Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Størrelse: px
Starte visningen fra side:

Download "Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v"

Transkript

1 Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis) Vinkelsummen i en teknt Pythgos sætning om ETVINKLEDE TEKNTE Sinus Bug f sinus b Definition f sinus Sinus i den etvinklede teknt d Sinus i den etvinklede teknt (fotst) e Sinuseltion i skævvinklet teknt osinus Bug f osinus b Definition f osinus osinus i den etvinklede teknt d osinuseltion i skævvinklet teknt (ikke mt -eksmensstof fø mj 2011) Teknttilfælde F Wikipedi, den fie enyklopædi Tngens og mee om den etvinklede teknt

2 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis) To teknte, B og 1 B 1 1 kldes ensvinklede hvis vinklene opfylde = 1, B=B 1 og = 1 Fo sidelængdene i to ensliggende teknte 1 1 gælde: b 1 1 b1 1 k b Elle: De findes et fælles tl, k, sådn t k = 1 b k = b 1 b k = 1 k kldes fostøelsesfkto, sklfkto, målestoksfohold. 2. Vinkelsummen i en teknt En teknts vinkelsum e B + = og beviset: B B B Se evt. figue/nimtion f bevis: 3. Pythgos sætning om ETVINKLEDE TEKNTE I en etvinklet teknt ( 90 vinkel ) gælde Pythgos: hyp b 2 + b 2 = hyp 2 Omfomninge: Youtube-film med bevis: Figu /nimtion til bevis: 2

3 4. Sinus Sinus e en funktion (en knp), de findes på lommeegneen. Den buges blndt ndet til beegninge, de smmenknytte side og vinkle i teknte. Enhve vinkel h en sinus-vædi. Vinklen v = 30 h sinusvædien 0.5 (fokling nedenfo), og det kn vi skive således: sin(v) = 0.5 sin(30 ) = 0.5 elle På lommeegneen indtstes blot: sin(30) = Kun hvis vinkel-enheden unde Mode på lommeegneen e indstillet på Degees (ikke dins ) fås det ønskede tl. 4 Bug f sinus I enhve teknt med siden ovefo vinklen, og siden ovefo vinklen gælde Sinuseltionen : (se bevis og eksemple senee) 4b Definition f sinus Den mtemtiske definition f funktionen sinus knytte sig til en ikel i et koodintsystem. iklen h entum i punktet O = (0,0) og dius 1. ( Enheds-iklen ) Den ønskede vinkel tegnes med høje ben ud lngs den positive del f x-ksen. Skæingspunktet, P, mellem enhedsiklen og vinklens venste ben kldes vinklens etningspunkt P s y-koodint e den støelse, de definees som sinus til vinklen. f det integnede kn vi flæse, t sin(30 ) = 0.5 3

4 Øvelse 1. Indtegn vinklene 90 og 150 i enhedsiklen nedenfo, og flæs vædiene f sin(90 ) og sin(150 ) sin(90 ) = sin(150 ) = 4 Sinus i den etvinklede teknt. En etvinklet teknt,b, med = 90 vendes og dejes og tegnes som vist nedenfo. Nedenunde indtegnes tekntens vinkel i en enhedsikel, og de tegnes en teknt i denne, som blive ensvinklet med teknt B. D tekntene e ensvinklede få vi smme fohold mellem de to lodette side, som mellem de to skå side: (1) Omfomuleing (): Buge vi 1 = sin(90 ) = sin() fås: sin() 1 sin() (sinuseltionen) Elle på hovedet: (2) Oftest tle mn om sinus-eltionene, fodi de e mee end en fomel. Vi kunne hve vendt teknten sådn t vinkel B tog den plds, som hvde, og så ville hve bevist Vi kn smmenftte det sådn, t vi fo en etvinklet teknt h bevist På side 6 vil vi se på en teknt, de ikke e etvinklet. 4

