Lineære systemer med hukommelse.

Størrelse: px
Starte visningen fra side:

Download "Lineære systemer med hukommelse."

Transkript

1 Lineær Response Teori. I responseteorien interesserer man sig for, hvad der kan siges generelt om sammenhængen mellem input φ(t) og output γ(t) for et system. Valg af variable. Det betragtede systems forskellige vekselvirkninger med omgivelserne kaldes for energibånd. Til hvert energibånd vil der være knyttet to såkaldte konjugerede variable, den generaliserede spænding, effort, e og den generaliserede strøm, flow, f. Produktet e f skal angive en art overført energimængde pr. tid. Strøm-variablen genkendes på, at den vil skifte fortegn ved tidsvending, mens spændings-variablen ikke vil gøre det. Herudover defineres to ekstra variable: forskydningen q, der er tidsintegralet af strømmen, og impulsen p, der er tidsintegralet af spændingen. Ved at fastlægge vor beskrivelse af systemer i disse termer bliver det let at angive analogier mellem forskellige fysiske systemer. Som eksempler kan nævnes, at de konjugerede variable i et termisk energibånd kunne være Carnotfaktoren 1 T /T 1 og varmestrømmen J Q. I et mekanisk energibånd kunne det være normalspændingen σ og volumenstrømmen J V. I elektriske energibånd svarer e til spændingsforskel U, f til strøm I, q til ladning Q og p til magnetisk fluks Φ B. Lineære systemer med hukommelse. I den lineære responseteori antager vi, at for tilstrækkeligt små påvirkninger vil der være en lineær sammenhæng mellem input, φ og output, γ; men der kan godt være en after effect. Ændringen dφ(t ) i φ til tiden t giver således et bidrag til ændringen dγ(t) i γ til tiden t: dγ(t) = R(t, t )dφ(t ) = R(t t )dφ(t ), (1) hvor vi yderligere har antaget, at denne ændring kun afhænger af tidsforskellen (tidshomogenitet). Da response må komme efter stimuli må R være for t < t, altså R(t) =, for t < (kausalitet) (2) 1 Hvilket blot er den relative temperaturvariation (T T )/T for små temperaturændringer 1

2 Opsummering af alle bidragene fra t = til t = t giver γ(t) = = t R(t t )dφ(t ) = t R(t t ) φ(t )dt R(t ) φ(t t )dt. (3) Her er φ den afledede af φ. Hvis vi indfører kompositionen som kort skrivemåde for den lineære operation foldning med den tidsafledede så kan ligning (3) skrives γ = R φ. (4) Bemærk, at dimensionen af R bliver dim(output)/dim(input). Responsefunktionernes navne. Afhængigt af typen af input og output giver vi responsefunktionen R forskellige navne. γ og φ kan hver især være f, q, e, p; men de må tilhøre hver sin kausale klasse. Hvis således φ er e eller p skal γ være f eller q og vice versa. Dette giver otte mulige responsefunktioner, hvoraf dog to er identiske med to andre således, at der kun er 6: Med input fra spændingsklassen: Krybefunktionen (compliance) J, q = J e, Admittansen Y, f = Y e, Letheden F, f = F p. Med input fra strømklassen: Stivheden (modulus) G, e = G q, Impedansen Z, e = Z f, Inertansen M, p = M f. Een af responsefunktionerne er nok til at karakterisere et system, idet de seks funktioner hænger matematisk sammen. Når man alligevel ikke blot nøjes med en af dem, er det fordi, det eksperimentelt kan være praktisk at kunne bestemme, hvilke variable (input), der styres, og hvilke (output), der måles. I en teori vil det også være forskelligt hvilken r.f.,det er mest naturlig at betragte. Skemaet giver et overblik over definitionen af de forskellige responsefunktioner 2

3 γ q f e p ladning strøm spænding magn. fluks φ forskydning hastighed kraft impuls q ladning forskydning G modulus stivhed f Z M strøm impedans inertans hastighed modstand masse e J Y spænding compliance admittans kraft krybefunktion bevægelighed p magn. fluks impuls F lethed Tabel 1 Skema over response-funktionerne, R og de mulige relationer, γ = R φ mellem input, φ og output, γ. Operatoren er "foldning med den tidsafledede" i tidsbilledet, men simpel multiplikation i frekvensbilledet. 3

