2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk

Størrelse: px
Starte visningen fra side:

Download "2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk"

Transkript

1 Oversig Mes repeiion med fokus på de sværese emner Modul 3: Differenialligninger af. orden Maemaik og modeller 29 Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø 3 simple yper differenialligninger Eksponeniel væks med konsanled Logisisk væks med variaioner 2 Separaion af de variable 3 Lineære. ordens differenialligninger Panserformlen Nålesiksmeoden 4 Eksisens- og enydighed af løsninger 5 Ligevæg og sabilie 6 En model for forrenning af kapial med udræk 8. maj 29 Dias /26 Dias 2/26 Eksponeniel væks med konsanled Sæning Eksponeniel væks Differenialligningen for eksponeniel væks = ry, hvor r er en konsan, har den fuldsændige løsning y = yx = ce rx c R Sæning Eksponeniel væks med konsanled Differenialligningen for eksponeniel væks med konsanled Eksponeniel væks med konsanled forsa Bemærkning = ry + q kan omskrives il = ry y og omvend Sæning Eksponeniel væks med konsanled alernaiv Differenialligningen for eksponeniel væks med konsanled = ry y, hvor r og y er konsaner, har den fuldsændige løsning y = yx = y + ce rx c R Bemærkning Når r <, vil yx y når x y er en ligevæg = ry + q, hvor r og q er konsaner, har den fuldsændige løsning y = yx = q r + cerx c R Grafer for y = y + ce rx når r < y>y* y y* y<y* Dias 3/26 x Dias 4/26

2 .8.6 y Logisisk væks Sæning Logisisk væks Den logisiske differenialligning = ry y, hvor r og er konsaner, har den fuldsændige løsning y = yx = onsanen kaldes bærekapacieen. + ce rx c R Logisisk væks forsa Omskrivning af den logisiske løsningsfunkion yx = Hvis c > så er c = e rx med x = ln c r. Dermed er Bemærkning yx = + e rx x + ce rx : Vi har yx = 2 så halvdelen af bærekapacieen er nåe, når x = x. Derfor kaldes x nogle gange for halvmæningskonsanen r=3 r=2 r= r=.5 x Grafer for y = yx når =, y =. og forskellige værdier af r Man kan vise, a y x har maksimum i x = x, dvs. x er de idspunk, hvor væksen er sørs. Denne sørse væksrae er y x = ryx yx = r = r Dias 5/26 Dias 6/26 Model for sygdomsepidemi : Befolkningens sørrelse N = N: Anal smiede il iden Anagelser om smieraen dn d : dn d er proporional med N analle af smiede [Sygdommen breder sig langsom, så længe der kun er få smiede] dn d er proporional med N analle af ikke-smiede [Sygdommen breder sig langsom, når der kun er få ilbage, som ikke er smiede] Model for sygdomsepidemi aleksempel Influenzaepidemi i en befolkning på 2 med r =.5, dvs. dn d =.5 N N 2 Fuldsændig løsning N = 2 + ce.5 c R Til iden = er der o smiede, dvs. N = 2. Dee giver c = 999 og dermed N = e Fører il med r = a dn d = an N = an N = rn N dvs. en logisisk differenialligning med bærekapacie. 2 N Vi har = ln c ln 999 r = og N = r 4 = = 75 Dias 7/26 Dias 8/26

3 Modificere logisisk model Anager a væksen afager med iden f.eks. dn d = rn N T T er e sluidspunk bemærk a N T = an f.eks. benyes il a beskrive sygdomsvæks på en plane, der med iden bliver mere modsandsgig over for sygdommen. Fuldsændig løsning: N = + c exp r c R 2 2T Løsningskurver = og T = : En anden slags modificere logisisk differenialligning Indgår i miniprojeke y α d = ry hvor r,, α er posiive paramere. Den normale logisiske differenialligning svarer il α =.8.6 y Bemærk a N ikke har id il a nå æ på bærekapacieen Dias 9/26 Dias /26 Separaion af de variable Sæning Separaion af de variable En differenialligning af formen løses ved a bruge følgende fire rin: Separér de variable: gy = f xgy = f x 2 Sæ inegralegn på ligningen: gy = f x 3 Find samfunkioner på begge sider af ligningen husk in.konsan 4 Løs ligningen: find y udryk ved x Bemærkning Separaion af de variable er en meode: For en konkre differenialligning går man igennem de fire rin nævn i sæningen Man sæer ikke ind i formlerne i sæningen Dias /26 Lineær. ordens differenialligning Definiion Lineær. ordens differenialligning En lineær. ordens differenialligning er en differenialligning af formen + f xy = gx hvor f x og gx er givne funkioner Differenialligningen kaldes homogen når g = ; ellers inhomogen Bemærkning Differenialligninger på formen skal førs omskrives il = hxy + gx hxy = gx før de følgende resulaer kan benyes. Dias 2/26

