Sammenhængskomponenter i grafer

Størrelse: px
Starte visningen fra side:

Download "Sammenhængskomponenter i grafer"

Transkript

1 Sammenhængskomponenter i grafer

2 Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv betegnes.

3 Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv betegnes. Relation kaldes en ækvivalensrelation hvis der for alle x, y, z S gælder: x x. x y y x. x y y z x z.

4 Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv betegnes. Relation kaldes en ækvivalensrelation hvis der for alle x, y, z S gælder: x x. x y y x. x y y z x z. En ækvivalensrelation deler S i disjunkte delmængder (hver bestående af elementer som er i relation til hinanden, men ikke til andre elementer), og kaldes derfor også en partition.

5 Ækvivalensrelationer på en grafs knuder Uorienterede grafer: For v, u V : v u der er en (uorienteret) sti mellem u og v

6 Ækvivalensrelationer på en grafs knuder Uorienterede grafer: For v, u V : v u der er en (uorienteret) sti mellem u og v Giver en partition af grafens knuder V : De kaldes grafens sammenhængskomponenter (CC er).

7 Ækvivalensrelationer på en grafs knuder Uorienterede grafer: For v, u V : v u der er en (uorienteret) sti mellem u og v Giver en partition af grafens knuder V : De kaldes grafens sammenhængskomponenter (CC er). Finde dem?

8 Ækvivalensrelationer på en grafs knuder Uorienterede grafer: For v, u V : v u der er en (uorienteret) sti mellem u og v Giver en partition af grafens knuder V : De kaldes grafens sammenhængskomponenter (CC er). Finde dem? Via DFS eller BFS (med ydre driver, som i DFS). Knuderne i hvert genereret træ er en CC, da alle knuder, som kan nås fra en startknude s, vil blive nået, og ingen andre knuder kan nås (jvf. punkt 1 og 2 i sætning om BFS).

9 Ækvivalensrelationer på en grafs knuder Uorienterede grafer: For v, u V : v u der er en (uorienteret) sti mellem u og v Giver en partition af grafens knuder V : De kaldes grafens sammenhængskomponenter (CC er). Finde dem? Via DFS eller BFS (med ydre driver, som i DFS). Knuderne i hvert genereret træ er en CC, da alle knuder, som kan nås fra en startknude s, vil blive nået, og ingen andre knuder kan nås (jvf. punkt 1 og 2 i sætning om BFS). Tid?

10 Ækvivalensrelationer på en grafs knuder Uorienterede grafer: For v, u V : v u der er en (uorienteret) sti mellem u og v Giver en partition af grafens knuder V : De kaldes grafens sammenhængskomponenter (CC er). Finde dem? Via DFS eller BFS (med ydre driver, som i DFS). Knuderne i hvert genereret træ er en CC, da alle knuder, som kan nås fra en startknude s, vil blive nået, og ingen andre knuder kan nås (jvf. punkt 1 og 2 i sætning om BFS). Tid? O(n + m).

11 Ækvivalensrelationer på en grafs knuder Orienterede grafer: For v, u V : v u der er en (orienteret) sti fra u til v og der er en (orienteret) sti fra v til u

12 Ækvivalensrelationer på en grafs knuder Orienterede grafer: For v, u V : v u der er en (orienteret) sti fra u til v og der er en (orienteret) sti fra v til u Giver en partition af grafens knuder V : De kaldes grafens stærke sammenhængskomponenter (SCC er). Finde dem?

13 Finde stærke sammenhængskomponenter Algoritme: Her er G T grafen G med alle kanter vendt.

14 Finde stærke sammenhængskomponenter Algoritme: Her er G T grafen G med alle kanter vendt. Tid?

15 Finde stærke sammenhængskomponenter Algoritme: Her er G T grafen G med alle kanter vendt. Tid? O(n + m).

16 Finde stærke sammenhængskomponenter Algoritme: Her er G T grafen G med alle kanter vendt. Tid? O(n + m). Korrekthed?

17 Finde stærke sammenhængskomponenter Algoritme: Her er G T grafen G med alle kanter vendt. Tid? O(n + m). Korrekthed? De næste sider...