4 Tidsbilledet. Lad stimuli (input) være en en pludselig ændring i φ fra til φ til tiden t = (en stepfunktion). Det kan vi udtrykke ved hjælp af Heaviside funktionen {, t < E(t) = (5) 1, t > idet vi da har φ(t) = φ E(t). Differentierer vi Heaviside funktionen får vi deltafunktionen δ(t), der er overalt undtagen for t =, hvor den til gengæld er så uendelig, at integralet af den er 1 2. Da er γ(t) = R(t )φ δ(t t )dt = φ R(t) (6) Responsefunktionen R(t) er altså simpelthen svaret γ(t) på et enhedsstep i stimuli til tiden t =, og kan derfor måles ved et såkaldt stepresponse forsøg. Frekvensbilledet. Formel (3) udtrykker, at output er givet ved at folde den tidsafledede af input med responsefunktionen. Ved en Fouriertransformation overgår foldning til produkt, differentiation til multiplikation med iω og integration til division med iω. Derfor vil diskussionen ofte være lettere i frekvensbilledet. Betragt derfor et periodisk input φ(t) = φ ω e iωt Da ligningerne er lineære, kan vi gerne regne med det komplekse input og tage realdel til sidst. Vi får γ(t) = R(t )(iω)φ ω e iω(t t ) dt = (iω)φ ω e iωt R(t )e iωt dt (7) 2 Det lyder selvfølgelig matematisk forkert; men de matematiske indvendinger kan man komme til livs ved blot at bruge en differentiabel funktion, der ligner Heavisidefunktionen undtagen i et tidsinterval, τ efter, der er meget kort i forhold til nogen relevant fysisk tid. Deltafunktionen er opfundet af Dirac og meget benyttet i fysikken. Den er normalt defineret symmetrisk omkring ; men i responseteorien skal approksimationerne til Heaviside og deltafunktionen kun leve for t > af hensyn til kausalitet. Mere præcist burde vi derfor skrive E(t + ) og δ(t + ), da Heaviside-funktionen skal være forskudt et infinitesimalt stykke væk fra, så dens afledede, deltafunktionen kun lever inden for integrationsområdet i (6). Man integrerer altså først med δ(t ǫ) og foretager grænseovergangen ǫ bagefter. En realisering af Heaviside funktionen, der er kausal, kunne være grænsen for τ af funktionerne H τ (t) = { for t, e τ/t for t > }. 4

5 Udregningen viser, at et harmonisk input resulterer i et harmonisk output. Skriver vi γ(t) = γ ω e iωt, ser vi hvor og F{R, ω} er den Fouriertransformerede af R(t), γ ω = ˆR(ω)φ ω, (8) ˆR(ω) = iωf{r, ω}, (9) F{R, ω} = R(t)e iωt dt. (1) Her kunne nedre grænse føres til t =, som normalt i en Fouriertransformation pga. kausalitetsbetingelsen (2). Læg mærke til, at der udover Fouriertransformation skal ganges med iω. Frekvensresponsefunktionen ˆR(ω) bliver derved den funktion, som man naturligt ville måle og definere ved (8) i et forsøg med harmonisk varierende input. ˆR(ω) har således samme dimension som R(t), og grænseopførslerne ˆR(ω) for ω eller vil svare til henholdsvis R(t) for t eller. Skrives frekvensresponsefunktionen på modulusargument form: ˆR(ω) = ˆR(ω) e iθω bliver γ(t) = ˆR(ω) e i(ωt+θω), så θ ω angiver, hvor mange radianer γ(t) er fasedrejet forud i forhold til φ(t), mens = ˆR(ω) angiver amplitudeforholdet γ ω / φ ω. Tilbagevenden til R(t) sker ved invers Fouriertransformation R(t) = 1 2π ˆR(ω) iω eiωt dω (11) Laplace-Stieltjes transformation. Fouriertransformationen kan analytisk udvides til at gælde for komplekse frekvenser ω = ω +iω. I den nedre halvplan, hvor ω < kan dette stadig findes ved (1) idet faktoren e ω t får integralet til at konvergere for t >, mens denne faktor ikke skaber problemer for t <, fordi R(t) = her. Man indfører ofte Laplace-frekvensen s = iω og definerer s-frekvensresponsefunktionen R(s) ved R(s) = s R(t)e st dt = sl{r, s} (12) altså s gange den Laplacetransformerede af R(t). Frekvensresponsefunktionen kan nu fås ved ˆR(ω) = lim s iω,s > R(s) (13) 5

