mange mulige udfald er der i alt? F Hvad er sandsynligheden for at få udfaldet (2,3,4)? S A N D S Y N L I G H E D S R E G N I N G

52 P R O C E N T

53 En møbelforretning har ophørsudsalg. Alt skal væk! I denne uge rabat på alle varer kr kr. 150 kr. Tirsdag 20% Onsdag 25% Torsdag 35% Fredag 40% Lørdag 50% A Find prisen på futonsofaen hver dag uden og med betræk. Brug evt. lommeregner. Mandag uden betræk: Tirsdag uden betræk: Onsdag uden betræk: Torsdag uden betræk: Fredag uden betræk: Lørdag uden betræk: med betræk: med betræk: med betræk: med betræk: med betræk: med betræk: B Ole vil gerne købe en futonsofa. Han har sparet 2800 kr. sammen. Hvilken dag har han råd til futonsofaen uden betræk? Hvilken dag har han råd til futonsofaen med betræk? Hvor mange puder har han råd til, hvis han køber futonsofaen med betræk lørdag? P R O C E N T

54

55 F Beregn for hvert årstal, hvor stor en procentdel befolkningen i hver af de seks verdensdele udgør af hele verdens befolkning. Udfyld skemaet. Eksempel: Afrikas befolkning udgjorde Årstal Tallene er angivet i millioner. Verden Afrika Asien Europa Latinamerika Nordamerika Oceanien G Kig på tallene i skemaet. Hvor stor en procentdel af verdens befolkning boede i Afrika i år 750? år 2000? H Beskriv, hvilken udvikling der forventes af Afrikas andel af verdens befolkning fra I Beskriv, hvilken udvikling der forventes af P R O C E N T

56

57 S A M M E N H Æ N G E

58 A tid og mængden af vand i et glas vand, som står varmt? B højde i forhold til alder? C vægten af tomater og prisen? Skriv enheder på akserne, og tegn grafer, som kan vise sammenhængen mellem A tid og højden af et tændt stearinlys. B tid og temperatur for en gryde vand på et tændt komfur. A B S A M M E N H Æ N G E

59

60

61 Skriv tal, så stykkerne bliver rigtige. Skriv tal, så stykkerne bliver rigtige. Løs ligningerne. N E G A T I V E T A L

62 Dag -45

Mål for kapitlet, begreber og ord som anvendes i kapitlet og aktivering af forhåndsviden.

Mål for kapitlet, begreber og ord som anvendes i kapitlet og aktivering af forhåndsviden. FAGLIG LÆSNING e. OPGAVE. Hvad står der altid i sådan en ramme? Aktiviteter. 2. Hvad står der altid i sådan en ramme? Teori. 3. Hvad starter alle kapitler med? Mål for kapitlet, begreber og ord som anvendes

Læs mere

NAVN: KLASSE: Talforståelse og positionssystem. Multiplikation Division Brøker. Ligninger og funktioner. Geometri Procent Matematik i hverdagen

NAVN: KLASSE: Talforståelse og positionssystem. Multiplikation Division Brøker. Ligninger og funktioner. Geometri Procent Matematik i hverdagen Matematikevaluering for 5. klasse A NAVN: KLASSE: Talforståelse og positionssystem Addition Subtraktion Multiplikation Division Brøker Ligninger og funktioner Omregning Koordinatsystemet Geometri Procent

Læs mere

RIKKE SARON PEDERSEN MICHAEL POULSEN MICHAEL WAHL ANDERSEN PETER WENG FACITLISTE TIL TRÆNINGSHÆFTE 5

RIKKE SARON PEDERSEN MICHAEL POULSEN MICHAEL WAHL ANDERSEN PETER WENG FACITLISTE TIL TRÆNINGSHÆFTE 5 RIKKE SARON PEDERSEN MICHAEL POULSEN MICHAEL WAHL ANDERSEN PETER WENG 5 FACITLISTE TIL TRÆNINGSHÆFTE 5 Kontext 5, Facitliste til træningshæfte Samhørende titler: KonteXt 5 Kernebog KonteXt 5 Kopimappe

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat7 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Linjespillet. Figurer. Format6. Nr. 18. Kopiark til elevbog side 16

Linjespillet. Figurer. Format6. Nr. 18. Kopiark til elevbog side 16 Nr. 18 Linjespillet Farv højde Farv linje Farv linjestykke Farv halvlinje Farv en parallel linje Farv en vinkelret linje Par- eller gruppeaktivitet. Kast på skift en 6-sidet terning. Vælg en farve hver.

