Lineær Algebra F08, MØ

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Lineær Algebra F08, MØ"

Transkript

1 Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder er argumenterne ikke de nemmeste; det er tilstræbt at vælge de argumenter, det er lettest at formidle på skrift. Husk igen, at det hedder en matrix, to matricer, og matrixmultiplikation. Afleveringsopgaven fra ugeseddel 3 (skitse) Opgaven lyder: find en basis for N(A), hvor ( ) + i 3 4 i A = 0 + i i Metode: Bemærk at A Mat,4 ( ), så N(A) = {x 4 Ax = 0} 4 Løs derfor først ligningssystemet Ax = 0, her kan resultatet fra bogen: "A H de to ligningssystemer hørende til A hhv. H har identiske løsningsmængder" være nyttigt. Man finder at Ax = 0 x = α i 0 + β i 5 + i 0 for α, β Herfra aflæses at N(A) = span i 0, i 5 + i 0 Nu kan man finde en basis for N(A). Vi ser nemlig at vektorerne i i, 5 + i 0 0 udspænder N(A). Jf. definitionen af en basis skal man nu blot vise at de to vektorer er lineært uafhængige. Dette kræver et (let?) argument. Når opgaven er at finde en basis for et vektorrum V, så skal det sidste udsagn der står i besvarelsen helst være "{v, v,..., v k } udgør derfor en basis for V". Genafleveringer I de fleste tilfælde er det nok at lave et addendum på bagsiden, hvori man behandler de manglende dele. Husk altid at aflevere den gamle aflevering med.

2 Opgave a) Lad C(Ê) = { f : Ê Ê f er kontinuert} være vektorrummet af kontinuerte funktioner på Ê. Vi vil vise at mængden {cos(πx), sin(πx)} er lineært uafhængig. Jf. definitionen skal vi tage en linearkombination a cos(πx) + b sin(πx) = 0 der giver 0-vektoren (0-vektoren i C(Ê) er blot 0-funktionen dvs. den funktion der er konstant lig 0, så 0(x) = 0 for alle x Ê), og vi skal vise at begge skalarer a, b Ê faktisk er 0. Men da ligheden ovenfor gælder for alle x Ê gælder der specielt for x = 0, at 0 = a cos(0) + b sin(0) = a så a = 0, men ligheden ovenfor gælder også for x =, så 0 = a cos( π ) + b sin( π ) = b så b = 0. Vi har altså taget en linearkombination af de vektorer, der gav 0-vektoren, og vist, at alle (begge) skalarerne her var 0. Dette viser (jf. definitionen) at vektorerne {cos(πx), sin(πx)} er lineært uafhængige. Opgave b) Vi betragter stadig C(Ê) og skal nu vise at mængden {x 3, x 5 } er lineært uafhængig. Lad derfor endnu engang a, b Ê, og antag at ax 3 + bx 5 = 0 Da dette udtryk gælder for alle x Ê og begge sider oplagt er differentiable, kan vi differentiere begge sider, og vi bevarer naturligvis lighed. Dvs. vi får a 3 x + b 5 x 3 = 0 Hvis vi nu ganger begge sider her med 3 x (den opmærksomme læser vil bemærke at vi her bruger at C(Ê) er en ring, jf. definitionen i [ETP]), så får vi ax 3 b 5 3 x 5 = 0 Dette kan nu adderes til den første ligning, og man finder 0 = ax 3 + bx 5 + ( ax 3 b 5 3 x 5 ) = b( 5 3 )x 5 = 3 bx 5 Specielt gælder for x = at 0 = 3 b så b = 0. Vi har derfor også i vores første ligning for x = at 0 = a 3 + b 5 = a + 0 = 0 så a = 0. Vi har nu vist at begge skalarer er 0, så mængden {x 3, x 5 } er lineært uafhængig. Strategien vi brugte i Opgave a) kan også bruges her: Evaluér fx i x = og x = 4.