6 Relationer mellem responsefunktionerne. I frekvensbilledet bliver sammenhængene mellem responsefunktionerne meget simple: Inden for de to klasser: Mellem de to klasser: M = 1 s Z = 1 s 2 G, J = 1 sỹ = 1 s 2 F (14) J = 1 G, Ỹ = 1 Z, F = 1 M (15) I tidsbilledet er det derimod kun inden for samme kausalitetsklasse, at det er enkelt at omregne (ved integration eller differentiation). Skift fra den ene klasse til den anden kræver løsning af en integralligning, som i praksis lettest løses ved netop at gå til frekvensbilledet. Sammensatte systemer. Det er let at indse at, hvis to systemer sammensættes med en Kirchhoff strømsamler (maske), dvs. så de har fælles strøm, mens den resulterende spænding er summen af delspændingerne, så er sammensætningen additivt i strømklasse responsefunktionerne (G, Z, M). Omvendt, hvis to systemer sammensættes med en Kirchhoff spændingssamler (knude), dvs så de har fælles spænding, mens den resulterende strøm er summen af delstrømmene, så er sammensætningen additiv i spændingsklasse responsefunktionerne (J, Y, F). Ved brug af dette samt skift mellem klasserne kan man opstille responsefunktioner for meget komplicerede fysiske netværk. 6

Impedans. I = C du dt (1) og en spole med selvinduktionen L

Impedans. I = C du dt (1) og en spole med selvinduktionen L Impedans I et kredsløb, der består af andre netværkselementer end blot lække (modstande) og kilder vil der ikke i almindelighed være en simpel proportional, tidslig sammenhæng mellem strøm og spænding,

Læs mere

Figur 1 Energetisk vekselvirkning mellem to systemer.

Figur 1 Energetisk vekselvirkning mellem to systemer. Energibånd Fysiske fænomener er i reglen forbundet med udveksling af energi mellem forskellige systemer. Udvekslingen af energi mellem to systemer A og B kan vi illustrere grafisk som på figur 1 med en

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Note om Laplace-transformationen

Note om Laplace-transformationen Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at

Læs mere

C R. Figur 1 Figur 2. er eksempler på kredsløbsfunktioner. Derimod er f.eks. indgangsimpedansen

C R. Figur 1 Figur 2. er eksempler på kredsløbsfunktioner. Derimod er f.eks. indgangsimpedansen Kredsløbsfunktioner Lad os i det følgende betragte kredsløb, der er i hvile til t = 0. Det vil sige, at alle selvinduktionsstrømme og alle kondensatorspændinger er nul til t = 0. I de Laplace-transformerede

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

Fourier transformationen

Fourier transformationen MODUL 6 Fourier transformationen Forfattere: Øistein WIND-WILLASSEN & Michael ELMEGÅRD 4. juni 4 Indhold Fourier transformationen 5. Definition og oprindelse.............................. 5.. Funktioner

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 1 Eventuelle besvarelser laves i grupper af - 3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

MATEMATIK 3 EN,MP 17. september 2014 Oversigt nr. 1

MATEMATIK 3 EN,MP 17. september 2014 Oversigt nr. 1 MATEMATIK 3 EN,MP 7. september 204 Oversigt nr. Her bringes en samling af de gamle eksamensopgaver: (jan. 204) Betragt begyndelsesværdiproblemet y (t) + 7y (t) + 2y(t) = e t sin(2t) for t > 0, y(0) = 2,

Læs mere

Matematik 1 Semesteruge 5 6 (30. september oktober 2002) side 1. Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (30. september oktober 2002) side 1. Komplekse tal Arbejdsplan Matematik Semesteruge 5 6 (30. september -. oktober 2002) side Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med opgaveregning

Læs mere

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J.