Læs mere

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2 Logik Udsagn Reduktion Ligninger Uligheder Regnehistorier I en trekant er den største vinkel 0 større end den næststørste og denne igen 0 større end den mindste. Find vinklernes gradtal. = og Lig med og

Læs mere

NAVN: KLASSE: Talforståelse og positionssystem. Multiplikation Division Brøker. Ligninger og funktioner. Koordinatsystemet Rumfang Procent

NAVN: KLASSE: Talforståelse og positionssystem. Multiplikation Division Brøker. Ligninger og funktioner. Koordinatsystemet Rumfang Procent Matematikevaluering for 6. klasse A NAVN: KLASSE: Talforståelse og positionssystem Addition Subtraktion Multiplikation Division Brøker Ligninger og funktioner Omregning Geometri Koordinatsystemet Rumfang

Læs mere

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også?

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Et tal som både består af et helt tal og en brøk, for eksempel. Hvad hedder det? Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Hvad kalder man tallet over brøkstregen

Læs mere

Format FACITLISTE I I I I I I I I I. Træningshæfte 1. klasse. Side 3. Facit, side 1-3. Format, Træningshæfte 1.1. Alinea. Fx. Fx. Fx. Fx. Fx. Fx. Fx.

Format FACITLISTE I I I I I I I I I. Træningshæfte 1. klasse. Side 3. Facit, side 1-3. Format, Træningshæfte 1.1. Alinea. Fx. Fx. Fx. Fx. Fx. Fx. Fx. Side Format Træningshæfte klasse Tæl ting Side FCITLISTE Side Skriv tallene Talforståelse. Marker med krydser antallet af blomster og deres blade, bier og deres vinger samt biller og deres ben. I I I.

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde t system rod orden nøjagtig præcis

Læs mere

Matematik - Årsplan for 6.b

Matematik - Årsplan for 6.b Matematik - Årsplan for 6.b 2013-2014 Kolorit for 6. klasse består af en grundbog, en rød og en grøn arbejdsbog. Grundbogen er inddelt i 4 forskellige arbejdsformer: Fællessider, gruppesider, alenesider

Læs mere

Mattip om. Statistik 2. Tilhørende kopier: Statistik 3, 4 og 5. Du skal lære om: Faglig læsning. Chance og risiko. Sandsynlighed

Mattip om. Statistik 2. Tilhørende kopier: Statistik 3, 4 og 5. Du skal lære om: Faglig læsning. Chance og risiko. Sandsynlighed Mattip om Statistik Du skal lære om: Faglig læsning Kan ikke Kan næsten Kan Chance og risiko Sandsynlighed Observationer, hyppighed og frekvens Gennemsnit Tilhørende kopier: Statistik, og mattip.dk Statistik

Læs mere

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Umulige figurer Periode Mål Eleverne skal: At opdage muligheden for og blive fascineret af gengivelse af det umulige. At få øvelse

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat6 Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Tegn og gæt gennemsnittet

Tegn og gæt gennemsnittet Tegn og gæt gennemsnittet Nr. Gruppeaktivitet. Kast en -sidet terning. Terningeslaget angiver et gennemsnit. Tegn gennemsnittet med to eller tre forskellige søjler på kopiarket, og giv arket videre til

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

OVERSIGT OVER 23 KOPIARK TIL AFRUNDING

OVERSIGT OVER 23 KOPIARK TIL AFRUNDING OVERSIGT OVER KOPIARK TIL AFRUNDING Kopiarkene til afrunding er ikke fortløbende nummereret. Til hvert kapitel er der knyttet eller tre kopiark. Variable Kopiark : Fokus på kapitlets stof Kopiark : Fokus

Læs mere

B Tegn på hver halvcirkel linjestykker fra det punkt, du har afsat, til de to andre markerede punkter.