3 Morale. Hvis man skal vise at et antal vektorer i et vektorrum er lineært uafhængige, så skal man tage en linearkombination af dem, og så benytte al den information man har om vektorrummet til at vise at skalarerne alle er 0. Øvelse. Lad C(Ê, ) = { f : Ê f er kontinuert} være mængden af kontinuerte funktioner på Ê, men med værdier i. Dette er et vektorrum over. Overvej at C(Ê) C(Ê, ), og vis nu at de to mængder vi betragtede ovenfor stadigvæk er lineært uafhængige, men nu over. (Forskellen er at vores vilkårlige skalarer a, b ovenfor nu skal vælges i ). Opgave Lad A Mat m,n ( ), og antag, at søjlerne i A er lineært uafhængige. Vi vil vise, at N(A) = {0}. Det absolut nemmeste er at bruge Rank-Nullity-Sætningen: Da søjlerne i A er lineært uafhængige, er søjlerummet for A n-dimensionalt (antallet af søjler i A er n). Det følger at dim N(A) = n Rang(A) = n dim Sø(A) = n n = 0 så dimensionen af nulrummet er 0. Dermed er N(A) = {0}. Det er nok mere i opgavens ånd at bemærke følgende: Lad x = (x,..., x n ) T N(A), dvs Ax = 0. Nu er Ax jo netop en linearkombination af søjlerne fra A med skalarer x, x,..., x n (overvej dette). Da vi har en linearkombination af søjlerne fra A, der giver 0-vektoren, og da søjlerne fra A er lineært uafhængige, så må alle skalarerne være 0. Dvs. x = 0. Vi har vist at N(A) {0}. Da det er helt oplagt, at {0} N(A), er vi færdige. Opgave fra ugeseddel 3 Lad A Mat n,n ( ), og lad r Æ (r > 0). Vi antager at A r er invertibel, og skal vise at A er invertibel. Sæt B = A r. Da B er invertibel per antagelse findes en matrix B så Vi ser derfor at og BB = B B = I A(A r B ) = A r B = BB = I (B A r )A = B A r = B B = I Så A har en højre- og venstreinvers, så A er invertibel. Vi brugte at r > 0, så r 0, dette viser nemlig at A r er veldefineret. Øvelse. Der er utallige andre måder at løse denne opgave på. Find to af dem. 3

4 Opgave fra ugeseddel 3 Lad N Mat n,n ( ). Antag, der findes et r > 0 så N r = 0. Vi siger, at N er nilpotent. Vi vil vise, at I N er invertibel. Bemærk til den ende, at (I N)(I + N + N N r ) = I + N + N N r N N... N r N r = I N r = I Vi ser således at I N har en højreinvers. Det følger at I N er invertibel. Hvis man ikke tror på, at en matrix, der har en højreinvers er invertibel, skal man tage og vise det (brug Thm. 4.). Alternativt kan man udregne som ovenfor og vise at I N også har en venstreinvers (den samme matrix virker). Argumentet, vi har givet her, er en gentagelse af argumentet fra [ETP] Sætning.4. Denne sætning gælder hver gang man i en ring (fx Mat n,n ( )) har to elementer r, s, der kommuterer, dvs. rs = sr. Vi bruger sætningen for r = N og s = I, der gælder oplagt, at rs = NI = IN = sr. Opgave 3..0 og Lad U, V W være underrum af vektorrummet W, her er W et vektorrum over legemet. Vi vil vise at U + V = {x W x = u + v, for passende u U, v V} er et underrum af W. Vi skal altså vise følgende x, y U + V x + y U + V x U + V, λ λx U + V Lad derfor x, y U + V være givet. Vi kan nu skrive x = u + v hvor u U og v V. Tilsvarende kan vi skrive y = u + v hvor u U og v V. Vi ser nu at x + y = (u + v ) + (u + v ) = (u + u ) + (v + v ) men da u + u U (U W er et underrum), og da v + v V (V W er et underrum), så har vi skrevet x + y på den ønskede form, så x + y U + V. Hvis også λ er givet, så er men λu U og λv V så λx U + V. Øvelse. Vis at U U + V og V U + V. λx = λ(u + v ) = λu + λv 4

5 Antag nu yderligere at U, V er endeligt dimensionale, og at U V = {0}. Vi vil nu vise at dim(u + V) = dim U + dim V Lad til den ende U have en basis {u, u,..., u r } og lad V have en basis {v, v,..., v s }. Vi ser at dim U = r og dim V = s. Vi skal vise at dim(u + V) = r + s. Vi vil vise følgende: {u,..., u r, v,..., v s } er en basis for U + V. Dette vil vise det ønskede. Udsagnet giver mening pga. øvelsen ovenfor. Vi skal altså vise at vektorerne er lineært uafhængige og udspænder U + V. Lad os vise det sidste først. Lad derfor x = u + v U + V, vi skal vise, at x kan skrives som linearkombination af vektorerne {u,..., u r, v,..., v s }. Der findes skalarer λ i og skalarer µ j, så u = λ u + λ u λ r u r og så v = µ v + µ v µ s v s (her bruger vi at {u i } hhv. {v i } er baser for U hhv. V). Vi ser at x = u+v = λ u + λ u +...+λ r u r + µ v + µ v +...+µ s v s span{u,..., u r, v,..., v s } Vi har nu vist at U + V = span{u,..., u r, v,..., v s } Vi skal nu blot vise at vektorerne er lineært uafhængige. Så antag λ u + λ u λ r u r + µ v + µ v µ s v s = 0 hvor λ i, µ j er skalarer. Vi skal vise at alle λ i og µ j er 0. Bemærk nu at Dvs. at U λ u + λ u λ r u r = (µ v + µ v µ s v s ) V λ u + λ u λ r u r U V = {0} Men da {u, u,..., u r } er lineært uafhængig, så er alle λ i = 0. Det følger at µ v + µ v µ s v s = 0 og dermed at alle µ j = 0. Dette afslutter beviset. Øvelse. Engang imellem kan man finde på at skrive U V i stedet for U + V, hvis U V = {0}. Vis at enhver vektor i U V kan skrives entydigt som en sum af to vektorer, en fra U og en fra V. (Vink: Du kender en basis, og ved at ethvert element kan skrives entydigt som en linearkombination af elementer fra denne basis). 5

6 Opgave Lad A Mat m,n ( ) og lad B Mat m,m ( ) være invertibel. Vi vil vise at N(BA) = N(A). Bemærk at Ax = 0 BAx = B0 = 0 Hvor vi kan gange B på, for at komme fra højre til venstre. Dette viser at N(BA) = N(A). Fra Rank-Nullity-Sætningen følger nu at dim N(BA) + Rang(BA) = n = dim N(A) + Rang(A) Det følger at Rang(A) = Rang(BA), da jo oplagt dim N(A) = dim N(BA). Lad nu C Mat n,n ( ) være invertibel, vi vil vise at Rang(A) = Rang(AC). Bemærk nu at Rang(A) = Rang(A T ) Dette følger fra Vi ser derfor at Rang(A) = dim Sø(A) = dim Ræ(A T ) = Rang(A T ) Rang(AC) = Rang((AC) T ) = Rang(C T A T ) Men nu er C T invertibel, da C er invertibel. Så fra ovenstående følger at Så alt i alt er som påstået. Opgave Vi starter med en definition Rang(C T A T ) = Rang(A T ) = Rang(A) Rang(AC) = Rang(A) Definition. Lad A Mat m,n ( ). Vi siger at A har en højreinvers hvis der findes en matrix C Mat n,m ( ) så AC = I m. Vi vil vise: Hvis A har en højreinvers, så er søjlerummet Sø(A) = m. Bemærk nu: Vi har en højreinvers til A dvs. en matrix C så AC = I m. Dvs. Rang(AC) = Rang(I m ) = m. Men Sø(AC) Sø(A), da søjlerne i AC er linearkombinationer af søjlerne fra A (overvej dette). Det følger at m = Sø(AC) Sø(A) m Så Sø(A) = m som påstået. Det følger at Rang(A) = m, men Rang(A) = dim Ræ(A) n, så vi ser, at hvis A har en højreinvers, så er m n. Øvelse (Udfordring). Vis at hvis m n og Rang(A) = m, så har A en højreinvers. -- Bedste hilsen Troels Agerholm 6

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

12.1 Cayley-Hamilton-Sætningen

12.1 Cayley-Hamilton-Sætningen SEKTION 12.1 CAYLEY-HAMILTON-SÆTNINGEN 12.1 Cayley-Hamilton-Sætningen Sætning 12.1.1 (Cayley-Hamilton) Lad A Mat n,n (C). Så gælder p A (A) =. Sætningen gælder faktisk over et vilkårligt legeme, men vi

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Lidt alment om vektorrum et papir som grundlag for diskussion

Lidt alment om vektorrum et papir som grundlag for diskussion Definition : vektorrum, vektorer Et vektorrum er en mængde af elementer med operationerne sum (+) og numerisk multiplikation (), så følgende regler gælder for alle a, b, c og for alle reelle tal s, t R.

Læs mere

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001. Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,

Læs mere

Reeksamen i Lineær Algebra

Reeksamen i Lineær Algebra Reeksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Torsdag den 8. august, 2. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer 1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 4 januar, 2 Kl 9-3 Nærværende eksamenssæt består af 8 nummererede

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017 Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

DesignMat Uge 1 Repetition af forårets stof

DesignMat Uge 1 Repetition af forårets stof DesignMat Uge 1 Repetition af forårets stof Preben Alsholm Efterår 008 01 Lineært ligningssystem Lineært ligningssystem Et lineært ligningssystem: a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + +

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til.

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. DESIGNMAT FORÅR 2012: UGESEDDEL 13 INSTITUT FOR MATEMATIK 1. Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. 2. Aktiviteter mandag 13 17 2.1.

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

DesignMat Uge 11 Lineære afbildninger

DesignMat Uge 11 Lineære afbildninger DesignMat Uge Lineære afbildninger Preben Alsholm Forår 008 Lineære afbildninger. Definition Definition Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge). Afbildningen

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

Lineær algebra: Egenværdier, egenvektorer, diagonalisering

Lineær algebra: Egenværdier, egenvektorer, diagonalisering Lineær algebra: Egenværdier, egenvektorer, diagonalisering Institut for Matematiske Fag Aalborg Universitet 2011 Egenvektorer og egenværdier Mål: Forståelse af afbildningen x Ax fra R n R n for en n n-matrix

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Fredag

Læs mere

Besvarelser til Lineær Algebra Reeksamen August 2016

Besvarelser til Lineær Algebra Reeksamen August 2016 Besvarelser til Lineær Algebra Reeksamen - 9. August 26 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

Ligningssystemer - nogle konklusioner efter miniprojektet

Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax

Læs mere

Noter til Lineær Algebra

Noter til Lineær Algebra Noter til Lineær Algebra Eksamensnoter til LinAlg Martin Sparre, www.logx.dk, August 2007, Version π8 9450. INDHOLD 2 Indhold 0. Om disse noter.......................... 3 Abstrakte vektorrum 4. Definition

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. februar, 3. Kl. 9-3. Nærværende eksamenssæt består af 9 nummererede

Læs mere

DesignMat Uge 11. Vektorrum

DesignMat Uge 11. Vektorrum DesignMat Uge 11 (fortsat) Forår 2010 Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation med skalar. (fortsat) Lad L betegne R eller C. Lad V være en

Læs mere

Prøveeksamen A i Lineær Algebra

Prøveeksamen A i Lineær Algebra Prøveeksamen A i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Der må gøres brug af bøger, noter mv Der må ikke benyttes lommeregner,

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 7, 2009 Produceret af Hans J Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 Definition kritisk punkt: funktion f(x, y) er et kritisk punkt

Læs mere

MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen

MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible

Læs mere

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2 Oersigt [LA],, Komplement Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på ektor Projektion på basis Kortest afstand August 00, opgae 6 Tømrermester Januar

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den 9. februar, 4. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable E6 efterår 999 Notat 8 Jørgen Larsen 22. november 999 Lineære normale modeller ) udkast Ved hjælp af lineær algebra kan man formulere og analysere de såkaldte lineære normale modeller meget overskueligt

Læs mere

4.1 Lineære Transformationer

4.1 Lineære Transformationer SEKTION 41 LINEÆRE TRANSFORMATIONER 41 Lineære Transformationer Definition 411 ([L], s 175) Lad V, W være F-vektorrum En lineær transformation L : V W er en afbildning, som respekterer lineær struktur,

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

DesignMat Uge 11 Vektorrum

DesignMat Uge 11 Vektorrum DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote 7 enote 7 Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses Der bruges egenværdier og egenvektorer i løsningsproceduren,

Læs mere

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 2002, opgave 6 Cauchy-Schwarz ulighed Calculus

Læs mere

Symmetriske og ortogonale matricer Uge 7

Symmetriske og ortogonale matricer Uge 7 Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji

Læs mere

Matematik: Stuktur og Form Lineære ligningssystemer

Matematik: Stuktur og Form Lineære ligningssystemer Matematik: Stuktur og Form Lineære ligningssystemer Martin Raussen Department of Mathematical Sciences Aalborg University 2016 1 / 10 Ligningssystemer og matricer Ligningssystem totalmatrix Til et ligningssystem

Læs mere

Reeksamen i Lineær Algebra

Reeksamen i Lineær Algebra Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 8 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Calculus Uge

Calculus Uge Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal. SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret

Læs mere

Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1

Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1 Besvarelse af Eksamensopgaver Juni 5 i Matematik H Opgave De fire vektorer stilles op i en matrix som reduceres: 4 4 4 8 4 4 (a) Der er ledende et-taller så dim U =. Som basis kan f.eks. bruges a a jfr.

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra

Læs mere

DesignMat Uge 4 Systemer af lineære differentialligninger I

DesignMat Uge 4 Systemer af lineære differentialligninger I DesignMat Uge Systemer af lineære differentialligninger I Preben Alsholm Efterår 008 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden I Lineært differentialligningssystem

Læs mere

Besvarelser til Lineær Algebra og Calculus Globale Forretningssystemer Eksamen - 6. Juni 2016

Besvarelser til Lineær Algebra og Calculus Globale Forretningssystemer Eksamen - 6. Juni 2016 Besvarelser til Lineær Algebra og Calculus Globale Forretningssystemer Eksamen - 6 Juni 206 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind Kontakt mig endelig, hvis du skulle falde over en

Læs mere

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder Oversigt [LA] 11, 1, 13 Prikprodukt Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 00, opgave 6 Cauchy-Schwarz ulighed

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 8 Linearkombinationer. Spænd Definition Givet et antal vektorer a1,...,

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Her skal du lære om Separable ligninger Logistisk ligning og eksponentiel vækst 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag

Læs mere