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J. Diffusionsligningen Fællesprojekt for FY50 og MM50 Marts 009 Hans J. Munkholm og Paolo Sibani Besvarelse fra Hans J. Munkholm 1 (a) Lad [x, x + x] være et lille delinterval af [a, b]. Den masse, der er

Læs mere

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene. MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)

Læs mere

Elektromagnetisme 14 Side 1 af 10 Elektromagnetiske bølger. Bølgeligningen

Elektromagnetisme 14 Side 1 af 10 Elektromagnetiske bølger. Bølgeligningen Elektromagnetisme 14 Side 1 af 1 Bølgeligningen Maxwells ligninger udtrykker den indbyrdes sammenhæng mellem de elektromagnetiske felter samt sammenhængen mellem disse felter og de feltskabende ladninger

Læs mere

Matematik F2 Opgavesæt 6

Matematik F2 Opgavesæt 6 Opgave 4: Udtryk funktionen f(θ) = sin θ ved hjælp af Legendre-polynomierne på formen P l (cos θ). Dvs. find koefficienterne a l i ekspansionen f(θ) = a l P l (cos θ) l= Svar: Bemærk, at funktionen er

Læs mere

Karakteristiske funktioner og Den Centrale Grænseværdisætning

Karakteristiske funktioner og Den Centrale Grænseværdisætning E6 efterår 1999 Notat 10 Jørgen Larsen 20. oktober 1999 Karakteristiske funktioner og Den Centrale Grænseværdisætning Karakteristiske funktioner som er nære slægtninge til Fourier-transformationen) er

Læs mere

Løsningsforslag til opgavesæt 5

Løsningsforslag til opgavesæt 5 Matematik F Matematik F Løsningsforslag til opgavesæt 5 Opgave : Se kursushjemmesiden. Opgave : a) π dθ 5 + 4 sin θ = e iθ, = ie iθ dθ, dθ = i sin θ = eiθ e iθ i = i(5 + 4( / )) = i = + 5i Integranden

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Fysik 2 - Den Harmoniske Oscillator

Fysik 2 - Den Harmoniske Oscillator Fysik 2 - Den Harmoniske Oscillator Esben Bork Hansen, Amanda Larssen, Martin Qvistgaard Christensen, Maria Cavallius 5. januar 2009 Indhold 1 Formål 1 2 Forsøget 2 3 Resultater 3 4 Teori 4 4.1 simpel

Læs mere

Elektromagnetisme 14 Side 1 af 9 Elektromagnetiske bølger. Bølgeligningen

Elektromagnetisme 14 Side 1 af 9 Elektromagnetiske bølger. Bølgeligningen Elektromagnetisme 14 Side 1 af 9 Bølgeligningen Maxwells ligninger udtrykker den indbyrdes sammenhæng mellem de elektromagnetiske felter. I det flg. udledes en ligning, der opfyldes af hvert enkelt felt.

Læs mere

Løsningsforslag til opgavesæt 5

Løsningsforslag til opgavesæt 5 Matematik F Matematik F Løsningsforslag til opgavesæt 5 Opgave : Se kursushjemmesiden. Opgave : a) π dθ 5 + 4 sin θ = e iθ, = ie iθ dθ, dθ = i sin θ = eiθ e iθ i = i(5 + 4( / )) = i = + 5i Integranden

Læs mere

Harmonisk oscillator. Thorbjørn Serritslev Nieslen Erik Warren Tindall

Harmonisk oscillator. Thorbjørn Serritslev Nieslen Erik Warren Tindall Harmonisk oscillator Thorbjørn Serritslev Nieslen Erik Warren Tindall November 27, 2007 Formål At studere den harmoniske oscillator, som indgår i mange fysiske sammenhænge. Den harmoniske oscillator illustreres

Læs mere

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan Matematik 1 Semesteruge 5 6 (1. oktober - 12. oktober 2001) side 1 Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Wigner s semi-cirkel lov

Wigner s semi-cirkel lov Wigner s semi-cirkel lov 12. december 2009 Eulers Venner Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Diagonalisering af selvadjungeret matrix Lad H være en n n matrix med komplekse

Læs mere

Mekaniske og dielektriske målinger på 1,2-propandiol og methyl m-toluate

Mekaniske og dielektriske målinger på 1,2-propandiol og methyl m-toluate Mekaniske og dielektriske målinger på 1,2-propandiol og methyl m-toluate En undersøgelse af sammenhængen mellem væskernes shearmodul og permittivitet Dielectric and mechanical measurements on 1,2-propanediol