5 4d Sinus i den etvinklede teknt (fotst) En etvinklet teknt,b, med = 90 vendes og dejes og tegnes som vist nedenfo. Nedenunde indtegnes tekntens vinkel i en enhedsikel, og de tegnes en teknt i denne, som blive ensvinklet med teknt B. Fostøelsesfktoen kn ses ved t betgte de to skå side (tekntenes hypotenuse) (1) sin() Sidene i den øveste teknt e ltså gnge så stoe som den nedeste teknts side. Den øveste teknts lodette ktete kn defo beegnes som = sin() hvilket vi kn skive i teknten: 1 sin() (2) sin() I fohold til en spids vinkel,, i en etvinklet teknt gælde følgende hjælpesætning (som hjælpe til beviset fo sinusltionen i en skævvinklet teknt) : Vinkel s modstående ktete e hypotenusen gnge sin() (nde fomuleinge se senee) Figuen kn ntuligvis vende på nde måde. F. eks. spejlvendt: (3) sin() 5

6 4e Sinuseltion i skævvinklet teknt P Betgt denne teknt P, som ikke h nogen ette vinkle. p Den kn deles op i to etvinklede teknte, som det ses neden unde. h Det nye linjestykke, højden h, kn vi udtykke på to måde, ved t se på de to del-teknte sin() sin() Vi kn nemlig buge egle om sinus i hve f de to etvinklede del-teknte, figuene (2) og (3) på foige side. (Ekst øvelse : Opskiv v.h.. figuene fomel fo el f teknt P udtykt ved, p og ) Hemed e den ene f sinuseltionene bevist i den skævvinklede teknt P. Hvis endnu én f tekntens højde ligge inde i teknten, og demed dele den i to etvinklede teknte, så kn esten f sinuseltionene bevises tilsvende (dette e tilfældet hvis P e en spidsvinklet teknt). I den tegnede teknt flde de to nde højde udenfo teknt P. Tegning og bevis skl d udfomes en lille smule ndeledes, men det vil vi ikke fotbe os i he. De gælde: 6

7 5 osinus Også osinus e en funktion (en knp), de findes på lommeegneen, og som blndt ndet buges til teknts-beegninge. Vinklen v = 30 h osinusvædien (fokling nedenfo), og det kn vi skive således: os(v) = os(30 ) = elle På lommeegneen indtstes blot: os(30) = Kun hvis vinkel-enheden unde Mode på lommeegneen e indstillet på Degees (ikke dins ) fås det ønskede tl. 5 Bug f osinus I enhve teknt med vinklen, siden ovefo smt sidene b og gælde osinuseltionen, som blndt ndet kn buges til t beegne vinkel, nå de te side e kendt: (se bevis og eksemple senee) b 5b Definition f osinus Den mtemtiske definition f funktionen osinus knytte sig til en ikel i et koodintsystem. iklen h entum i punktet O = (0,0) og dius 1. ( Enheds-iklen ) Den ønskede vinkel tegnes med høje ben ud lngs den positive del f x-ksen. Skæingspunktet, P, mellem enhedsiklen og vinklens venste ben kldes vinklens etningspunkt P s x-koodint e den støelse, de definees som osinus til vinklen. f det integnede kn vi flæse, t os(30 ) =

8 Øvelse 1. Indtegn vinklene 0, 90 og 150 i enhedsiklen nedenfo, og flæs vædiene f os(0 ), os(90 ) og os(150 ) os(0 ) = os(90 ) = os(150 ) = 5 osinus i den etvinklede teknt. En etvinklet teknt,b, med = 90 vendes og dejes og tegnes som vist nedenfo. Nedenunde indtegnes tekntens vinkel i en enhedsikel, og de tegnes en teknt i denne, som blive ensvinklet med teknt B. Vi gentge he det om sinus f side 2. Det nye e t se på de vndette side: b hhv. os(b) Fostøelsesfktoen kn ses ved t betgte de to skå side (tekntenes hypotenuse) (4) sin() b Sidene i den øveste teknt e ltså gnge så stoe som den nedeste teknts side. Den øveste teknts ktete kn defo beegnes som = sin() b = os() hvilket vi kn skive i teknten: (5) sin() 1 sin() os() I fohold til en spids vinkel,, i en etvinklet teknt gælde hjælpesætningene: Vinkel s modstående ktete e hypotenusen gnge sin() Vinkel s hosliggende ktete e hypotenusen gnge os() os() 8