18 Sætning: Algoritmen SCC ovenfor er korrekt, dvs. træerne returneret fra det andet kald til DFS repræsenterer præcis G s SCC er.

19 Sætning: Bevis: Algoritmen SCC ovenfor er korrekt, dvs. træerne returneret fra det andet kald til DFS repræsenterer præcis G s SCC er.

20 Sætning: Bevis: Algoritmen SCC ovenfor er korrekt, dvs. træerne returneret fra det andet kald til DFS repræsenterer præcis G s SCC er. Bemærk først at: Der er en sti u v i G Der er en sti v u i G T

21 Sætning: Bevis: Algoritmen SCC ovenfor er korrekt, dvs. træerne returneret fra det andet kald til DFS repræsenterer præcis G s SCC er. Bemærk først at: Heraf følger: Der er en sti u v i G Der er en sti v u i G T u og v i samme SCC i G u og v i samme SCC i G T

22 Sætning: Bevis: Algoritmen SCC ovenfor er korrekt, dvs. træerne returneret fra det andet kald til DFS repræsenterer præcis G s SCC er. Bemærk først at: Heraf følger: Der er en sti u v i G Der er en sti v u i G T u og v i samme SCC i G u og v i samme SCC i G T Så G og G T har de samme SCC er.

23 Hvid-sti lemma: Hvis findes en sti af hvide knuder fra u til w når u kommer på stakken (dvs. til tid u.d), da kommer w på stakken inden u kommer af.

24 Hvid-sti lemma: Hvis findes en sti af hvide knuder fra u til w når u kommer på stakken (dvs. til tid u.d), da kommer w på stakken inden u kommer af. Bevis (lemma): Antag at der findes knuder på stien som ikke kommer på stakken før u kommer af, og lad y være den første (set fra u). Dvs. y s forgænger x kom på stakken inden u kom af. Men så kan u ikke komme af inden x gør, og x kan ikke komme af før y har været på stakken (da y er nabo til x vil y blive opdaget/sat på stakken af x, hvis det ikke er sket tidligere). Da w kommer på stakken efter at u kommer på stakken fås: Korollar: I situationen ovenfor haves u.d < w.d < w.f < u.f.

25 For en knudemængde C V defineres f (C) = max v C v.f (hvor f angiver tiden fra første DFS i SCC-algoritmen). Lemma: Hvis C, C er to forskellige SCC er i G, og (x, y) er en kant i G med x C og y C, da gælder f (C) > f (C ).

26 For en knudemængde C V defineres f (C) = max v C v.f (hvor f angiver tiden fra første DFS i SCC-algoritmen). Lemma: Hvis C, C er to forskellige SCC er i G, og (x, y) er en kant i G med x C og y C, da gælder f (C) > f (C ). Da G T er G med alle kanter vendt, og da SCC erne er de samme i G T og G, haves: Korollar: Hvis C, C er to forskellige SCC er i G T, og (x, y) er en kant i G T med x C og y C, da gælder f (C) < f (C ).

27 Bevis (lemma): Lad u være den første knude i C C som opdages.

28 Bevis (lemma): Lad u være den første knude i C C som opdages. Case 1: u C. Her er der en sti fra u til w for alle w C C, så udsagnet følger af korollar til hvid-sti lemma.

29 Bevis (lemma): Lad u være den første knude i C C som opdages. Case 1: u C. Her er der en sti fra u til w for alle w C C, så udsagnet følger af korollar til hvid-sti lemma. Case 2: u C. Her er der en sti fra u til w for alle w C, så af samme korollar haves f (C ) = u.f.

30 Bevis (lemma): Lad u være den første knude i C C som opdages. Case 1: u C. Her er der en sti fra u til w for alle w C C, så udsagnet følger af korollar til hvid-sti lemma. Case 2: u C. Her er der en sti fra u til w for alle w C, så af samme korollar haves f (C ) = u.f. Hvis der fandtes en knude v C med v.d < u.f, ville der være et tidpunkt hvor v og u var på stakken samtidig (da u.d < v.d, eftersom u var den først opdagede i C C ). Da det er en invariant under DFS at der i grafen findes en sti mellem knuderne på stakken (fra tidligere til senere push ede knuder), ville dette betyde en sti fra u C til v C. Sammen med kanten (x, y) ville dette medføre at alle knuder i C C var i samme SCC, i modstrid med at C og C er to forskellige SCC er.

31 Bevis (lemma): Lad u være den første knude i C C som opdages. Case 1: u C. Her er der en sti fra u til w for alle w C C, så udsagnet følger af korollar til hvid-sti lemma. Case 2: u C. Her er der en sti fra u til w for alle w C, så af samme korollar haves f (C ) = u.f. Hvis der fandtes en knude v C med v.d < u.f, ville der være et tidpunkt hvor v og u var på stakken samtidig (da u.d < v.d, eftersom u var den først opdagede i C C ). Da det er en invariant under DFS at der i grafen findes en sti mellem knuderne på stakken (fra tidligere til senere push ede knuder), ville dette betyde en sti fra u C til v C. Sammen med kanten (x, y) ville dette medføre at alle knuder i C C var i samme SCC, i modstrid med at C og C er to forskellige SCC er. Derfor haves v.d > u.f for alle v C, så f (C) > u.f = f (C ).

32 Vi viser nu sætningen om korrekthed af SCC-algoritmen ved at vise at for alle k gælder: Knuderne i de k første træer genereret under den anden DFS i SCC-algoritmen udgør hver især en SCC i G T. Da SCC erne i G og G T er de samme, og da alle knuder i grafen er i et af træerne, viser dette korrektheden.

33 Vi viser nu sætningen om korrekthed af SCC-algoritmen ved at vise at for alle k gælder: Knuderne i de k første træer genereret under den anden DFS i SCC-algoritmen udgør hver især en SCC i G T. Da SCC erne i G og G T er de samme, og da alle knuder i grafen er i et af træerne, viser dette korrektheden. Vi viser ovenstående udsagn via induktion på k.

34 Vi viser nu sætningen om korrekthed af SCC-algoritmen ved at vise at for alle k gælder: Knuderne i de k første træer genereret under den anden DFS i SCC-algoritmen udgør hver især en SCC i G T. Da SCC erne i G og G T er de samme, og da alle knuder i grafen er i et af træerne, viser dette korrektheden. Vi viser ovenstående udsagn via induktion på k. Skridt: Antag sandt for k, vis sandt for k + 1. Det (k + 1) te træ genereres ved det (k + 1) te kald til DFS-Visit i for-løkken i den ydre driver i DFS. Lad u være knude, der kaldes på. Hvis vi stiller knuderne op i for-løkkens rækkefølge (efter aftagende v.f -værdi), ser situationen sådan ud på tidspunktet for dette kald:

35 u V : v.f: for-loop: Sorte knuder er de indtil nu opdagede under DFS, hvide er de uopdagede. Lad C være SCC en indeholdende u, og lad T være træet genereret af kaldet på u. Af induktionsantagelsen udgør de sorte knuder præcis k af grafens SCC er. Derfor må alle andre SCC er ligge inden i de hvide knuder, og C er en af disse (da u er hvid). Eftersom der ved starten af kaldet er en hvid sti fra u til alle w C, giver korollar til hvid-sti lemma at C T.

36 Lad C være en vilkårlig hvid SCC forskellig fra C. Pga. for-løkkens rækkefølge ses u.f = f (C) > f (C ), så af korollar til lemma ovenfor fås at ingen kant i G T kan gå fra C til C. Da DFS-Visit ikke besøger de sorte knuder, kan den derfor ikke forlade C. Heraf ses T C. Vi har i alt vist T = C, hvilket viser udsagnet for k + 1.

37 Lad C være en vilkårlig hvid SCC forskellig fra C. Pga. for-løkkens rækkefølge ses u.f = f (C) > f (C ), så af korollar til lemma ovenfor fås at ingen kant i G T kan gå fra C til C. Da DFS-Visit ikke besøger de sorte knuder, kan den derfor ikke forlade C. Heraf ses T C. Vi har i alt vist T = C, hvilket viser udsagnet for k + 1. Basis: Samme argument, blot lidt simplere (der er ingen sorte knuder, og u er første knude i rækkefølgen), viser udsagnet for k = 1.

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træer

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Mandag den 11. august 008, kl.

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): (fjorten) Eksamensdag: Mandag den. juni 0, kl. 9.00-.00 Tilladte medbragte hjælpemidler:

Læs mere

Invarianter. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen.

Invarianter. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af)

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 25. juni 200, kl. 9.00-.00

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTOI, RUS UNIVERSITET Science and Technology ESEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. juni 0, kl. 9.00-.00

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning)

Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning) Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning) Datalogisk Institut Aarhus Universitet Fredag den 28. maj 2004, kl. 9.00 13.00 Opgave 1 (20%) En (r, k) kryds-graf er en orienteret graf

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 6. juni 2016, kl. 15:00 19:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 0205. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT FR DTG, RUS UVERSTET Science and Technology ESE ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. juni 0, kl. 9.00-.00 Tilladte medbragte hjælpemidler: lle sædvanlige

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 0. august 00, kl. 9.00-.00

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 24. juni 2011, kl.

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.

Læs mere

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) Eksamensdag: Torsdag den 1. juni 01,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSMEN ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Mandag den. august 07, kl. 9.00-.00 Tilladte medbragte hjælpemidler:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET NSTTUT OR TO, RUS UNVRSTT Science and Technology SN lgoritmer og atastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) ksamensdag: redag den 1. august 015, kl. 9.00-.00 Tilladte

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 0205. Varighed: 4 timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT R T, RUS UVERSTET Science and Technology ESE ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: redag den. juni 0, kl..00-3.00 Tilladte medbragte hjælpemidler: lle sædvanlige hjælpemidler

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT R T, RUS UVRSTT Science and Technology S lgoritmer og atastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) ksamensdag: Tirsdag den. august 0, kl. 9.00-.00 Tilladte medbragte

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

02105 Eksamensnoter. Lasse Herskind S maj Sortering 3

02105 Eksamensnoter. Lasse Herskind S maj Sortering 3 02105 Eksamensnoter Lasse Herskind S153746 12. maj 2017 Indhold 1 Sortering 3 2 Analyse af algoritme 4 2.1 Køretid.......................................... 4 2.2 Pladsforbrug.......................................

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen lukket kreds af kanter

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α )

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α ) GEOMETRI-TØ, UGE 8 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad X være en mængde og T familien af alle delmængder

Læs mere

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er)

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er) Algoritmeanalyse Identificer essentiel(le) operation(er) Øvre grænse for algoritme Find øvre grænse for antallet af gange de(n) essentielle operation(er) udføres. Øvre grænse for problem Brug øvre grænse

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DTLOS NSTTUT, RUS UNVERSTET Det Naturvidenskabelige akultet ESMEN rundkurser i Datalogi ntal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag: Torsdag den 14. juni 007, kl. 9.00-1.00 Eksamenslokale:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Onsdag den 11. august 2004, kl.

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 10. juni, 2016. Kl. 9-13. Nærværende eksamenssæt består af 11 nummererede sider med ialt 16 opgaver. Alle opgaver

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR ATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Algoritmer og atastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. august 0,

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træ

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 26. maj 2009. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 0205. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første studieår ved Det Teknisk-Naturvidenskabelige Fakultet 23. august, 2016, 9.00-13.00 Dette eksamenssæt består af 11 nummerede sider med 16 opgaver. Alle opgaver er multiple

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 22. juni 2012, kl. 9.00-13.00 Eksamenslokale: Finlandsgade

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer (af samme type). 2. Løs delproblemerne ved rekursion (dvs. kald algoritmen

Læs mere

K 7 - og K 4,4 -minors i grafer

K 7 - og K 4,4 -minors i grafer Aalborg Universitet Det Teknisk-Naturvidenskabelige Fakultet Institut for Matematiske Fag K 7 - og K 4,4 -minors i grafer Aalborg Universitet Det Teknisk-Naturvidenskabelige Fakultet Institut for Matematiske

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2010 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 24. april, 2010 (let justeret 10. maj og 21. maj 2010) Dette projekt udleveres i tre

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen (bemærk at log n betegner totals logaritmen): n 2 (log n) 2 2.

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen (bemærk at log n betegner totals logaritmen): n 2 (log n) 2 2. Eksamen august Algoritmer og Datastrukturer (-ordning) Side af sider Opgave (%) n + n er O(n )? n / er O(n / )? n er O(n log n)? n er O((log n) )? n er Ω(n )? Ja Nej Opgave (%) Opskriv følgende funktioner

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 29. maj 2017. Kl. 9-13. Nærværende eksamenssæt består af 11 nummererede

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering 1 / 36 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 6, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 21. august 2015 Nærværende eksamenssæt består af 10 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Grafteori. 1 Terminologi. Indhold

Grafteori. 1 Terminologi. Indhold Grafteori Dette er en introduktion til de vigtigste begreber i grafteori, udvalgt teori samt eksempler på opgavetyper inden for emnet med fokus på de opgavetyper der typisk er til internationale matematikkonkurrencer.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 1. april 200, kl..00-11.00

Læs mere

Nogle grundlæggende begreber

Nogle grundlæggende begreber BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element

Læs mere

Grafteori. 1 Terminologi. Grafteori, Kirsten Rosenkilde, august fra V. (Engelsk: subgraph, spanning subgraph, the subgraph

Grafteori. 1 Terminologi. Grafteori, Kirsten Rosenkilde, august fra V. (Engelsk: subgraph, spanning subgraph, the subgraph Grafteori, Kirsten Rosenkilde, august 2010 1 Grafteori Dette er en introduktion til de vigtigste begreber i grafteori, udvalgt teori samt eksempler på opgavetyper inden for emnet med fokus på den type

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgaesættet (incl. forsiden): 7 (sy) Eksamensdag: Mandag den 20. juni 2005, kl. 9.00-13.00

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 5n 4. logn. n 4n 5 n/logn. n n/logn 5n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 5n 4. logn. n 4n 5 n/logn. n n/logn 5n Algoritmer og Datastrukturer (-ordning) Side af sider Opgave (%) n er O(n 7 )? (logn) er O( n)? n(logn) er O(n)? n er O( n )? n er Ω(n )? Opgave (%) Opskriv følgende funktioner efter stigende orden med

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 4 n n 3n n 2 /logn 5 n n (logn) 3n n 2 /logn 4 n n 5 n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 4 n n 3n n 2 /logn 5 n n (logn) 3n n 2 /logn 4 n n 5 n Side af 0 sider Opgave (%) Ja Nej n er O(0n logn)? n er O(n )? n +n er O(n )? n logn er O(n )? n logn er O(n)? Opgave (%) Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur (struktur opbygget af et endeligt antal enkeltdele) blandt mange mulige. Eksempler:

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet Side af 1 sider Skriftlig Eksamen Algoritmer og Datastrukturer 1 Datalogisk Institut Aarhus Universitet Dette eksamenssæt består af en kombination af små skriftlige opgaver og multiplechoice-opgaver. Opgaverne

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 7 n 1/2 2 n /n 3 2logn n 2 /logn

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 7 n 1/2 2 n /n 3 2logn n 2 /logn Eksamen august 0 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) n er Ω(n)? n er O( n )? n er O(8logn)? + er O(n)? n er O(n / )? Opgave (%) Opskriv følgende funktioner efter stigende

Læs mere