Læs mere

- I, OM OG MED MATEMATIK OG FYSIK

- I, OM OG MED MATEMATIK OG FYSIK - I, OM OG MED MATEMATIK OG FYSIK Mekaniske og dielektriske målinger på 1,2-propandiol og methyl m-toluate En undersøgelse af sammenhængen mellem væskernes shearmodul og permittivitet af Louise Schnegell,

Læs mere

Eksamen i Matematik F2 d. 19. juni Opgave 2. Svar. Korte svar (ikke fuldstændige)

Eksamen i Matematik F2 d. 19. juni Opgave 2. Svar. Korte svar (ikke fuldstændige) Eksamen i Matematik F2 d. 9. juni 28 Korte svar (ikke fuldstændige Opgave Find realdelen, Re z, og imaginærdelen, Im z, for følgende værdier af z, a z = 2 i b z = i i c z = ln( + i Find realdelen, Re z,

Læs mere

Formelsamling - MatF2. Therkel Zøllner og Amalie Christensen 27. juni 2009

Formelsamling - MatF2. Therkel Zøllner og Amalie Christensen 27. juni 2009 Formelsamling - MatF2 Therkel Zøllner og Amalie Christensen 27. juni 2009 1 Indhold 1 Kompleks variabel teori 3 1.1 Komplekse funktioner 825-830........................... 3 1.2 Powerserier af komplekse

Læs mere

Signalbehandling og matematik 1 (Tidsdiskrete signaler og systemer)

Signalbehandling og matematik 1 (Tidsdiskrete signaler og systemer) Signalbehandling og matematik 1 (Tidsdiskrete signaler og systemer) Session 1. Sekvenser, diskrete systemer, Lineære systemer, foldning og lineære tidsinvariante systemer Ved Samuel Schmidt sschmidt@hst.aau.dk

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

Taylors formel. Kapitel Klassiske sætninger i en dimension

Taylors formel. Kapitel Klassiske sætninger i en dimension Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f

Læs mere

U = φ. R = ρ l A. Figur 1 Sammenhængen mellem potential, φ og spændingsfald, U: U = φ = φ 1 φ 2.

U = φ. R = ρ l A. Figur 1 Sammenhængen mellem potential, φ og spændingsfald, U: U = φ = φ 1 φ 2. Ohms lov Vi vil samle os en række byggestene, som kan bruges i modelleringen af fysiske systemer. De første to var hhv. en spændingskilde og en strømkilde. Disse elementer (sources) er aktive og kan tilføre

Læs mere

Matematik F2 Opgavesæt 2

Matematik F2 Opgavesæt 2 Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

MATEMATIK 3 ET,MP, FYS, NANO 29. august 2012 Oversigt nr. 1

MATEMATIK 3 ET,MP, FYS, NANO 29. august 2012 Oversigt nr. 1 ET,MP, FYS, NANO 29. august 202 Oversigt nr. Litteratur: I Matematik 3 bruger vi i efteråret 202 følgende bog: E. Kreyzig: Advanced engineering mathematics, 0. udg., Wiley, 20. Beskrivelse: Kurset vil

Læs mere

Grafmanipulation. Frank Nasser. 14. april 2011

Grafmanipulation. Frank Nasser. 14. april 2011 Grafmanipulation Frank Nasser 14. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Digitale periodiske signaler

Digitale periodiske signaler KAPITEL FEM Digitale periodiske signaler For digitale signaler, som er periodiske, gælder det, at for alle n vil hvor det hele tal er perioden. g(n + ) = g(n), (5.) Af udtrykkene ses det, at periodiske

Læs mere

VEKSELSPÆNDINGENS VÆRDIER. Frekvens Middelværdi & peak værdi (max) Effektiv værdi (RMS) Mere om effektiv værdi!

VEKSELSPÆNDINGENS VÆRDIER. Frekvens Middelværdi & peak værdi (max) Effektiv værdi (RMS) Mere om effektiv værdi! AC VEKSELSPÆNDINGENS VÆRDIER Frekvens Middelværdi & peak værdi (max) Effektiv værdi (RMS) Mere om effektiv værdi! Frekvens: Frekvensen (f) af et system er antallet af svingninger eller rotationer pr. sekund:

Læs mere

Kortfattet svar til eksamen i Matematik F2 d. 21. juni 2017

Kortfattet svar til eksamen i Matematik F2 d. 21. juni 2017 Kortfattet svar til eksamen i Matematik F2 d. 2. juni 27 Opgave Bestem for følgende tilfælde om en funktion f(z) af z = x + iy er analytisk i dele af den komplekse plan, hvis den har real del u(x, y) og

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 5. 6. semester efterår 2013-forår 2014 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e)

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

DesignMat Komplekse tal

DesignMat Komplekse tal DesignMat Komplekse tal Preben Alsholm Uge 7 Forår 010 1 Talmængder 1.1 Talmængder Talmængder N er mængden af naturlige tal, 1,, 3, 4, 5,... Z er mængden af hele tal... 5, 4, 3,, 1, 0, 1,, 3, 4, 5,....

Læs mere

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1 1/7 Den homogene ligning Vi betragter den n te ordens, homogene, lineære differentialligning a 0 d n y dt n + a1 d n 1 y dt n 1 hvor a 0,..., a n R og a 0 0. Vi skriver ligningen på kort form som + + dy

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig

Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig Analyse : Eulers formel Sebastian rsted 9. maj 015 Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig for øje, hvor de matematiske resultater kommer fra, og hvad de baseres på;

Læs mere

KREDSLØBSTEORI 10 FORELÆSNINGER OM ELEKTRISKEKREDSLØB

KREDSLØBSTEORI 10 FORELÆSNINGER OM ELEKTRISKEKREDSLØB EE Basis, foråret 2010 KREDSLØBSTEORI 10 FORELÆSNINGER OM ELEKTRISKEKREDSLØB Jan H. Mikkelsen EE- Basis, Kredsløbsteori, F10, KRT4 1 Emner for idag Kondensatorer Spoler TidsaGængige kredsløb Universalformlen

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel.

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Gruppeteori Michael Knudsen 8. marts 2005 1 Motivation For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Eksempel 1.1. Lad Z betegne mængden af de hele tal, Z = {..., 2, 1, 0,

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 5. 6. semester efterår 2017-forår 2018 Institution Videndjurs, Grenaa Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Bilag I. ~ i ~ Oversigt BILAG II MATEMATISK APPENDIKS. The Prisoner s Dilemma THE PRISONER S DILEMMA INTRODUKTION I RELATION TIL SAMORDNET PRAKSIS

Bilag I. ~ i ~ Oversigt BILAG II MATEMATISK APPENDIKS. The Prisoner s Dilemma THE PRISONER S DILEMMA INTRODUKTION I RELATION TIL SAMORDNET PRAKSIS Oversigt BILAG I I THE PRISONER S DILEMMA INTRODUKTION I RELATION TIL SAMORDNET PRAKSIS I I II BILAG II III GENNEMSIGTIGHEDENS BETYDNING III MATEMATISK APPENDIKS V GENERELT TILBAGEDISKONTERINGSFAKTOREN

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Besvarelse, Eksamen Analyse 1, 2013

Besvarelse, Eksamen Analyse 1, 2013 Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 23 Besvarelse, Eksamen Analyse, 23 Opgave Lad, for n N, funktionen f n : [, ) R være givet ved NB. Trykfejl. Burde være x. f n (x)

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen

Læs mere

Fysik 2, Foreslåede løsninger til prøveeksamenssæt, januar 2007

Fysik 2, Foreslåede løsninger til prøveeksamenssæt, januar 2007 Fysik 2 Foresåede øsninger ti prøveeksamenssæt januar 2007 Opgave a) Størresen af kraften i cirkebevægesen er Totaenergien er da F = m r 2 v = E = m r = m v2 r r + 2 mv2 = m 2r b) umskibets totaenergi

Læs mere

Fysik 2 - Oscillator. Amalie Christensen 7. januar 2009

Fysik 2 - Oscillator. Amalie Christensen 7. januar 2009 Fysik 2 - Oscillator Amalie Christensen 7. januar 2009 1 Indhold 1 Forsøgsopstilling 3 2 Forsøgsdata 3 3 Teori 4 3.1 Den udæmpede svingning.................... 4 3.2 Dæmpning vha. luftmodstand..................