B Tegn på hver halvcirkel linjestykker fra det punkt, du har afsat, til de to andre markerede punkter. Opgave 2 A Afsæt et punkt et tilfældigt sted på hver halvcirkel. B Tegn på hver halvcirkel linjestykker fra det punkt, du har afsat, til de to andre markerede punkter. C Mål vinklerne, som dannes mellem

Læs mere

Matematik. Meteriske system

Matematik. Meteriske system Matematik Geometriske figurer 1 Meteriske system Enheder: Når vi arbejder i længder, arealer og rummål er udgangspunktet metersystemet: 2 www.ucholstebro.dk. Døesvej 70 76. 7500 Holstebro. Telefon 99 122

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

Tegning. Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn arbejdstegninger

Tegning. Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning. 1 Tegn arbejdstegninger Tegning Arbejds- og isometrisk tegning Ligedannede figurer Målestoksforhold Konstruktion Perspektivtegning Målestoksforhold bruges når man skal vise noget større eller mindre end det er i virkeligheden.

Læs mere

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også?

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Et tal som både består af et helt tal og en brøk, for eksempel 2 " #. Hvad hedder det? Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Hvad kalder man tallet over brøkstregen

Læs mere

Formel- og tabelsamling

Formel- og tabelsamling Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie 2005 Grundskolen Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens

Læs mere

Trekanthøjder Figurer

Trekanthøjder Figurer Trekanthøjder D E N C B F G T I H L N S J M F K ST O T I U Q R V SK X Y 97887204290_Vaerkstedmap_Kopisider_-70.indd 24 24 /0/2 :46 M Trekanthøjder D B L F E H C G I J I L K M O R S N Y Q G Y E T U 97887204290_Vaerkstedmap_Kopisider_-70.indd

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat8 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Matematik FP9. Folkeskolens prøver. Prøven med hjælpemidler. Torsdag den 3. maj 2018 kl

Matematik FP9. Folkeskolens prøver. Prøven med hjælpemidler. Torsdag den 3. maj 2018 kl Matematik FP9 Folkeskolens prøver Prøven med hjælpemidler Til dette opgavesæt hører en regnearksfil. Torsdag den 3. maj 2018 kl. 10.00-13.00 Ved prøven må der anvendes alle de specifikke hjælpemidler,

Læs mere

Kun beregnet billetpris. Korrekt regneudtryk, ingen facit.

Kun beregnet billetpris. Korrekt regneudtryk, ingen facit. Opgavenummer 1.1 200 2 46 108 Hun skal have 108 kr. retur. Korrekt regneudtryk, korrekt facit og korrekt konklusion (bidrager positivt til helhedsindtryk). 46 46 92 200 92 108 Hun skal have 108 kr. tilbage.

Læs mere

Matematik i 5. klasse

Matematik i 5. klasse Matematik i 5. klasse Igen i år benytter vi os af Faktor i femte. Systemet indeholder en grundbog, hvortil der er supplerende materiale i form af kopiark, som er tilpasset de gennemgåede emner. Grundbogen

Læs mere

Folkeskolens prøver. Prøven uden hjælpemidler. Torsdag den 3. maj 2018 kl Der må ikke anvendes hjælpemidler ved prøven.

Folkeskolens prøver. Prøven uden hjælpemidler. Torsdag den 3. maj 2018 kl Der må ikke anvendes hjælpemidler ved prøven. Matematik FP9 Folkeskolens prøver Prøven uden hjælpemidler Torsdag den 3. maj 2018 kl. 9.00-10.00 Der må ikke anvendes hjælpemidler ved prøven. Opgaven findes som: 1. Digital selvrettende prøve 2. Papirhæfte

Læs mere

Folkeskolens prøver. Prøven uden hjælpemidler. Tirsdag den 5. december 2017 kl Der må ikke benyttes medbragte hjælpemidler.

Folkeskolens prøver. Prøven uden hjælpemidler. Tirsdag den 5. december 2017 kl Der må ikke benyttes medbragte hjælpemidler. Matematik FP9 Folkeskolens prøver Prøven uden hjælpemidler Tirsdag den 5. december 2017 kl. 9.00-10.00 Der må ikke benyttes medbragte hjælpemidler. Elevens UNI-Login: Opgaven findes som: 1. Papirhæfte

Læs mere

Opgave GUBOG Udfyld tabellerne. - 0 tal + 0-00 tal + 00 90 0 98 9 990 999 6 00 08 0 000 7 0 8 6 00 09 0 0 0 0 67 7 900 899 7 9 0 0 00 0 67 7 000 999 7 009 0 0 0 00 0 67 7 6 00 099 67 Opgave Udfyld drillefi

Læs mere

Årsplan for matematik i 4. klasse 2014-15

Årsplan for matematik i 4. klasse 2014-15 Årsplan for matematik i 4. klasse 2014-15 Klasse: 4. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 4(mandag, tirsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen er, at

Læs mere

!!!!!!!!!! Mandag 7.marts Kære 4B

!!!!!!!!!! Mandag 7.marts Kære 4B !!!!!!!!!! Mandag 7.marts 2016 Kære 4 Jeg har desværre fået influenza, men her er en hilsen med opgaver specielt til jer. Gør dig umage. Der er også svære opgaver imellem. Husk at gøre dig umage. Skriv

Læs mere

Den lille hjælper. Krogårdskolen. Hvordan løses matematik? Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9.

Den lille hjælper. Krogårdskolen. Hvordan løses matematik? Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9. Den lille hjælper Krogårdskolen Indskoling 0. 3. klasse, mellemtrin 4. 6. klasse og udskoling 7. 9. klasse Hvordan løses matematik? Positionssystem... 4 Positive tal... 4 Negative tal... 4 Hele tal...

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

fsa 1 Rejsekort til Emil 2 Claras bueskydning 3 Emils akvarium 4 Claras børneopsparing 5 Hvor langt er der til øen? 6 Figurfølge

fsa 1 Rejsekort til Emil 2 Claras bueskydning 3 Emils akvarium 4 Claras børneopsparing 5 Hvor langt er der til øen? 6 Figurfølge fsa Folkeskolens Afgangsprøve Matematisk problemløsning December 2012 Et svarark er vedlagt som bilag til dette opgavesæt 1 Rejsekort til Emil 2 Claras bueskydning 3 Emils akvarium 4 Claras børneopsparing

Læs mere

Brug af brøker. Men brøker kan også bruges til at beskrive andet end størrelser Kapitlet handler om noget af det, brøker kan bruges til at beskrive.

Brug af brøker. Men brøker kan også bruges til at beskrive andet end størrelser Kapitlet handler om noget af det, brøker kan bruges til at beskrive. Brug af brøker Brøker er tal ligesom de hele tal. På tallinjen er der uendelig mange brøker imellem de hele tal. Vi kan beskrive mange af de størrelser vi har brug for med brøker - fx længder og rumfang.

Læs mere

På opdagelse i GeoGebra

På opdagelse i GeoGebra På opdagelse i GeoGebra Trekanter: 1. Start med at åbne programmet på din computer. Du skal sørge for at gitteret i koordinatsystem er sat til. Dette gør vi ved at trykke på Vis oppe i venstre hjørne og

Læs mere

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå.

Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Statistik er at behandle en stor mængde af tal, så de bliver lettere at overskue og forstå. Hvis man fx samler de karakterer, der er givet til en eksamen i én stor bunke (se herunder), kan det være svært

Læs mere

Opgave 1. Følg reglerne og udfyld de tomme felter PLUS OG MINUS

Opgave 1. Følg reglerne og udfyld de tomme felter PLUS OG MINUS Opgave Følg reglerne og udfyld de tomme felter. - + 0 0 0 0 0 0 0 0 0 0 0 0 0 - - + 0 0 0 0 0 +7 9 0 9 0 0 7 7 + - 9 9 0 0 7 9 9 7 0 9 0 7 PLUS OG MINUS Opgave Udfyld felterne i fi gurerne efter det samme

Læs mere

Excel regneark. I dette kapitel skal I arbejde med noget af det, Excel regneark kan bruges til. INTRO EXCEL REGNEARK

Excel regneark. I dette kapitel skal I arbejde med noget af det, Excel regneark kan bruges til. INTRO EXCEL REGNEARK Excel regneark Et regneark er et computerprogram, der bl.a. kan regne, tegne grafer og lave diagrammer. Regnearket kan bruges i mange forskellige sammenhænge, når I arbejder med matematik. Det kan gøre

Læs mere

Formel- og tabelsamling

Formel- og tabelsamling Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie nr. 2-2005 Folkeskolen Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Matematik undervisningsplan 4-6. klassetrin Årsplan 2015 & 2016

Matematik undervisningsplan 4-6. klassetrin Årsplan 2015 & 2016 Materialer Grundbog: kontext Arbejdsbog: kontext Rema Matematik undervisningsplan Matematikmappe til opgaveark, tilpasset elevernes individuelle niveau Tabeltræning og anden basistræning efter behov Supplerende

Læs mere

Matematik Delmål og slutmål

Matematik Delmål og slutmål Matematik Delmål og slutmål Ferritslev friskole 2006 SLUTMÅL efter 9. Klasse: Regning med de rationale tal, såvel som de reelle tal skal beherskes. Der skal kunne benyttes og beherskes formler i forbindelse

Læs mere

5 12 : : 3 3 : = 15 : 6 = 24. Opgave 1. Skriv tal, så stykkerne bliver rigtige. Brug evt. talkort fra kopiark 1. = 36.

5 12 : : 3 3 : = 15 : 6 = 24. Opgave 1. Skriv tal, så stykkerne bliver rigtige. Brug evt. talkort fra kopiark 1. = 36. Opgave Fx Skriv tal, så stykkerne bliver rigtige. Brug evt. talkort fra kopiark. 9 0 7 9 0 : : : : : 0 : Opgave Skriv mange stykker, der giver resultaterne 0 og. Fx : : 9 : 0 00 : : 00 0 : 9 : : 0 : :

Læs mere

fsa 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær i Simons klasse 6 En figur af kvarte cirkler

fsa 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær i Simons klasse 6 En figur af kvarte cirkler fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2012 Et svarark er vedlagt som bilag til dette opgavesæt 1 Simons fritidsjob 2 Simons opsparing 3 Højden af en silo 4 Simons kondital 5 Fravær

Læs mere

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

kilogram (kg) passer isometrisk liter veje kvadratmeter kasse

kilogram (kg) passer isometrisk liter veje kvadratmeter kasse i tredje 3 i anden kilogram (kg) bage forkortelse tusinde (1000) efter bagved foran placering beholder fylde passer ben sds bredde deci centi tiendedel isometrisk centicube stoksforhold prikpar længere

Læs mere

fortsætte høj retning benævnelse afstand form kort

fortsætte høj retning benævnelse afstand form kort cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel system lov retning højre nedad finde rundt system rod orden nøjagtig

Læs mere

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole

Læs mere

Format 3. klasse Facitliste Kopiark S R D C TALLERUP 7 KOPIARK CHANCE PÅ SPIL A C B D D E D F E F E A. nr. 10. nr. 11. nr. 13. nr. 17. nr. 15.

Format 3. klasse Facitliste Kopiark S R D C TALLERUP 7 KOPIARK CHANCE PÅ SPIL A C B D D E D F E F E A. nr. 10. nr. 11. nr. 13. nr. 17. nr. 15. rafik vad betyder skiltene?. akse nr. Å X Q O Z Ø J Y Æ M R V N (,) (,) (,) (,) (,) (,) (,) O R (,) (,) (,) (,) (,) (,) O V V J (,) (,) (,) (,) (,) (,) (,) (,) Y (,) (,) (,) (,) (,) (,) (,) (,) R V O.

Læs mere

Elevark Niveau 2 - Side 1

Elevark Niveau 2 - Side 1 Elevark Niveau 2 - Side 1 Opgave 2-1 Brug (Polygon-værktøjet) og tegn trekanter, der ligner disse: Brug (Tekstværktøjet) til at skrive et stort R under de retvinklede trekanter Se Tip 1 og 2 Elevark Niveau

Læs mere

Matematikevaluering for 4. klasse Talforståelse og Addition Subtraktion positionssystem Multiplikation Division Brøker

Matematikevaluering for 4. klasse Talforståelse og Addition Subtraktion positionssystem Multiplikation Division Brøker Matematikevaluering for 4. klasse A NAVN: KLASSE: Talforståelse og positionssystem Addition Subtraktion Multiplikation Division Brøker Ligninger og funktioner Omregning Koordinatsystemet Diagrammer og

Læs mere

Indhold. Servicesider. Testsider

Indhold. Servicesider. Testsider Indhold Servicesider Isometrisk papir.................................................... kopiside - Prikpapir............................................................. kopiside - Brøkkort.............................................................

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Statistik. Statistik er analyse af indsamlet data. Det vil sige at man bearbejder et datamateriale som i matematik næsten altid er tal.

Statistik. Statistik er analyse af indsamlet data. Det vil sige at man bearbejder et datamateriale som i matematik næsten altid er tal. Statistik Statistik er analyse af indsamlet data. Det vil sige at man bearbejder et datamateriale som i matematik næsten altid er tal. Derved får man et samlet overblik over talmaterialet, og man kan konkludere

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 5. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 4. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier!!!* Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

Skriftlig matematik MÅL, FAGORD OG BEGREBER

Skriftlig matematik MÅL, FAGORD OG BEGREBER Skriftlig matematik I dette kapitel skal du arbejde med at løse opgaver i skriftlig matematik med og uden hjælpemidler. Til nogle af opgaverne må du bruge alle hjælpemidler, mens du til andre af opgaverne

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI AEU 1 december 2010 syge Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 1365 + 478 = 2. 912 642 = 3. 13 45 = Afrund til nærmeste hele tal 14. 0,9 15. 98,1 4. 860 : 4 = Løs ligningen 5. x - 2 = 68 x = 6. 4x + 5

Læs mere

Årsplan for matematik i 5.kl. på Herborg Friskole

Årsplan for matematik i 5.kl. på Herborg Friskole Årsplan for i 5.kl. på Herborg Friskole Uge Emne Kompetenceområder/mål 32 Opstartsuge 33- Regn med store 36 tal Færdigheds-og vidensmål Læringsmål Aktiviteter og materialer Eleven kan gennemføre enkle

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1

matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 33 matematik grundbog trin 1 Demo preben bernitt grundbog trin 1 2004 by bernitt-matematik.dk 1 matematik grundbog trin 1 Demo-udgave 2003 by bernitt-matematik.dk Kopiering og udskrift af denne bog er

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

FP9. Matematik Prøven uden hjælpemidler. Prøven uden hjælpemidler består af 20 opgaver med i alt 50 delopgaver

FP9. Matematik Prøven uden hjælpemidler. Prøven uden hjælpemidler består af 20 opgaver med i alt 50 delopgaver Elevens uni-login: Skolens navn: Tilsynsførendes underskrift: FP9 9.-klasseprøven Matematik Prøven uden hjælpemidler Prøven uden hjælpemidler består af 20 opgaver med i alt 50 delopgaver Opgave 1-11: Tal

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Årsplan for Format 4 Ret til ændringer forbeholdes. I løbet af året vil vi arbejde sammen på tværs af årgangene med relevante opgaver.

Årsplan for Format 4 Ret til ændringer forbeholdes. I løbet af året vil vi arbejde sammen på tværs af årgangene med relevante opgaver. Årsplan for Format 4 Ret til ændringer forbeholdes. I løbet af året vil vi arbejde sammen på tværs af årgangene med relevante opgaver. Kapitel 1 - Tal Forløb og varighed Færdigheds- og vidensmål Læringsmål

Læs mere

TRIX. Træningshæfte 2 FACITLISTE. Side 1. Side 2 Side 3. FACIT, side 1-3 Trix, Træningshæfte 2 Alinea. Byg og tegn

TRIX. Træningshæfte 2 FACITLISTE. Side 1. Side 2 Side 3. FACIT, side 1-3 Trix, Træningshæfte 2 Alinea. Byg og tegn TRIX Træningshæfte Side J a o u - - - - - - e t u r i g v b n Fra oven p FACITLISTE Forfra Fra siden Jubii Side Side Femkanter Veksle mønter Farv rødt Farv gult Jubii Positionssystemet Øverst: Eksperimenter

Læs mere

Formel- og tabelsamling

Formel- og tabelsamling Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens håndbogsserie 2005 Grundskolen Formel- og tabelsamling Folkeskolens afsluttende prøver i matematik Uddannelsesstyrelsens

Læs mere

Geometriske tegning - Fase 2 Fremstille præcise tegninger

Geometriske tegning - Fase 2 Fremstille præcise tegninger Navn: Klasse: Geometriske tegning - Fase 2 Fremstille præcise tegninger Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer eviser og forslag til forbedring 1. Jeg kan tegne isometrisk tegninger

Læs mere

HENRIETTE HOLTE HENRIK THOMSEN MICHAEL WAHL ANDERSEN PETER WENG FACITLISTE TIL TRÆNINGSHÆFTE 8

HENRIETTE HOLTE HENRIK THOMSEN MICHAEL WAHL ANDERSEN PETER WENG FACITLISTE TIL TRÆNINGSHÆFTE 8 HENRIETTE HOLTE HENRIK THOMSEN MICHAEL WAHL ANDERSEN PETER WENG 8 FACITLISTE TIL TRÆNINGSHÆFTE 8 Kontext 8, Facitliste til træningshæfte Samhørende titler: Kontext 8, Kernebog Kontext 8, Kopimappe Kontext

Læs mere

Format FACITLISTE. 1 Navn: Dato: / Side 3. Facit, side 1-3. Format, Evalueringshæfte 3. Alinea. 3klasse. Kan. K a n. n æ s t e n. e n d n u. fx.

Format FACITLISTE. 1 Navn: Dato: / Side 3. Facit, side 1-3. Format, Evalueringshæfte 3. Alinea. 3klasse. Kan. K a n. n æ s t e n. e n d n u. fx. K a n K a n Kan n æ s t e n e n d n u klasse Format i k k e Side Pizzeria. Løs regnehistorierne. Pizzabager enito skal fordele tomatskiver ligeligt på pizzaer. Hvor mange tomatskiver er der på hver pizza?

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

FP9. 1 I svømmehallen 2 Regnvandstank 3 Vandforbrug i brusebadet 4 Vandforbrug i en boligforening 5 Firkanter i trekanter 6 Sumfigurer

FP9. 1 I svømmehallen 2 Regnvandstank 3 Vandforbrug i brusebadet 4 Vandforbrug i en boligforening 5 Firkanter i trekanter 6 Sumfigurer FP9 9.-klasseprøven Matematik Prøven med hjælpemidler December 2016 Til opgavesættet hører et bilag og en regnearksfil 1 I svømmehallen 2 Regnvandstank 3 Vandforbrug i brusebadet 4 Vandforbrug i en boligforening

Læs mere

Facitliste til elevbog

Facitliste til elevbog Facitliste til elevbog Algebra a 8x 4 b 6x c 7x 8 d 0 5x e x 54 f 8x 6 x a x 7x + 4 b 48a 4 + 8a c 56x + x d 6a 4 5a e 4x 80x f 6a 4 4a a 8(x + ) b 5x(4x 7) c 4( a) d 9a ( a) e 4( + 7a ) f 6(x + y) 4 a

Læs mere

Navn:&& & Klasse:&& STATISTIK - Fase 1

Navn:&& & Klasse:&& STATISTIK - Fase 1 Navn: Klasse: STATISTIK - Fase 1 Vælge relevante deskriptorer og diagrammer til sammenligning af datasæt Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer Beviser og forslag til forbedring

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

KOPIARK L K0 0rit L Talkort -0 til 30... - 2 2-2 2 2 2 2 22 22-3 3 3 3 3 23 23-4 4 4 4 4 24 24-5 5 5 5 5 25 25-6 -7-8 6 7 8 6 7 8 6 7 8 6 7 8 26 27 28 26 27 28 Kopiark Navn: -9 9 9 9 9 29 29-0 0 0 20

Læs mere

Deskriptiv statistik for hf-matc

Deskriptiv statistik for hf-matc Deskriptiv statistik for hf-matc 75 50 25 2018 Karsten Juul Deskriptiv statistik for hf-matc Hvad er deskriptiv statistik? 1.1 Hvad er deskriptiv statistik?... 1 1.2 Hvad er grupperede og ugrupperede data?...

Læs mere

Sønderjylland. Svanholm. Matematik trin 1 Matematik trin 2. avu

Sønderjylland. Svanholm. Matematik trin 1 Matematik trin 2. avu Sønderjylland Svanholm Matematik trin 1 Matematik trin 2 avu Almen voksenuddannelse 8. maj 2006 Sønderjylland Matematik trin 1 Opgavesættet består af: Opgavehæfte Svarark Hæftet indeholder følgende opgaver:

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Årsplan for matematik 8. klasse 18/19

Årsplan for matematik 8. klasse 18/19 Årsplan for matematik 8. klasse 18/19 Emne Mål Handleplan Sæt i Repetition af grundlæggende 32,33 matematikfærdi matematik flere gheder Arbejde med færdighedsregning matematikfærdighedssæt 34,35,36,37,38

Læs mere

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE

Thomas Kaas Heidi Kristiansen. Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen 8 KO L O R I T Gyldendal MATEMATIK KOPIMAPPE Thomas Kaas Heidi Kristiansen KOLORIT 8 Gyldendal KOLORIT 8 KOLORIT 8 MATEMATIK KOPIMAPPE 1. udgave, 1. oplag 2011 2011 Gyldendal

Læs mere

Sommer i Danmark 26+19=30+15= =36+9=45. 1 Find historierne, og regn plusstykkerne. 2 Regn plusstykkerne = + = = + =

Sommer i Danmark 26+19=30+15= =36+9=45. 1 Find historierne, og regn plusstykkerne. 2 Regn plusstykkerne = + = = + = Sommer i anmark 1 Find historierne, og regn plusstykkerne. 2 Regn plusstykkerne. 30 + 14 = 30 + 18 = Plusmåder Regnehistorier 13 + 1 = 34 + 2 = Overslag 1 + 26 = 3 + 26 = 30 15 53 + 35 = 42 + 39 = 26+19

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Statistik og sandsynlighed Statistik handler om at beskrive og analysere en stor mængde data. som I eller andre har indsamlet. Det kan fx være tal, der fortæller om, hvor mange lynnedslag der er i Danmark

Læs mere

EN SKOLE FOR LIVET ÅRSPLAN 18/19

EN SKOLE FOR LIVET ÅRSPLAN 18/19 ÅRSPLAN 18/19 Lærer: LH Fag: Matematik i 4. klasse Eleverne skal i 4. klasse primært arbejde i webbogen, der kommer rundt om de forskellige matematiske emner. De skal derudover i undervisningen blandt

Læs mere

TAL OG ALGEBRA/GEOMETRI

TAL OG ALGEBRA/GEOMETRI AEU 1 december 2010 Navn: CPR: TAL OG ALGEBRA/GEOMETRI 1. 46 + 3546 = 2. 354 214 = 3. 32 18 = Afrund til 1 decimal 14. 2,38 15. 1 6 4 4. 215 : 5 = Løs ligningen 5. x + 9 = 18 x = 6. 7 x = 35 x = 16. 17.

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.

Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal. 4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter

Læs mere

Matematik A. Studentereksamen. Tirsdag den 24. maj 2016 kl Digital eksamensopgave med adgang til internettet. 1stx161-MATn/A

Matematik A. Studentereksamen. Tirsdag den 24. maj 2016 kl Digital eksamensopgave med adgang til internettet. 1stx161-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx161-MATn/A-24052016 Tirsdag den 24. maj 2016 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret

Læs mere

Tegning og konstruktion

Tegning og konstruktion Tegning og konstruktion l hverdagen kan 1 finde eksempler på mange forskellige slags tegninger INTRO Nogle tegninger er til pynt, mens andre tegninger fx skal vise, hvordan et planlagt hus kommer til at

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere