Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal
|
|
|
- Charlotte Grethe Knudsen
- 9 år siden
- Visninger:
Transkript
1 Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige skridt. Matematisk abstraktion af program. Datastruktur. Metode til at organise data så det kan søges i eller manipuleres. Eksempel: Maksimalt tal Maksimalt tal. Givet en tabel A[0..n-1], find et tal i, således at A[i] er maksimalt. Input. Tabel A[0..n-1]. Output. Et tal i, 0 i < n, så A[i] A[j] for alle indgange j i. Algoritme. Gennemløb A og vedligehold indeks af nuværende maksimale indgang. Returner indeks.
2 Beskrivelse af algoritmer Naturligt sprog. Gennemløb A og vedligehold indeks af nuværende maksimale indgang. Returner indeks. Program. Pseudokode. public static int findmax(int[] A) { int max = 0; for(i = 0; i < n; i++) if (A[i] > A[max]) max = i; return max; } FINDMAX(A, n) max = 0 for i = 0 to n-1 if (A[i] > A[max]) max = i return max Toppunkter Toppunkt. Indgang A[i] er et toppunkt hvis A[i] er mindst ligeså stort som dets naboer: A[i] toppunkt hvis A[i-1] A[i] A[i+1] for i {1,.., n-2} A[0] toppunkt A[0] A[1] og A[n-1] er toppunkt hvis A[n-2] A[n-1]. (Tænk A[-1] = A[n] = - ). Toppunktsproblem. Givet en tabel A[0..n-1], find et tal i, således at A[i] toppunkt. Input. En tabel A[0..n-1]. Output. Et tal i, 0 i < n, så A[i] er et toppunkt.
3 Algoritme 1. For hver indgang i A, check om den er et toppunkt. Returner indeks på første toppunkt. Pseudokode. TOPPUNKT1(A, n) if A[0] A[1] return 0 for i = 1 to n-2 if A[i-1] A[i] A[i+1] return i if A[n-2] A[n-1] return n-1 Teoretisk analyse Køretid/tidskompleksitet. T(n) = antallet af skridt som algoritmen udfører på et input af størrelse n. Skridt. Læsning/skrivning til hukommelse (x := y, A[i], i = i + 1,...) Arithmetiske/boolske operationer (+, -, *, /, %, &&,, &,, ^, ~) Sammenligninger (<, >, =<, =>, =, ) Programflow (if-then-else, while, for, goto, funktionskald,..) Værstefaldstidskompleksitet (worst-case complexity). Interesseret (næsten altid) i værstefaldstidskompleksitet = maksimal køretid over alle input af størrelse n. Udfordring. Hvordan analyserer vi algoritmen? Teoretisk analyse Køretid. Hvad er køretiden T(n) for algoritmen? 70 Alg 1 TOPPUNKT1(A, n) if A[0] A[1] return 0 for i = 1 to n-2 if A[i-1] A[i] A[i+1] return i if A[n-2] A[n-1] return n-1 T(n) er en lineær funktion af n: T(n) = an + b, for passende konstanter a og b. Asymptotisk notation. T(n) = Θ(n) T(n) = c1 + (n-2) c2 + c3 c1 (n-2) c2 c3 sek. for 1000 kørsler 52, ,5 Eksperimentiel analyse. Hvad er køretid af algoritmen i praksis? Hvordan passer den teoretisk analyse med praksis? 0 100k 300k 500k 700k 900k 1.1m 1.3m 1.5m 1.7m 1.9m tabel str.
4 Toppunkter finder et toppunkt i Θ(n) tid. Stemmer overens med praksis. Udfordring. Kan vi gøre det bedre? Algoritme 2 Observation. Et (globalt) maksimalt tal i A er et toppunkt.. Find et maksimalt tal i A med FINDMAX(A, n). Teoretisk analyse Køretid. Hvad er køretiden T(n) for algoritmen? FINDMAX(A, n) max = 0 for i = 0 to n-1 if (A[i] > A[max]) max = i return max c4 n c5 c6 FINDMAX(A, n) max = 0 for i = 0 to n-1 if (A[i] > A[max]) max = i return max T(n) = c4 + n c5 + c6 = Θ(n) Ekperimentiel analyse. Bedre konstanter?
5 sek. for 1000 kørsler 70 52,5 35 Alg 1 Alg 2 Toppunkter Teoretisk og 2 finder et toppunkt i Θ(n) tid. Eksperimentielt og 2 kører i Θ(n) tid i praksis. er en konstant faktor hurtigere end algoritme 1. Udfordring. Kan vi gøre det betydeligt bedre? 17, k 300k 500k 700k 900k 1.1m 1.3m 1.5m 1.7m 1.9m tabel str. Algoritme 3 Snedig ide. Kig på en vilkårlig indgang A[i] og dens naboer A[i-1] og A[i+1]. Hvor kan vi finde et toppunkt ifht. A[i]? Naboer er A[i] A[i] er toppunkt. Ellers er A voksende i mindst en retning der findes toppunkt i den retning Udfordring. Hvordan kan vi bruge ide til at lave en effektiv algoritme?
6 Algoritme 3. Kig på midterste indgang A[m] og naboer A[m-1] og A[m+1]. Hvis A[m] er toppunkt, returner m. Ellers fortsæt søgning rekursivt i halvdel af tabel hvor nabo er større end A[m]. Algoritme 3. Kig på midterste indgang A[m] og naboer A[m-1] og A[m+1]. Hvis A[m] er toppunkt, returner m. Ellers fortsæt søgning rekursivt i halvdel af tabel hvor nabo er større end A[m]. TOPPUNKT3(A,i,j) m = (i+j)/2) if A[m] naboer return m elseif A[m-1] > A[m] return TOPPUNKT3(A,i,m-1) elseif A[m] < A[m+1] return TOPPUNKT3(A,m+1,j) Algoritme 3 Køretid. Et rekursivt kald tager konstant tid. Hvor mange rekursive kald laver vi? Et rekursivt kald halverer størrelsen af tabellen vi kigger på. Vi stopper når tabellen har størrelse rekursive kald: n/2 2. rekursive kald: n/4. k te. rekursive kald: n/2 k. Efter ~log2 n rekursive kald har tabellen størrelse 1. Køretiden er Θ(log n) Ekperimentiel analyse. Betydeligt bedre? TOPPUNKT3(A,i,j) m = (i+j)/2) if A[m] naboer return m elseif A[m-1] > A[m] return TOPPUNKT3(A,i,m-1) elseif A[m] < A[m+1] return TOPPUNKT3(A,m+1,j) sek. for 1000 kørsler Alg 1 Alg 2 Alg , , k 300k 500k 700k 900k 1.1m 1.3m 1.5m 1.7m 1.9m tabel str.
7 Toppunkter Teoretisk og 2 finder et toppunkt i Θ(n) tid. finder et toppunkt i Θ(log n) tid. Eksperimentielt og 2 kører i Θ(n) tid i praksis. er en konstant faktor hurtigere end algoritme 1. er meget, meget hurtigere end algoritme 1 og 2.
Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille
Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer
Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning
Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]
Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille
Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering
Analyse af algoritmer
Analyse af algoritmer Analyse af algoritmer Køretid Pladsforbrug Asymptotisk notation O, Θ og Ω-notation. Eksperimentiel analyse af algoritmer Philip Bille Analyse af algoritmer Analyse af algoritmer Køretid
Søgning og Sortering. Philip Bille
Søgning og Sortering Philip Bille Plan Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering Søgning Søgning 1 4 7 12 16 18 25 28 31 33 36 42 45 47 50 1 2 3 4 5 6 7 8 9 10
Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid
Philip Bille Mål. At bestemme og forudsige resourceforbrug og korrekthed af algoritmer Eks. Virker min algoritme til at beregne korteste veje i grafer? Hvor hurtigt kører min algoritme til at søge efter
Algoritmer og invarianter
Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.
Danmarks Tekniske Universitet
side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning
Dynamisk programmering
Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer
Danmarks Tekniske Universitet
Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det
Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012
Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk
Sortering. Eksempel: De n tal i sorteret orden
Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden
Dynamisk programmering
Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde
Asymptotisk analyse af algoritmers køretider
Asymptotisk analyse af algoritmers køretider Analyse af køretid Recall: Vi ønsker at vurdere (analysere) algoritmer på forhånd inden vi bruger lang tid på at implementere dem. De to primære spørgsmål:
Sortering. Eksempel: De n tal i sorteret orden
Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden
Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:
Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus
Datalogi C + Datastrukturer og Algoritmer
Datalogi C + Datastrukturer og Algoritmer Velkommen til DatC erne Dagens emne: Hvad er D&A, mål for effektivitet Kursuslærer: Henning Christiansen [email protected], http://www.ruc.dk/~henning Hjælpelærer
Skriftlig Eksamen DM507 Algoritmer og Datastrukturer
Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se
Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer
Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt
Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo
Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.
Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer
Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt
28 Algoritmedesign. Noter. PS1 -- Algoritmedesign
28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par
Danmarks Tekniske Universitet
Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:
Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse
Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:
Prioritetskøer og hobe. Philip Bille
Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af
Divide-and-Conquer algoritmer
Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer (af samme type). 2. Løs delproblemerne ved rekursion (dvs. kald algoritmen
Grundlæggende Algoritmer og Datastrukturer. Analyseværktøjer [CLRS, 1-3.1]
Grundlæggende Algoritmer og Datastrukturer Analyseværktøjer [CLRS, 1-3.1] Eksempler på en beregningsprocess Puslespil ved ombytninger Maximum delsum Hvad er udførselstiden for en algoritme? Maskinkode
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2010 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 24. april, 2010 (let justeret 10. maj og 21. maj 2010) Dette projekt udleveres i tre
Danmarks Tekniske Universitet
side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:
Intervalsøgning. Algoritmisk geometri. Motivation for intervaltræer. Intervalsøgning. Lad der være givet en database over ansatte i en virksomhed
Algoritmisk geometri Intervalsøgning 1 2 Motivation for intervaltræer Intervalsøgning Lad der være givet en database over ansatte i en virksomhed Ansat Alder Løn Ansættelsesdato post i databasen Vi kan
Danmarks Tekniske Universitet
side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave
Divide-and-Conquer algoritmer
Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer
02105 Eksamensnoter. Lasse Herskind S maj Sortering 3
02105 Eksamensnoter Lasse Herskind S153746 12. maj 2017 Indhold 1 Sortering 3 2 Analyse af algoritme 4 2.1 Køretid.......................................... 4 2.2 Pladsforbrug.......................................
Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo
Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):
Introduktion til DM507
Introduktion til DM507 Rolf Fagerberg Forår 2017 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA Forskningsområde: algoritmer og datastrukturer 2 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Introduktion til kurset Rolf Fagerberg Forår 2019 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, Institut for Matematik og Datalogi (IMADA) Forskningsområde: algoritmer
Algoritmer og Datastrukturer 1
Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Analyseværktøjer [CLRS, 1-3.1] Eksempler på en beregningsprocess Puslespil ved ombytninger Maximum delsum Hvad er udførselstiden for en algoritme? Maskinkode
Skriftlig Eksamen Algoritmer og Datastrukturer (dads)
Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.
Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort
Sortering Sortering ved fletning (merge-sort) 7 2 9 4! 2 4 7 9 7 2! 2 7 9 4! 4 9 7! 7 2! 2 9! 9 4! 4 1 2 Del-og-hersk Merge-sort Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data
Asymptotisk analyse af algoritmers køretider
Asymptotisk analyse af algoritmers køretider Analyse af køretid (RAM-modellen vs. virkeligheden) public class Linear { public static void main(string[] args) { long time = System.currentTimeMillis(); long
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
Danmarks Tekniske Universitet
side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning
Divide-and-Conquer algoritmer
Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer
14 Algoritmeanalyse. Noter. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. Køretid for forskellige kontrolstrukturer.
14 Algoritmeanalyse. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. O og Ω. Køretid for forskellige kontrolstrukturer. Eksempler på algoritmeanalyse. Eksponentiel og polynomiel
Danmarks Tekniske Universitet
Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det
Skriftlig Eksamen Algoritmer og Datastrukturer (dads)
Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =
Divide-and-Conquer algoritmer
Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer
Flowchart og Nassi ShneidermanN Version. Et flowchart bruges til grafisk at tegne et forløb. Det kan fx være et programforløb for en microcontroller.
Flowchart Et flowchart bruges til grafisk at tegne et forløb. Det kan fx være et programforløb for en microcontroller. Et godt program til at tegne flowcharts med er, EDGE-Diagrammer, eller Smartdraw.
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)
Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)
Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion
Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af
DM507 Algoritmer og datastrukturer
DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således