Læs mere

Differentiation af sammensatte funktioner

Differentiation af sammensatte funktioner 1/7 Differentiation af sammensatte funktioner - Fra www.borgeleo.dk En sammensat funktion af den variable x er en funktion, vor x først indsættes i den såkaldte indre funktion. Resultatet fra den indre

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum?

Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum? Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum? - om fysikken bag til brydningsindekset Artiklen er udarbejdet/oversat ud fra især ref. 1 - fra borgeleo.dk Det korte svar:

Læs mere

Svar til eksamen i Matematik F2 d. 23. juni 2016

Svar til eksamen i Matematik F2 d. 23. juni 2016 Svar til eksamen i Matematik F d. 3. juni 06 FORBEHOLD FOR FEJL! Bemærk, i modsætning til herunder, så skal det i besvarelsen fremgå tydeligt, hvordan polerne ndes og hvordan de enkelte residuer udregnes.

Læs mere

MATEMATIK 3 EN,MP 30. august 2013 Oversigt nr. 1

MATEMATIK 3 EN,MP 30. august 2013 Oversigt nr. 1 EN,MP 30. august 2013 Oversigt nr. 1 Litteratur: I Matematik 3 bruger vi (igen) i efteråret 2013 E. Kreyzig: Advanced engineering mathematics, 10. udg., Wiley, 2011. Beskrivelse: Kurset vil handle om matematiske

Læs mere

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Landmåling involverer ofte bestemmelse af størrelser som ikke kan

Læs mere

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Indledning: I B-bogen har vi i studieretningskapitlet i B-bogen om matematik-fsik set på parallelkoblinger af resistanser

Læs mere

Differentialregning i R k

Differentialregning i R k Differentialregning i R k Lad U R k være åben, og lad h : U R m være differentiabel. Den afledte i et punkt x U er Dh(x) = h 1 (x) x 1 h 2 (x) x 1. h m (x) x 1 h 1 (x) x 2... h 2 (x) x 2.... h m (x) x

Læs mere

Antag at. 1) f : R k R m er differentiabel i x, 2) g : R m R p er differentiabel i y = f(x), . p.1/18

Antag at. 1) f : R k R m er differentiabel i x, 2) g : R m R p er differentiabel i y = f(x), . p.1/18 Differentialregning i R k Kæderegel Lad U R k være åben, og lad h : U R m være differentiabel Antag at Den afledte i et punkt x U er Dh(x) = 1) f : R k R m er differentiabel i x, 2) g : R m R p er differentiabel

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Besvarelser til Calculus Ordinær Eksamen Januar 2019

Besvarelser til Calculus Ordinær Eksamen Januar 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Januar 19 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

Kompleks Funktionsteori

Kompleks Funktionsteori Kompleks Funktionsteori Formelræs Holomorfe funktioner Sætning. (Caucy-Riemans ligninger). Funktionen f : G C, f = u+iv er holomorf i z 0 = x 0 + iy 0 hvis og kun hvis i punktet (x 0, y 0 ). du dx = dv

Læs mere

En sumformel eller to - om interferens

En sumformel eller to - om interferens En sumformel eller to - om interferens - fra borgeleo.dk Vi ønsker - af en eller anden grund - at beregne summen og A x = cos(0) + cos(φ) + cos(φ) + + cos ((n 1)φ) A y = sin (0) + sin(φ) + sin(φ) + + sin

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 5. 6. semester efterår 2015-forår 2016 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e)

Læs mere

Tilstandssummen. Ifølge udtryk (4.28) kan MB-fordelingen skrives , (5.1) og da = N, (5.2) . (5.3) Indføres tilstandssummen 1 , (5.

Tilstandssummen. Ifølge udtryk (4.28) kan MB-fordelingen skrives , (5.1) og da = N, (5.2) . (5.3) Indføres tilstandssummen 1 , (5. Statistisk mekanik 5 Side 1 af 10 ilstandssummen Ifølge udtryk (4.28) kan M-fordelingen skrives og da er μ N e e k = N g ε k, (5.1) N = N, (5.2) μ k N Ne g = e ε k. (5.3) Indføres tilstandssummen 1 Z g

Læs mere

MATEMATIK 3 EN,MP 28. august 2014 Oversigt nr. 1

MATEMATIK 3 EN,MP 28. august 2014 Oversigt nr. 1 EN,MP 28. august 2014 Oversigt nr. 1 Litteratur: I Matematik 3 bruger vi (igen) i efteråret 2014 [K] E. Kreyzig: Advanced engineering mathematics, 10. udg., Wiley, 2011. Beskrivelse: Kurset vil handle

Læs mere

Figur 1.1: Blokdiagram over regulatorprincip

Figur 1.1: Blokdiagram over regulatorprincip Indhold 1 Design af regulator til DC-motor 2 1.1 Besrivelse af regulatorer............................. 2 1.2 Krav til regulator................................. 3 1.2.1 Integrator anti-windup..........................