9 5d osinuseltion i skævvinklet teknt (ikke mt -eksmensstof fø mj 2011) P Betgt denne teknt P, som ikke h nogen ette vinkle. p Den kn deles op i to etvinklede teknte, som det ses neden unde. h f opdelingen fås 1. x + y = p elle y = p x 2. Pythgos x 2 +h 2 = 2 elle h 2 = 2 - x 2 y 2 +h 2 = 2 elle h 2 = 2 - y 2 x h h y 3. osinus i den etvinklede teknt til venste, se figuen (5) på foige side: x = os() h 2 = h 2 2 y 2 = 2 x 2 2 = 2 x 2 + y 2 2 = 2 x 2 + p 2 + x 2 2 p x 2 = 2 + p 2 2 p x 2 = 2 + p 2 2 p os() Dette e en f osinuseltionenes mnge udgve. Kun mål f den opindelige (øveste) teknt indgå:,, p, og F 2. i mmen ovenfo sættes de to fomle fo h 2 lig hinnden. Vi omskive f tedje til fjede linje til venste hefo y 2 idet de buges: F 1. i mmen ovenfo: y = p x smt nden kvdtsætning : ( b) 2 = 2 + b 2 2 b Vi få: y 2 = (p x) 2 = p 2 + x 2 2 p x Til sidst buges 3. i mmen ovenfo: x = os() Se nde udgve i og på side 4, smt i fomelsmling og øvehæfte. (Ovenstående bevis dække kun det tilfælde, hvo højden f P ligge inde i teknten og dens fodpunkt dele siden p i to stykke, x og y. Fomlene gælde dog også i nde tilfælde). F Wikipedi e også nedenstående ovesigt ove, hvonå mn buge sinuseltion og hvonå osinuseltion til t bestemme ukendte side og vinkle i en teknt med te kendte stykke Øvelse: lv opgve til hinnden, de dække de 4 omtlte tilfælde. 9

10 6. Teknttilfælde F Wikipedi, den fie enyklopædi Et teknttilfælde e en slgs egneopgve indenfo geometien: En teknt h te side med hve sin længde, og te hjøne de dnne hve sin vinkel. Givet te f disse i lt seks oplysninge, kldet stykke, gå opgven ud på t beegne de esteende te. Én elle flee løsninge Så længe mindst én f de givne oplysninge e længden på en side, kn det lde sig gøe. Hvis lle te stykke e vinkle, kn mn tegne uendelig mnge teknte i foskellige støelse som h de te givne vinkle - de e ltså ikke én enkelt, utvetydig løsning på opgven i den sitution. I nde tilfælde give beegningene nledning til to løsninge, og følgelig blive svet på opgven, t de findes to teknte de psse til de givne stykke. Fie foskellige tilfælde Løsningsmetoden fhænge f, hvilke stykke de e givet, men botset f det "umulige" tilfælde med te givne vinkle flde lle teknttilfælde i én f følgende fie ktegoie: Mke med bogstve de kendte ( givne ) oplysninge i de tegnede teknte nedenfo: te f støelsene, b,,, B, Givet te side He kn mn buge osinuseltionen til t bestemme de te vinkle. Som kontol kn mn deefte undesøge om summen f de te fundne vinkle e 180. Givet to vinkle og en side I denne sitution kn mn finde den mnglende vinkel ved hjælp f eglen om t tekntens vinkelsum skl væe 180, og deefte buge sinuseltionen til t beegne længden f de te side. Givet en vinkel og to hosliggende side He give osinuseltionen den sidste side, og heefte kn smme fomel buges til t bestemme de øvige to vinkle. Givet en vinkel, en hosliggende og en modstående side Den vinkel de stå ovefo den givne, hosliggende side, kn beegnes ved hjælp f sinuseltionen. I denne sitution bestemme mn vinklen ud f sinus til vinklen, og dette give sædvnligvis nledning til to mulige vinkle; en stump og en spids. Dette give tilsvende nledning til to mulige teknte, som mn må undesøge hve fo sig. Nå denne vinkel e bestemt, kn sidste vinkel beegnes ud f t vinkelsummen skl væe 180, og til sidst findes den sidste side med osinuseltionen - elle med sinuseltionen 10

11 Ekst stof (mest til mt B) : 7. Tngens og mee om den etvinklede teknt En tedje tigonometisk funktion tngens elle kot tn e defineet ud f sinus og osinus, nemlig sådn: Et tleksempel: Definitionen buges ved udledningen f T3 nedenfo. Føst genopfiske vi f side 8 om etvinklede teknte: S1 = sin() S2 S3 b 1 b = os() 2 3 I opgve, hvo hypotenusen ikke indgå, kn mn dividee de to ktete: ltså: T3 11

Elementær Matematik. Lineære funktioner og Andengradspolynomiet

Elementær Matematik. Lineære funktioner og Andengradspolynomiet Elementæ Mtemtik Lineæe funktione og Andengdspolynomiet Ole Witt-Hnsen Indhold. Den lineæe funktion.... Stykkevis lineæe funktione.... Andengdspolynomiet.... Pllelfoskydning f koodintsystemet.... Pllelfoskydning

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

Introduktion I dette forløb vil vi dels få et redskab til at sammenligne, hvor hurtigt givne funktioner vokser (eller aftager), og dels

Introduktion I dette forløb vil vi dels få et redskab til at sammenligne, hvor hurtigt givne funktioner vokser (eller aftager), og dels Hvd e mtemtik? 2 Pojekte: Kpitel 5. Pojekt 5.18 Støelsesoden fo funktione Pojekt 5.18 Støelsesoden fo funktionene, og ln( ) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00 1 Fomål 1. At bestemme acceleationen fo et legeme med et kendt inetimoment, nå det ulle ned ad et skåplan - i teoi og paksis.. I teoi og paksis at bestemme acceleationen fo et legeme med kendt inetimoment,

Læs mere

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Pivatøkonomi og kvotientække KLADDE Thomas Heide-Jøgensen, Rosbog Gymnasium & HF, 2017 Indhold 1 Endelige kvotientække 3 1.1 Hvad e en ække?............................ 3 1.2 Kvotientække..............................

Læs mere

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( ) Støelsesoden fo funktionene, og ln() Side f 5 Støelsesoden fo funktionene, og ln() (opgvefoløb v/ Bjøn Gøn og John Schächte) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal Mike Auebach Odense, 2010 1 OPSPARING OG LÅN Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen.

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.

Læs mere

Overgangsbetingelser for D- og E-felt

Overgangsbetingelser for D- og E-felt lektomgnetisme 5 Side f 9 lektosttisk enegi Ovegngsetingse fo D- og -ft I det flg. undesøges, hvd de ske med D- og -ftvektoene ved ovegngen mlem to diektik: D-ft: Den Gussiske flde S e en cylinde med lille

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

Geometriske egenskaber & sammenhæng - Fase 3

Geometriske egenskaber & sammenhæng - Fase 3 Nvn: Klsse: Geometriske egensker smmenhæng - Fse 3 Vurdering fr 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer eviser og forslg til foredring 1. Jeg kender til og kn ruge Pythgors lærersætning. 2. Jeg

Læs mere

Tredimensional grafik

Tredimensional grafik Teimensionl gfi 6 Ksten Juul Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Matematisk formelsamling. Hf C-niveau

Matematisk formelsamling. Hf C-niveau Mtemtisk fomelsmling Hf C-niveu Denne udgve f Mtemtisk fomelsmling Hf C-niveu e udgivet f Undevisningsministeiet og gjot tilgængelig på uvm.dk. Fomelsmlingen e udejdet i et smejde mellem Mtemtiklæefoeningen

Læs mere

Elementær Matematik. Trigonometri

Elementær Matematik. Trigonometri Elementær Mtemtik Trigonometri Ole Witt-Hnsen 11 Indhold 1. Vinkler...1. Sinus, osinus og tngens...3.1 Overgngsformler...4 3. Den retvinklede treknt...6 4. Den lmindelige treknt. Sinus og osinus reltionerne...8

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1 Mtemtisk fomelsmling til A-niveu - i fosøget med netdgng til skiftlig eksmen Food Mtemtisk fomelsmling til A-niveu e udejdet fo t give et smlet ovelik ove de fomle og det symolspog, de knytte sig til kenestoffet

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

Projekt 0.5 Euklids algoritme og primiske tal

Projekt 0.5 Euklids algoritme og primiske tal Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri Mtemtikkens mysterier - på et oligtorisk niveu f Kenneth Hnsen 2. Trigonometri T D Hvd er fstnden fr flodred til flodred? 2. Trigonometri og geometri Indhold.0 Indledning 2. Vinkler 3.2 Treknter og irkler

Læs mere

Trigonometri FORHÅNDSVIDEN

Trigonometri FORHÅNDSVIDEN Trigonometri I dette kpitel skl du rejde med trigonometri. Ordet trigonometri stmmer fr græsk og etyder trekntsmåling. Den mtemtik, der ligger g trigonometrien, hr du llerede rejdet med. Det drejer sig

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Projekt 2.3 Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 2.3 Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Pojekt. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende metode til beegning af aeale af figue, de e bestemt af kumme kuve, a siden oldtiden væe at tilnæme disse med polygone.

Læs mere

Det dobbelttydige trekantstilfælde

Det dobbelttydige trekantstilfælde Det dobbelttydige trekntstilfælde Heine Strømdhl, Københvns Kommunes Ungdomsskoler Formålet med denne rtikel er t formulere en meget simpel grfisk løsningsmetode til det dobbelttydige trekntstilfælde med

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber. - 4 - Kap. : Logaitme-, eksponential- og potensfunktione. Gundlæggende egenskabe... Logaitmefunktione. Definition... Ved en logaitmefunktion fostå vi en funktion f, som opfylde følgende te kav: ) Dm(f)

Læs mere

Arealet af en sfærisk trekant m.m.

Arealet af en sfærisk trekant m.m. ealet af en sfæisk tekant m.m. Tillæg til side 103 104 i Matematik højniveau 1 fa TRI, af Eik Vestegaad. Sfæisk tokant Givet en kugle. En plan, de passee igennem kuglens centum, skæe kuglen i en såkaldt

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

Oversigt. geometri exempler. areal: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m. areal: 5 5 = 25 cm 2 omkreds: 5+5+5+5 = 20 cm. areal: 8 5 = 40 dm 2

Oversigt. geometri exempler. areal: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m. areal: 5 5 = 25 cm 2 omkreds: 5+5+5+5 = 20 cm. areal: 8 5 = 40 dm 2 geometri exempler 4 m 3 m rel: 4 3 = 12 m 2 omkreds: 4+3+4+3 = 14 m 5 m 5 m rel: 5 5 = 25 m 2 omkreds: 5+5+5+5 = 20 m 8 dm 5 dm rel: 8 5 = 40 dm 2 8 dm 5 mm 4 mm 1 2 rel: 4 (5+9) = 28 mm 2 9 mm 7 km rel:

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

gudmandsen.net Geometri C & B

gudmandsen.net Geometri C & B gudmndsen.net Geometri C & B Indholdsfortegnelse 1 Geometri & trigonometri...2 1.1 Område...2 2 Ensvinklede treknter...3 2.1.1 Skleringsfktoren...4 3 Retvinklede treknter...5 3.1 Pythgors lærersætning...5

Læs mere

TAL OG BOGSTAVREGNING

TAL OG BOGSTAVREGNING TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,

Læs mere

g-påvirkning i rutsjebane

g-påvirkning i rutsjebane g-påvikning i utsjebane I denne note skal vi indføe begebet g-påvikning fo en peson, som sidde i en vogn, de bevæge sig undt i en utsjebane i et lodet plan. Dette skal vi gøe via begebet elativ bevægelse.

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

43-43 Geometri. Cirkelring. m = π ( r 2. R, r er radierne, t er tykkelsen og m er middelomkreds. Ellipse

43-43 Geometri. Cirkelring. m = π ( r 2. R, r er radierne, t er tykkelsen og m er middelomkreds. Ellipse 4-4 eometi Fiu ikelin Ellipse t Fomle O π ( t m π ( m π ( t, e diene, t e tykkelsen o m e middelomkeds. O π π e den le stokse o den le lillekse. Pelstykke Tpez ektnel O 6 4 ln 8 e øjden på pelstykket o

Læs mere

, idet der jo af ovenstående udregninger (hvor vi har regnet ensbetydende, dvs vi kan slutte begge veje) følger at > K.

, idet der jo af ovenstående udregninger (hvor vi har regnet ensbetydende, dvs vi kan slutte begge veje) følger at > K. Hvd e mtemtik? A ISBN 978-87-766-497-4 Pojekte: Kpitel 2. Pojekt 2.4 Støelsesoden fo funktione Pojekt 2.4. Støelsesoden fo funktionene Intoduktion, og ln( ) I dette foløb vil vi dels få et edskb til t

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Michel Mandix (2017) Derfor er der behov for en række værktøjer, som kan bruges også til de vilkårlige trekanter. a b c A B C

Michel Mandix (2017) Derfor er der behov for en række værktøjer, som kan bruges også til de vilkårlige trekanter. a b c A B C Mihel Mndix (07) Sinusreltionen Nott Side f 9 Sinusreltionen Indtil videre, er der kun eskrevet, hvordn mn eregner på retvinklede treknter. Men desværre er det lngtfr lle treknter, som er retvinklede.

Læs mere

At score mål på hjørnespark

At score mål på hjørnespark At scoe ål på hjønespk Ole Witt Hnsen, lekto eeitus undevisningens udvikling i gnsiet Indtil 988 hvilede fsikundevisningen i gnsiet på det teoetiske, so n søgte t bekæfte genne deonsttionsfosøg elle fsikøvelse,

Læs mere

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul

Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

FORMELSAMLING. Indholdsfortegnelse

FORMELSAMLING. Indholdsfortegnelse FOMELSAMLNG ndholdsfortegnelse ndholdsfortegnelse... EL-LÆE...3 Ohm s lov:...3 Effekt lov:...3 egler ved måling:...3 egler ved serieforbindelser:...3 egler ved prllelforbindelser:...4 egler ved blndede

Læs mere

De dynamiske stjerner

De dynamiske stjerner De dynamiske stjene Suppleende note Kuglesymmetiske gasmasse Figu 1 Betelgeuse (Alfa Oionis) e en ød kæmpestjene i stjenebilledet Oion. Den e så sto, at den anbagt i voes solsystem ville nå næsten ud til

Læs mere

Krydsprodukt. En introduktion Karsten Juul

Krydsprodukt. En introduktion Karsten Juul Kydspodut En ntoduton 5 Ksten Juul Bugsnvsnng Du sl se de fuldt optune mme fo t fnde defntone og sætnnge De e st punteet mme om esemple og evse Indhold Rmme Sde Defnton f ydspodut Esempel på ug f defntonen

Læs mere

Gravitationsfeltet. r i

Gravitationsfeltet. r i Gavitationsfeltet Den stoe bitiske fysike Isaac Newton opdagede i 600-tallet massetiltækningsloven, som sige, at to masse m og i den indbydes afstand påvike hinanden med en kaft af følgende støelse, hvo

Læs mere

Matematisk modellering og numeriske metoder. Lektion 17

Matematisk modellering og numeriske metoder. Lektion 17 Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil

Læs mere

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?

Læs mere

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning:

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning: Pythgors sætning I denne note skl i gie tre forskellige eiser for Pythgors sætning: Pythgors sætning I en retinklet treknt, hor den rette inkel etegnes med, gælder: + = eis 1 Ld os tegne et stort kdrt

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2-3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2-3

Læs mere

Projekt 5.7 Hovedsætninger om differentiable funktioner et opgaveforløb

Projekt 5.7 Hovedsætninger om differentiable funktioner et opgaveforløb Hvd er mtemtik?, e-og Projekter: Kpitel 5 Projekt 57 Hovedsætninger om differentile funktioner Projekt 57 Hovedsætninger om differentile funktioner et opgveforlø Projektet er en udvidelse f fsnittet i

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Projekt 1.8 Design en optimal flaske

Projekt 1.8 Design en optimal flaske ISBN 978-87-7066-9- Pojekte: Kapitel Vaiabelsammenænge. Pojekt.8 Design en optimal flaske Pojekt.8 Design en optimal flaske Fimaet PatyKids ønske at elancee dees enegidik Enegize. Den skal ave et nyt navn

Læs mere

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys Metode til beenin af vametansmissionskoefficient (U-vædi) fo oven Nævæende notat beskive en metode til beenin af vametansmissionskoefficienten fo oven. Pincippet i beeninspoceduen tae udanspunkt i beeninsmetoden

Læs mere

Projekt 7.8 To ligninger med to ubekendte

Projekt 7.8 To ligninger med to ubekendte Projekt 78 To ligninger med to uekendte Den opgve t skulle løse to ligninger med to uekendte er vi stødt på i en række speciltilfælde under ehndlingen f vækstmodellerne: Funktionstype Ligningssystem Lineær

Læs mere

Figurer. Planere: glatte, udjævne. Linjer. EB og AI, GK og HJ, MO og NP. Linjer. Vinkler Plane figurer Flytninger. 2 Linjestykker. 1 Hvad husker I?

Figurer. Planere: glatte, udjævne. Linjer. EB og AI, GK og HJ, MO og NP. Linjer. Vinkler Plane figurer Flytninger. 2 Linjestykker. 1 Hvad husker I? Figurer Linjer Vinkler Plne figurer Flytninger Plnere: gltte, udjævne 1 Hvd husker I? 2 2 Linjestykker Fortsæt sætningerne. En linje er... Et linjestykke er... Tegn linjestykkerne: I, C, CE, F og FI. b

Læs mere

Erhvervs- og Selskabsstyrelsen

Erhvervs- og Selskabsstyrelsen Ehvevs- og Selskabsstyelsen Måling af viksomhedenes administative byde ved afegning af moms, enegiafgifte og udvalgte miljøafgifte Novembe 2004 Rambøll Management Nøegade 7A DK-1165 København K Danmak

Læs mere

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen HTX Næstved Matematik A 8 2 Indholdsfotegnelse Indholdsfotegnelse... 2 Indledning... 3 Poblemstilling... 4 Teoi... 5 Vektoe i planet... 5 Vektobestemmelse... 5 Vinkel mellem to vektoe... 6 Vektokoodinate...

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Matematisk formelsamling. stx C-niveau

Matematisk formelsamling. stx C-niveau Mtemtisk fomelsmling st C-niveu mj 08 Denne udgve f Mtemtisk fomelsmling st C-niveu e udgivet f Undevisningsministeiet og gjot tilgængelig på uvm.dk. Fomelsmlingen e udejdet i et smejde mellem Mtemtiklæefoeningen

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Projekt 10.3 Terningens fordobling

Projekt 10.3 Terningens fordobling Hvd er mtemtik? Projekter: Kpitel 0 Projekt 0.3 Terningens fordoling Elementerne indeholder, hvd mn kn deducere sig til og konstruere sig til ud fr de få givne ksiomer. Mn kn derfor i en vis forstnd sige,

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

Livstidssundhedsomkostninger for rygere og aldrig-rygere. Årlige omkostninger ved passiv rygning

Livstidssundhedsomkostninger for rygere og aldrig-rygere. Årlige omkostninger ved passiv rygning Livstidssundhedsomkostninge fo ygee og ldig-ygee Ålige omkostninge ved pssiv ygning Konsulentppot udbejdet til Hjetefoeningen f pojektlede Susnne Reindhl Rsmussen, egotepeut, MPH DSI Institut fo Sundhedsvæsen,

Læs mere

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde

Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 016. runde Besvrelser som flder uden for de løsninger som ligger til grund for pointskemerne, bedømmes ved nlogi så skridt med tilsvrende vægt i den

Læs mere

Projekt 8.4 Logaritmefunktionerne

Projekt 8.4 Logaritmefunktionerne Hvd er mtemtik? Projekter: Kpitel 8. Projekt 8.4 Logritmefunktionerne Projekt 8.4 Logritmefunktionerne Indhold. log( ) og 0 som omvendte funktioner... 2 2. Den nturlige logritmefunktion, ln( ) og den nturlige

Læs mere

Lektion 6 Bogstavregning

Lektion 6 Bogstavregning Lektion Bogstvregning Formler... Reduktion... Ligninger... Lektion Side 1 Formler En formel er en slgs regne-opskrift, hvor mn med bogstver viser, hvorledes noget skl regnes ud. F.eks. formler til beregning

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komlekse eksonentialfunktion og olynomie Peben Alsholm Uge 8 Foå 009 Den komlekse eksonentialfunktion. Definitionen Definitionen Den velkendte eksonentialfunktion x! e x vil vi ofte ligesom

Læs mere

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2 og 3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum

Mattip om. Vinkler 2. Tilhørende kopier: Vinkler 2 og 3. Du skal lære om: Polygoner. Ligesidede trekanter. Gradtal og vinkelsum Mttip om Vinkler 2 Du skl lære om: Polygoner Kn ikke Kn næsten Kn Ligesidede treknter Grdtl og vinkelsum Ligeenede og retvinklede treknter At forlænge en linje i en treknt Tilhørende kopier: Vinkler 2

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Matematikkens sprog INTRO

Matematikkens sprog INTRO Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.

Læs mere

Analysens Fundamentalsætning

Analysens Fundamentalsætning Anlysens Fundmentlsætning Frnk Nsser 11. juli 2011 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Diverse. Ib Michelsen

Diverse. Ib Michelsen Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent

Læs mere

Fremstilling af F1 hybrider i raps ved brug af cytoplasmatiskgenetisk

Fremstilling af F1 hybrider i raps ved brug af cytoplasmatiskgenetisk Femstilling af F1 hybide i aps ved bug af tiskgenetisk hansteilitet, samt faveudspaltning i F2 efte kydsning af hvidblomstet linje med gulblomstet linje. På side 2-3 vises esultatet af en kydsning med

Læs mere

Julestjerner af karton Design Beregning Konstruktion

Julestjerner af karton Design Beregning Konstruktion Julestjene af katon Julestjene af katon Design Beegning Konstuktion Et vilkåligt antal takke En vilkålig afstand fa entum ud til spidsene En vilkålig afstand fa entum ud til toppunktene i "indakkene" En

Læs mere

TEORETISK OPGAVE 3. Hvorfor er stjerner så store?

TEORETISK OPGAVE 3. Hvorfor er stjerner så store? TEORETISK OPGAVE 3 Hvofo e stjene så stoe? En stjene e en kuglefomet samling vam gas De fleste stjene skinne pga fusion af hydogen til helium i dees entale omåde I denne opgave skal vi anvende klassisk

Læs mere

LØSNINGER FRA OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER

LØSNINGER FRA OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER MASKIN- LØSNINGER FRA He finde du voes sotiment f mskine OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER 94 Omsnøingsmskine og stækfilmsomviklee

Læs mere

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud TC A/S Nøegade 21 0900 København C Afgøelse om fastsættelse af WACC i fobindelse med omkostningsdokumentation af pisene i TC s standadtilbud Sagsfemstilling en 29. juni 2006 modtog TC s notat om den beegningsmæssige

Læs mere

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX)

MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Silkeborg 09-0-0 MATEMATIK-KOMPENDIUM TIL KOMMENDE ELEVER PÅ DE GYMNASIALE UNGDOMSUDDANNELSER I SILKEBORG (HF, HHX, HTX & STX) Udrbejdet f mtemtiklærere fr HF, HHX, HTX & STX. PS: Hvis du opdger fejl i

Læs mere

Pointen med Integration

Pointen med Integration Pointen med Integrtion Frnk Nsser 20. pril 2011 c 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

Pointen med Integration

Pointen med Integration Pointen med Integrtion Frnk Vill 3. oktober 2012 2008-2012. IT Teching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere

Læs mere

Geometri, (E-opgaver 9b & 9c)

Geometri, (E-opgaver 9b & 9c) Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...

Læs mere

ANALYSE 1, 2015, Uge 2

ANALYSE 1, 2015, Uge 2 ANALYSE 1, 2015, Uge 2 Forelæsninger Denne uges tem er uendelige rækker. Tirsdg: Tlrækker. En uendelig tlrække består ligesom en uendelig tlfølge f uendelig mnge tl. Forskellen mellem de to begreber består

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

2 Erik Vestergaard

2 Erik Vestergaard Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd www.mtemtikfysik.dk 3 Definition 1 En funktion på formen f ( x) = b x, x R +, hvor b R + og R er konstnter, kldes for en potensudvikling eller en potensiel

Læs mere