4 Panserformlen Homogen lineær. ordens differenialligning Sæning Homogen lineær. ordens differenialligning Den homogene lineære. ordens differenialligning har den fuldsændige løsning hvor F x = f x. + f xy = y = yx = ce Fx c R Sæning Panserformlen Den inhomogene lineære. ordens differenialligning har den fuldsændige løsning hvor F x = f x + f xy = gx y = yx = e Fx e Fx gx Hvor er konsanen c i den fuldsændige løsning? yx = e Fx e Fx gx = e Fx e Fx gx + c = e Fx u x + c = y x + ce Fx Dias 3/26 Dias 4/26 Forolkning af ligningen FIL = fuldsændig inhomogen løsning yx FHL = fuldsændig homogen løsning ce Fx Så er FIL = y x + FHL yx = y x + ce Fx hvor y x er en parikulær løsning il den inhomogene ligning I ord Fuldsændig inhomogen løsning = parikulær løsning [y x] + fuldsændig homogen løsning Udbes i nålesiksmeoden gæemeoden Gælder også for sysemer af lineære differensligninger Mo. og 2 og sysemer af lineære differenialligninger Modul 4 Dias 5/26 Nålesiksmeoden gæemeoden Sæning Nålesiksmeoden Differenialligningen NB: f x = a er konsan har den fuldsændige løsning + ay = gx y = yx = y x + ce ax c R dvs. FIL = y x + FHL hvor man som y x gæer på en funkion af samme slags som gx: gx y x polynomium pol. af samme grad βe αx α a Ae αx β e ax Axe ax β cosαx + β 2 sinαx Acos αx + B sinαx I skemae er α, β osv. givne konsaner, mens A, B osv. er konsaner, der skal besemmes således a y x er løsning Dias 6/26

5 Eksisens og enydighed af løsninger I eksemplerne indil nu har vi se følgende: I den fuldsændige løsning indgår en konsan c, som besemmes ud fra en begyndelsesbeingelse ϕx = y Gælder de alid, a der er neop én løsning ϕx med ϕx = y? Sæning Eksisens og enydighed Gennem e give punk x, y går neop én løsning il diff.ligningen = Φx, y e udryk i x og y hvis funkionen Φx, y er ilsrækkelig pæn dvs. der findes neop én funkion y = ϕx således, a a ϕ x = Φ x, ϕx b ϕx = y Ligevæg og sabilie Definiion Auonom differenialligning En. ordens differenialligning af formen d = f x e udryk i x kaldes auonom fordi ikke indgår på højresiden. Definiion Ligevæg En værdi x kaldes en ligevæg for den auonome differenialligning d = f x hvis f x = Når x er en ligevæg, så vil den konsane funkion x = x være en løsning il differenialligningen. Dias 7/26 Dias 8/26 Ligevæg og sabilie forsa Definiion Sabil ligevæg En ligevæg x kaldes sabil, hvis der gælder x x for for alle løsninger x = x, der ikke sarer for lang fra x Model for forrenning af kapial med udræk Til idspunke mål i år er kapialens sørrelse x oninuerlig forrenning med en variabel sas r oninuerlige udræk af variabel sørrelse u Dee fører il differenialligningen x = rx u Fremgangsmåde med givne funkioner r og u som i a, b og c nedenfor sam i miniprojeke Sæning Sabil ligevæg En ligevæg x for differenialligningen d sabil hvis f x < usabil hvis f x > Ingen generel konklusion hvis f x = = f x er Dias 9/26 i Opsil differenialligningen og besem den fuldsændige løsning ii Udryk konsanen c ved sarkapialen x og indsæ dee i løsningen iii Besem den mindse værdi kalde x min af x for hvilken kapialen ikke opbruges med iden iv Indsæ alværdier for paramerene i løsningen og egn grafer for forskellige værdier af x Dias 2/26

6 a onsan forrenning og konsan udræk r = r og u = u for alle a onsan forrenning og konsan udræk forsa iv Med r =.8 dvs. 8 pc. p.a. og u = 8 fås i Differenialligning: Fuldsændig løsning: x = r x u x = + x e.8 2E6 ii Parikulær løsning: iii onklusion: x = u r + ce r c R x = u r + x u r e r x vokser hvis x > u r = x min x er konsan hvis x = u r x afager hvis x < u r Dias 2/26.5E6 E6 5E5 E Løsningskurver med x = 9, hhv. Dias 22/26 b Lineær voksende forrenning og konsan udræk i Differenialligning: r = r + δ og u = u x = r + δx u Fuldsændig løsning vha. panserformlen : x = e r+ 2 δ2 u e rs+ 2 δs2 ds + c c R b Lineær voksende forrenning og konsan udræk forsa iv Med r =.8, δ =. og u = 8 fås og x = e x 8 e.8 s+.5 s2 ds.2e6 x min = 8 e.8 s+.5 s2 ds E5 8.8E5 an ikke reduceres! Men kan udregnes numerisk for konkree alværdier ii x = e r+ 2 δ2 x u e rs+ 2 δs2 ds iii x min = u e rs+ 2 δs2 ds Dias 23/26 8E5 4E5 E x = 84, 87, 9 hhv E5 8.4E5 8.2E Forsørrelse med x = Dias 24/26

7 c onsan forrenning og periodisk udræk r = r og u = u + γ sin2π c onsan forrenning og periodisk udræk forsa iv Med r =.8, u = 8 og γ = 4 fås x cos2π+8 sin2π+x 6 365e.8 i Differenialligning: x = r x u + γ sin2π og x min Fuldsændig løsning vha. nålesiksmeoden : x = u + 2πγ r r 2 + cos2π+ γr 4π2 r 2 + 4π2 sin2π+cer c R ii x = u r + 2πγ cos2π+ γr r 2 sin2π+ x u +4π2 r 2 +4π2 r 2πγ e r r 2+4π2 iii Hvis γ ikke er for sor gælder x min = u r + 2πγ r 2 + 4π Løsningskurver med x = 4, 6 hhv. 8 3 Dias 25/26 Dias 26/26

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst Oversig Eksempler på hvordan maemaik indgår i undervisningen på LIFE Gymnasielærerdag Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk Sofskife og kropsvæg hos paedyr Vægforhold mellem

Læs mere

Lektion 10 Reaktionshastigheder Epidemimodeller

Lektion 10 Reaktionshastigheder Epidemimodeller Lekion 1 Reakionshasigheder Epidemimodeller Kemiske reakionshasigheder Simpel epidemimodel Kermack-McKendric epidemimodel 1 Reakionshasigheder Den generelle løsning il den separable differenialligning

Læs mere

Lektion 10 Reaktionshastigheder Epidemimodeller

Lektion 10 Reaktionshastigheder Epidemimodeller Lekion 1 Reakionshasigheder Epidemimodeller Simpel epidemimodel Kermack-McKendric epidemimodel Kemiske reakionshasigheder 1 Simpel epidemimodel I en populaion af N individer er I() inficerede og resen

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014 Maemaik A Sudenereksamen Forberedelsesmaeriale il de digiale eksamensopgaver med adgang il inernee sx141-matn/a-0505014 Mandag den 5. maj 014 Forberedelsesmaeriale il sx A ne MATEMATIK Der skal afsæes

Læs mere

Projekt 6.3 Løsning af differentialligningen y

Projekt 6.3 Løsning af differentialligningen y Projek 6.3 Løsning af differenialligningen + c y 0 Ved a ygge videre på de løsningsmeoder, vi havde succes med ved løsning af ligningerne uden ledde y med den enkelafledede, er vi nu i sand il a løse den

Læs mere

DiploMat Løsninger til 4-timersprøven 4/6 2004

DiploMat Løsninger til 4-timersprøven 4/6 2004 DiploMa Løsninger il -imersprøven / Preben Alsholm / Opgave Polynomie p er give ved p (z) = z 8 z + z + z 8z + De oplyses, a polynomie også kan skrives således p (z) = z + z z + Vi skal nde polynomies

Læs mere

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og EPDEMER DYAMK AF Kasper Larsen, Bjarke Vilser Hansen Henriee Elgaard issen, Louise Legaard og Charloe Plesher-Frankild 1. Miniprojek idefagssupplering, RUC Deember 2007 DLEDG Maemaisk modellering kan anvendes

Læs mere

Eksponentielle sammenhänge

Eksponentielle sammenhänge Eksponenielle sammenhänge y 800,95 1 0 1 y 80 76 7, 5 5% % 1 009 Karsen Juul Dee häfe er en forsäelse af häfe "LineÄre sammenhänge, 008" Indhold 14 Hvad er en eksponeniel sammenhäng? 53 15 Signing og fald

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock April 7, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C niveau, men dengang havde vi ikke

Læs mere

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling Hvad er en diskre idsmodel? Diskree Tidsmodeller Jeppe Revall Frisvad En funkion fra mængden af naurlige al il mængden af reelle al: f : R f (n) = 1 n + 1 n Okober 29 1 8 f(n) = 1/(n + 1) f(n) 6 4 2 1

Læs mere

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger MOGENS ODDERSHEDE LARSEN Sædvanlige Differenialligninger a b. udgave 004 FORORD Dee noa giver en indføring i eorien for sædvanlige differenialligninger. Der lægges især væg på løsningen af lineære differenialligninger

Læs mere

MAKRO 2 ENDOGEN VÆKST

MAKRO 2 ENDOGEN VÆKST ENDOGEN VÆKST MAKRO 2 2. årsprøve Forelæsning 7 Kapiel 8 Hans Jørgen Whia-Jacobsen econ.ku.dk/okojacob/makro-2-f09/makro I modeller med endogen væks er den langsigede væksrae i oupu pr. mand endogen besem.

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock July 27, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C nivea uden en præcis definiion. Funkionerne

Læs mere

Newton, Einstein og Universets ekspansion

Newton, Einstein og Universets ekspansion Newon, Einsein og Universes ekspansion Bernhard Lind Shisad, Viborg Tekniske ymnasium Friedmann ligningerne beskriver sammenhængen mellem idsudviklingen af Universes udvidelse og densieen af sof og energi.

Læs mere

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE?

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? Af Torben A. Knudsen, Sud. Poly. & Claus Rehfeld, Forskningsadjunk Cener for Trafik og Transporforskning (CTT) Danmarks Tekniske Uniersie Bygning 115, 800

Læs mere

Funktionel form for effektivitetsindeks i det nye forbrugssystem

Funktionel form for effektivitetsindeks i det nye forbrugssystem Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh. augus 007 Funkionel form for effekiviesindeks i de nye forbrugssysem Resumé: Der findes o måder a opskrive effekiviesudvidede CES-funkioner med o

Læs mere

Undervisningsmaterialie

Undervisningsmaterialie The ScienceMah-projec: Idea: Claus Michelsen & Jan Alexis ielsen, Syddansk Universie Odense, Denmark Undervisningsmaerialie Ark il suderende og opgaver The ScienceMah-projec: Idea: Claus Michelsen & Jan

Læs mere

Skriftlig prøve Kredsløbsteori Onsdag 3. Juni 2009 kl (2 timer) Løsningsforslag

Skriftlig prøve Kredsløbsteori Onsdag 3. Juni 2009 kl (2 timer) Løsningsforslag Skriflig prøve Kredsløbseori Onsdag 3. Juni 29 kl. 2.3 4.3 (2 imer) øsningsforslag Opgave : (35 poin) En overføringsfunkion, H(s), har formen: Besem hvilke poler og nulpunker der er indehold i H(s) Tegn

Læs mere

i(t) = 1 L v( τ)dτ + i(0)

i(t) = 1 L v( τ)dτ + i(0) EE Basis - 2010 2/22/10/JHM PE-Kursus: Kredsløbseori (KRT): ECTS: 5 TID: Mandag d. 22/2 LØSNINGSFORSLAG: Opgave 1: Vi ser sraks, a der er ale om en enkel spole, hvor vi direke pårykker en kend spænding.

Læs mere

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Fredag den 5. januar 1996, kl.

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Fredag den 5. januar 1996, kl. Skriflig Eksamen aasrukurer og Algorimer (M0) Insiu for Maemaik og aalogi Odense Universie Fredag den 5. januar 1996, kl. 9{1 Alle sdvanlige hjlpemidler (lrebger, noaer, ec.) sam brug af lommeregner er

Læs mere

g(n) = g R (n) + jg I (n). (6.2) Analogt med begreberne, som benyttes ved det komplekse spektrum, kan man også notere komplekse signaler på formerne

g(n) = g R (n) + jg I (n). (6.2) Analogt med begreberne, som benyttes ved det komplekse spektrum, kan man også notere komplekse signaler på formerne KAPITEL SEKS Komplekse signaler I forbindelse med en række signalbehandlingsopgaver er de hensigsmæssig a benye komplekse signaler, f.eks. ved karakerisering af den diskree fourier ransformaion (se kapiel

Læs mere

En-dimensionel model af Spruce Budworm udbrud

En-dimensionel model af Spruce Budworm udbrud En-dimensionel model af Sprce dworm dbrd Kenneh Hagde Mandr p Niel sen o g K asper j er ing Søby Jensen, ph.d-sderende ved oskilde Universie i hhv. maemaisk modellering og maemaikkens didakik. Maemaisk

Læs mere

FitzHugh Nagumo modellen

FitzHugh Nagumo modellen FizHugh Nagumo modellen maemaisk modellering af signaler i nerve- og muskelceller Torsen Tranum Rømer, Frederikserg Gymnasium Fagene maemaik og idræ supplerer hinanden god inden for en lang række emner.

Læs mere

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72.

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72. Bioeknologi 2, Tema 4 5 Kineik Kineik er sudier af reakionshasigheden hvor man eksperimenel undersøger de fakorer, der påvirker reakionshasigheden, og hvor resulaerne afslører reakionens mekanisme og ransiion

Læs mere

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003 RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Eferårssemesre 2003 Generelle bemærkninger Opgaven er den redje i en ny ordning, hvorefer eksamen efer førse semeser af makro på 2.år

Læs mere

Bankernes renter forklares af andet end Nationalbankens udlånsrente

Bankernes renter forklares af andet end Nationalbankens udlånsrente N O T A T Bankernes rener forklares af ande end Naionalbankens udlånsrene 20. maj 2009 Kor resumé I forbindelse med de senese renesænkninger fra Naionalbanken er bankerne bleve beskyld for ikke a sænke

Læs mere

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl.

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl. Skriflig Eksamen Daasrukurer og lgorimer (DM0) Insiu for Maemaik og Daalogi Odense Universie Torsdag den. januar 199, kl. 9{1 lle sdvanlige hjlpemidler (lrebger, noaer, ec.) sam brug af lommeregner er

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET MATEMATISK FINANSIERINGSTEORI

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET MATEMATISK FINANSIERINGSTEORI NAURVIDENSKABELIG KANDIDAEKSAMEN VED KØBENHAVNS UNIVERSIE MAEMAISK FINANSIERINGSEORI 4 imers skriflig eksamen, 9-3 orsdag 3/ 2. Alle sædvanlige hjælpemidler illad. Anal sider i sæe: 5. Opgave Spg..a [

Læs mere

Dynamik i effektivitetsudvidede CES-nyttefunktioner

Dynamik i effektivitetsudvidede CES-nyttefunktioner Danmarks Saisik MODELGRUPPEN Arbejdspapir Grane Høegh. augus 006 Dynamik i effekiviesudvidede CES-nyefunkioner Resumé: I dee papir benyes effekiviesudvidede CES-nyefunkioner il a finde de relaive forbrug

Læs mere

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver Newons afkølingslov løs ved hjælp af linjeelemener og inegralkurver Vi så idligere på e eksempel, hvor en kop kakao med emperauren sar afkøles i e lokale med emperauren slu. Vi fik, a emperaurfalde var

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge Forår 0 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En differentialligning,

Læs mere

Hvor bliver pick-up et af på realkreditobligationer?

Hvor bliver pick-up et af på realkreditobligationer? Hvor bliver pick-up e af på realkrediobligaioner? Kvanmøde 2, Finansanalyikerforeningen 20. April 2004 Jesper Lund Quaniaive Research Plan for dee indlæg Realkredi OAS som mål for relaiv værdi Herunder:

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer Dagens forelæsning Ingen-Arbirage princippe Claus Munk kap. 4 Nulkuponobligaioner Simpel og generel boosrapping Nulkuponrenesrukuren Forwardrener 2 Obligaionsprisfassæelse Arbirage Værdien af en obligaion

Læs mere

Modellering af benzin- og bilforbruget med bilstocken bestemt på baggrund af samlet forbrug

Modellering af benzin- og bilforbruget med bilstocken bestemt på baggrund af samlet forbrug Danmarks Saisik MODELGRUPPEN Arbejdspapir* 13. maj 2005 Modellering af benzin- og bilforbruge med bilsocken besem på baggrund af samle forbrug Resumé: Dee redje papir om en ny model for biler og benzin

Læs mere

Slides til Makro 2, Forelæsning oktober 2005 Chapter 7

Slides til Makro 2, Forelæsning oktober 2005 Chapter 7 GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER Slides il Makro 2, Forelæsning 9 31. okober 2005 Chaper 7 Hans Jørgen Whia-Jacobsen Ocober 26, 2005 De klassiske økonomer, Smih, Ricardo, Malhus m.fl.

Læs mere

Kovarians forecasting med GARCH(1,1) -et overblik

Kovarians forecasting med GARCH(1,1) -et overblik Kovarians forecasing med GARCH(1,1) -e overblik Hvorfor volailies-forecase? Risikosyring Dela-normal Value-a-Risk Mone Carlo Value-a-Risk Prisfassæelse Opionsproduker Realkrediobligaioner Mone Carlo simulaion

Læs mere

Bedste rette linje ved mindste kvadraters metode

Bedste rette linje ved mindste kvadraters metode 1/9 Bedste rette linje ved mindste kvadraters metode - fra www.borgeleo.dk Figur 1: Tre datapunkter og den bedste rette linje bestemt af A, B og C Målepunkter og bedste rette linje I ovenstående koordinatsystem

Læs mere

MAKRO 2 KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER. - uundværlig i frembringelsen af aggregeret output og. 2.

MAKRO 2 KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER. - uundværlig i frembringelsen af aggregeret output og. 2. KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER MAKRO 2 2. årsprøve Klassisk syn: JORDEN/NATUREN er en produkionsfakor, som er - uundværlig i frembringelsen af aggregere oupu og Forelæsning

Læs mere

En model til fremskrivning af det danske uddannelsessystem

En model til fremskrivning af det danske uddannelsessystem En model il fremskrivning af de danske uddannelsessysem Peer Sephensen og Jonas Zangenberg Hansen December 27 Side 2 af 22 1. Indledning De er regeringens mål a øge befolkningens uddannelsesniveau. Befolkningens

Læs mere

MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen

MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible

Læs mere

Udlånsvækst drives af efterspørgslen

Udlånsvækst drives af efterspørgslen N O T A T Udlånsvæks drives af eferspørgslen 12. januar 211 Kor resumé Der har den senese id være megen fokus på bankers og realkrediinsiuers udlån il virksomheder og husholdninger. Især er bankerne fra

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

Matematikkens mysterier - på et højt niveau. 4. Rumgeometri

Matematikkens mysterier - på et højt niveau. 4. Rumgeometri Maemaikkens mserier - på e høj niveau af Kenneh Hansen 4. Rumgeomeri Hvordan kan o forskellige planer ligge i forhold il hinanden? 4. Rumgeomeri Indhold 4. Vekorer i rumme 4. Krdsproduke 7 4. Planer og

Læs mere

Projekt 7.5 Ellipser brændpunkter, brændstråler og praktisk anvendelse i en nyrestensknuser

Projekt 7.5 Ellipser brændpunkter, brændstråler og praktisk anvendelse i en nyrestensknuser Hvad er maemaik? Projeker: fra kapiel 7 Projek 75 Ellipser brændpunker, brændsråler og prakisk anvendelse i en nyresensknuser Projek 75 Ellipser brændpunker, brændsråler og prakisk anvendelse i en nyresensknuser

Læs mere

Dynamiske identiteter med kædeindeks

Dynamiske identiteter med kædeindeks Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 2. mars 2007 Dynamiske idenieer med kædeindeks Resumé: den nye modelversion er vi gåe fra fasbase over il kædeprissørrelser. De beyder a de gamle

Læs mere

Anvendelseseksempler ANVENDELSESEKSEMPLER 73 72 KAPITEL A. FUNKTIONER OG MATEMATISKE MODELLER. Ud fra tabellen udregner vi de 4 summer:

Anvendelseseksempler ANVENDELSESEKSEMPLER 73 72 KAPITEL A. FUNKTIONER OG MATEMATISKE MODELLER. Ud fra tabellen udregner vi de 4 summer: 7 KAPITEL A FUNKTIONER OG MATEMATISKE MODELLER Anvendelseseksempler Anvendelseseksempel A Udklækningsid for flueæg (Daa i dee eksempel sammer fra Pracical saisics for environmenal and biological scieniss

Læs mere

Mat 1. 2-timersprøve den 10. december 2017.

Mat 1. 2-timersprøve den 10. december 2017. Ma. -imersprøve den. december 7. JE 8..7 Opgave resar;wih(linearalgebra): Give de inhomogene lineære ligningssysem lign:=x-*x+3*x3=a^+*a-3; lign d x K x C3 x3 = a C a K3 lign:=x+*x-*x3=a^+3; lign d x C

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2019

Besvarelser til Calculus Ordinær Eksamen Juni 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4 Insiu for Maemaiske Fag Maemaisk Modellering 1 Aarhus Universie Eva B. Vedel Jensen 12. februar 2008 UGESEDDEL 4 OBS! Øvelseslokale for hold MM4 (Jonas Bæklunds hold) er ændre il Koll. G3 på IMF. Ændringen

Læs mere

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer Copenhagen Business School 2010 Kandidaspeciale Cand.merc.ma Prisfassæelse af fasforrenede konvererbare realkrediobligaioner Vejleder: Niels Rom Aflevering: 28. juli 2010 Forfaere: Mille Lykke Helverskov

Læs mere

Estimation af markup i det danske erhvervsliv

Estimation af markup i det danske erhvervsliv d. 16.11.2005 JH Esimaion af markup i de danske erhvervsliv Baggrundsnoa vedrørende Dansk Økonomi, eferår 2005, kapiel II Noae præsenerer esimaioner af markup i forskellige danske erhverv. I esimaionerne

Læs mere

Raket fysik i gymnasieundervisningen

Raket fysik i gymnasieundervisningen Rake fysik i gynasieundervisningen Ole Wi-Hansen Køge Gynasiu Indhold. Rakeligningen.... Kineaiske forhold ved rakeosendelse fra jorden.... Gasryk-rakeen (Vandrakeen).... Ligherrakeen.... Trykforhold for

Læs mere

8.14 Teknisk grundlag for PFA Plus: Bilag 9-15 Indholdsforegnelse 9 Bilag: Indbealingssikring... 3 1 Bilag: Udbealingssikring... 4 1.1 Gradvis ilknyning af udbealingssikring... 4 11 Bilag: Omkosninger...

Læs mere

Danmarks fremtidige befolkning Befolkningsfremskrivning 2009. Marianne Frank Hansen og Mathilde Louise Barington

Danmarks fremtidige befolkning Befolkningsfremskrivning 2009. Marianne Frank Hansen og Mathilde Louise Barington Danmarks fremidige befolkning Befolkningsfremskrivning 29 Marianne Frank Hansen og Mahilde Louise Baringon Augus 29 Indholdsforegnelse Danmarks fremidige befolkning... 1 Befolkningsfremskrivning 29...

Læs mere

OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM REAKTIONSKINETIK OG DIFFERENTIALLIGNINGER. Indledning

OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM REAKTIONSKINETIK OG DIFFERENTIALLIGNINGER. Indledning KONSTELLATIONER (TVÆRMAT) REAKTIONSKINETIK OG DIFFERENTIALLIGNINGER DEN 4. MARTS 7 OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM REAKTIONSKINETIK OG DIFFERENTIALLIGNINGER Inlening Reakionskineik

Læs mere

Gamle eksamensopgaver (MASO)

Gamle eksamensopgaver (MASO) EO 1 Gamle eksamensopgaver (MASO) Opgave 1. (Vinteren 1990 91, opgave 1) a) Vis, at rækken er divergent. b) Vis, at rækken er konvergent. Opgave 2. (Vinteren 1990 91, opgave 2) Gør rede for at ligningssystemet

Læs mere

Matematisk modellering og numeriske metoder

Matematisk modellering og numeriske metoder Matematisk modellering og numeriske metoder Morten Grud Rasmussen 5. september 2016 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over.

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Rumgeomeri Hvis man ønsker mere udfordring, kan man springe de førse 0 opgaver over Opgave I rumme er give punkerne A og B Besem en parameerfremsilling for linjen l som indeholder punkerne A og B, når

Læs mere

Dommedag nu? T. Døssing, A. D. Jackson og B. Lautrup Niels Bohr Institutet. 23. oktober 1998

Dommedag nu? T. Døssing, A. D. Jackson og B. Lautrup Niels Bohr Institutet. 23. oktober 1998 Dommedag nu? T. Døssing, A. D. Jackson og B. Laurup Niels Bohr Insiue 3. okober 1998 Der har alid være fanaikere, som har men, a dommedag var nær, og for en del år siden kom nogle naurvidenskabelige forskere

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2018

Besvarelser til Calculus Ordinær Eksamen Juni 2018 Besvarelser til Calculus Ordinær Eksamen - 5. Juni 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Hans J. Munkholm: En besvarelse af

Hans J. Munkholm: En besvarelse af Hans J. Munkholm: En besvarelse af Projekt for MM501, Lineære differentialligninger November-december 2009 Nummererede formler fra opgaveformuleringen Her samles alle opgavens differentialligninger og

Læs mere

Ny ligning for usercost

Ny ligning for usercost Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 8. okober 2008 Ny ligning for usercos Resumé: Usercos er bleve ændre frem og ilbage i srukur og vil i den nye modelversion have noge der minder om

Læs mere

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik Rakefysik. Rakeligningen Rakeligningen kan udlede ud fra iulssæningen. Vi anager a vi har en rake ed asse (), Rakeen drives fre ved a der udslynges en konsan asse µ r. idsenhed µ -d/d ed hasigheden u i

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Optimalt porteføljevalg i en model med intern habit nyttefunktion og stokastiske investeringsmuligheder

Optimalt porteføljevalg i en model med intern habit nyttefunktion og stokastiske investeringsmuligheder Opimal poreføljevalg i en model med inern habi nyefunkion og sokasiske inveseringsmuligheder Thomas Hemming Larsen cand.merc.(ma.) sudie Insiu for Finansiering Copenhagen Business School Vejleder: Carsen

Læs mere

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen Fysikrappor: Vejr og klima Maila Walmod, 13 HTX, Rosklide I gruppe med Ann-Sofie N Schou og Camilla Jensen Afleveringsdao: 30 november 2007 1 I dagens deba høres orde global opvarmning ofe Men hvad vil

Læs mere

Pensionsformodel - DMP

Pensionsformodel - DMP Danmarks Saisik MODELGRUPPEN Arbejdspapir Marin Junge og Tony Krisensen 19. sepember 2003 Pensionsformodel - DMP Resumé: Vi konsruerer ind- og udbealings profiler for pensionsformuerne. I dee ilfælde kigger

Læs mere

Produktionspotentialet i dansk økonomi

Produktionspotentialet i dansk økonomi 51 Produkionspoeniale i dansk økonomi Af Asger Lau Andersen og Moren Hedegaard Rasmussen, Økonomisk Afdeling 1 1. INDLEDNING OG SAMMENFATNING Den økonomiske udvikling er i Danmark såvel som i alle andre

Læs mere

Appendisk 1. Formel beskrivelse af modellen

Appendisk 1. Formel beskrivelse af modellen Appendisk. Formel beskrivelse af modellen I dee appendiks foreages en mere formel opsilning af den model, der er beskreve i ariklen. Generel: Renen og alle produenpriser - eksklusiv lønnen - er give fra

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave B

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave B Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Opgaven består af fire dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Udkast pr. 27/11-2003 til: Equity Premium Puzzle - den danske brik

Udkast pr. 27/11-2003 til: Equity Premium Puzzle - den danske brik Danmarks Saisik MODELGRUPPEN Arbejdspapir Jakob Nielsen 27. november 2003 Claus Færch-Jensen Udkas pr. 27/11-2003 il: Equiy Premium Puzzle - den danske brik Resumé: Papire beskriver udviklingen på de danske

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

Formelsamling - MatF2. Therkel Zøllner og Amalie Christensen 27. juni 2009

Formelsamling - MatF2. Therkel Zøllner og Amalie Christensen 27. juni 2009 Formelsamling - MatF2 Therkel Zøllner og Amalie Christensen 27. juni 2009 1 Indhold 1 Kompleks variabel teori 3 1.1 Komplekse funktioner 825-830........................... 3 1.2 Powerserier af komplekse

Læs mere

Eksamen i Matematik F2 d. 19. juni Opgave 2. Svar. Korte svar (ikke fuldstændige)

Eksamen i Matematik F2 d. 19. juni Opgave 2. Svar. Korte svar (ikke fuldstændige) Eksamen i Matematik F2 d. 9. juni 28 Korte svar (ikke fuldstændige Opgave Find realdelen, Re z, og imaginærdelen, Im z, for følgende værdier af z, a z = 2 i b z = i i c z = ln( + i Find realdelen, Re z,

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over

Læs mere

Besvarelser til Calculus Ordinær Eksamen Januar 2019

Besvarelser til Calculus Ordinær Eksamen Januar 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Januar 19 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Facits til Adgangseksamen MA

Facits til Adgangseksamen MA Facis il Adgangssamn MA Jan 00 Opg. a ½cos b cos c / / ln Opg. a / b c 0 0 Opg. a f =f = b 8/ c ln- Opg. a 00 0 b = -/ c = + / Opg. a f cos b f cos Maj 00 Opg. a ½ b ln-/ Opg. a + + = 0 b c /7 d 7 Opg.

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over.

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Rumgeomeri Hvis man ønsker mere udfordring, kan man springe de førse 0 opgaver over Opgave I rumme er give punkerne A og B Besem en parameerfremsilling for linjen l som indeholder punkerne A og B, når

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008 Tjekkie Šěpán Vimr lærersuderende Rappor om undervisningsbesøg Sucy-en-Brie Frankrig 15.12.-19.12.2008 Konak med besøgslæreren De indledende konaker (e-mail) blev foreage med de samme undervisere hvilke

Læs mere

Mat H 2 Øvelsesopgaver

Mat H 2 Øvelsesopgaver Mat H 2 Øvelsesopgaver 18. marts 1998 1) dx dt + 2t 1+t x = 1 2 1+t, fuldstændig løsning. 2 2) ẋ + t 2 x = t 2, fuldstændig løsning. 3) ẋ 2tx = t, x() = 1. 4) ẋ + 1 t x = 1 t 2, t >, undersøg løsningen

Læs mere

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016 Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har

Læs mere

Opgave 1: Regressionsanalyse

Opgave 1: Regressionsanalyse Opgave : Regressiosaalyse La u, x,..., u, x være par af reelle al. Vi skal u besemme e ree liie, er passer bes me isse alpar i e forsa a summe x s α βu s miimeres. Ma fier alså e liie, x ˆα + ˆβu, for

Læs mere

Danmarks fremtidige befolkning Befolkningsfremskrivning 2006. Marianne Frank Hansen, Lars Haagen Pedersen og Peter Stephensen

Danmarks fremtidige befolkning Befolkningsfremskrivning 2006. Marianne Frank Hansen, Lars Haagen Pedersen og Peter Stephensen Danmarks fremidige befolkning Befolkningsfremskrivning 26 Marianne Frank Hansen, Lars Haagen Pedersen og Peer Sephensen Juni 26 Indholdsforegnelse Forord...4 1. Indledning...6 2. Befolkningsfremskrivningsmodellen...8

Læs mere

Baggrundsnotat: Estimation af elasticitet af skattepligtig arbejdsindkomst

Baggrundsnotat: Estimation af elasticitet af skattepligtig arbejdsindkomst d. 02.11.2011 Esben Anon Schulz Baggrundsnoa: Esimaion af elasicie af skaepligig arbejdsindkoms Dee baggrundsnoa beskriver kor meode og resulaer vedrørende esimaionen af elasicieen af skaepligig arbejdsindkoms.

Læs mere

Bilbeholdningen i ADAM på NR-tal

Bilbeholdningen i ADAM på NR-tal Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 4. april 2008 Bilbeholdningen i ADAM på NR-al Resumé: Dee papir foreslår a lade bilbeholdningen i ADAM være lig den officielle bilbeholdning fra Naionalregnskabe.

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Kan den danske forbrugsudvikling benyttes til at bestemme inflationsforventninger?

Kan den danske forbrugsudvikling benyttes til at bestemme inflationsforventninger? 59 Kan den danske forbrugsudvikling benyes il a besemme inflaionsforvenninger? Michael Pedersen, Økonomisk Afdeling INFLATIONSFORVENTNINGER Realrenen angiver låneomkosningerne (eller afkase af en placering

Læs mere

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den

Læs mere

Slides til Makro 2, Forelæsning oktober 2006 Chapter 5, anden halvdel

Slides til Makro 2, Forelæsning oktober 2006 Chapter 5, anden halvdel DEN FULDSÆNDIGE SOLOW-MODEL Y t = K α t (A t L t ) 1 α, Slides til Makro 2, Forelæsning 7 26 oktober 2006 Chapter 5, anden halvdel r t = αk α 1 t (A t L t ) 1 α = α Ã Kt A t L t! α 1, Ã! α w t =(1 α) Kt

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

Multivariate kointegrationsanalyser - En analyse af risikopræmien på det danske aktiemarked

Multivariate kointegrationsanalyser - En analyse af risikopræmien på det danske aktiemarked Cand.merc.(ma)-sudie Økonomisk nsiu Kandidaafhandling Mulivariae koinegraionsanalyser - En analyse af risikopræmien på de danske akiemarked Suderende: Louise Wellner Bech flevere: 9. april 9 Vejleder:

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Matematisk modellering og numeriske metoder. Lektion 10

Matematisk modellering og numeriske metoder. Lektion 10 Matematisk modellering og numeriske metoder Lektion 10 Morten Grud Rasmussen 2. november 2016 1 Partielle differentialligninger 1.1 Det grundlæggende om PDE er Definition 1.1 Partielle differentialligninger

Læs mere