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til.

DESIGNMAT FORÅR 2012: UGESEDDEL Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. DESIGNMAT FORÅR 2012: UGESEDDEL 13 INSTITUT FOR MATEMATIK 1. Forberedelse Læs alle opgaverne fra tidligere ugesedler, og læg særlig mærke til dem du har spørgsmål til. 2. Aktiviteter mandag 13 17 2.1.

Læs mere

Besvarelse til eksamen i Matematik F2, 2012

Besvarelse til eksamen i Matematik F2, 2012 Besvarelse til eksamen i Matematik F2, 202 Partiel besvarelse - har ikke inkluderet alle detaljer! Med forbehold for tastefejl. Opgave Find og bestem typen af alle singulariteter for følgende funktioner:

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. MI 2007 Obligatorisk opgave 4 Sættet består af 3 opgaver med ialt 15 delopgaver. Besvarelsen vil blive forkastet, medmindre der er gjort et

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 11+12 1, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 I nærværende forbindelse er 11 + 12 23 1 Egenskaber for

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium

Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...

Læs mere

Kræfter og Arbejde. Frank Nasser. 21. april 2011

Kræfter og Arbejde. Frank Nasser. 21. april 2011 Kræfter og Arbejde Frank Nasser 21. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Rapport uge 48: Skråplan

Rapport uge 48: Skråplan Rapport uge 48: Skråplan Morten A. Medici, Jonatan Selsing og Filip Bojanowski 2. december 2008 Indhold 1 Formål 2 2 Teori 2 2.1 Rullebetingelsen.......................... 2 2.2 Konstant kraftmoment......................

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

Pointen med Differentiation

Pointen med Differentiation Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Øvelse i termisk analyse

Øvelse i termisk analyse Øvelse i termisk analyse Fysisk teknik ved Bo Jakobsen http://dirac.ruc.dk/~boj/teaching Efterår 2011 1 Baggrund Øvelsenhartilformålatsættejerindienmetodetilatbestemmeetmateriales frekvensafhængige varmekapacitet.

Læs mere

Antennens udstrålingsmodstand hvad er det for en størrelse?

Antennens udstrålingsmodstand hvad er det for en størrelse? Antennens udstrålingsmodstand hvad er det for en størrelse? Det faktum, at lyset har en endelig hastighed er en forudsætning for at en antenne udstråler, og at den har en ohmsk udstrålingsmodstand. Den

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Om hypoteseprøvning (1)

Om hypoteseprøvning (1) E6 efterår 1999 Notat 16 Jørgen Larsen 11. november 1999 Om hypoteseprøvning 1) Det grundlæggende problem kan generelt formuleres sådan: Man har en statistisk model parametriseret med en parameter θ Ω;

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

Bevægelse i (lineære) magnetfelter

Bevægelse i (lineære) magnetfelter Moderne acceleratorers fysik og anvendelse Forelæsning 3 Lineær Beam Optik - betafunktion Wille kapitel 3.7 til og med 3.13 Repetition Betafunktion og betatron bevægelse Faserum Beam størrelse og emmitans

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Integration m.h.t. mål med tæthed

Integration m.h.t. mål med tæthed Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.

Læs mere

Laplace- og Fouriertransformationer med anvendelser. Karin Lentfer Kristiansen og Thomas Hecksher

Laplace- og Fouriertransformationer med anvendelser. Karin Lentfer Kristiansen og Thomas Hecksher Laplace- og Fouriertransformationer med anvendelser Karin Lentfer Kristiansen og Thomas Hecksher EVU master i matematikuddannelsen på Aalborg Universitet 6. september 4 Resumé The following report is a

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere