Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Størrelse: px
Starte visningen fra side:

Download "Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti."

Transkript

1 Korteste veje

2 Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti.

3 Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste sti fra u til v. Sættes til hvis ingen sti findes.

4 Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste sti fra u til v. Sættes til hvis ingen sti findes. Single-source shortest-path problemet: Givet s V, find δ(s, v) (og en konkret sti) for alle v V.

5 Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste sti fra u til v. Sættes til hvis ingen sti findes. Single-source shortest-path problemet: Givet s V, find δ(s, v) (og en konkret sti) for alle v V.

6 Korteste veje i vægtede grafer Bemærk: problemet er ikke veldefineret hvis der findes kredse (som kan nås fra s) med negativ sum: Omvendt: hvis der ikke findes sådanne negative kredse, kan vi nøjes med at så på simple stier (ingen knuder gentages). Der er et endeligt antal sådanne (< n n, f.eks.), så længde af korteste sti er veldefineret.

7 Relaxation

8 Relaxation

9 Relaxation

10 Relaxation Invariant hvis man efter Init-Single-Source kun ændrer v.d og v.π via Relax: Hvis v.d < er der en sti fra s til v af længde v.d, og denne sti kan gennemløbes (baglæns) ved at følge π-pointere.

11 Bellman-Ford [1958]

12 Bellman-Ford [1958] Køretid:

13 Bellman-Ford [1958] Køretid: O(nm)

14 Bellman-Ford [1958] Køretid: O(nm) Sætning: Hvis der findes en negativ kreds, som kan nås fra s, svarer algoritmen FALSE. Ellers svarer den TRUE, og v.d og v.π er sat korrekt for alle v V når den stopper.

15 Bellman-Ford [1958] Køretid: O(nm) Sætning: Hvis der findes en negativ kreds, som kan nås fra s, svarer algoritmen FALSE. Ellers svarer den TRUE, og v.d og v.π er sat korrekt for alle v V når den stopper. Bevis: Invarianten er, at efter k iterationer af første for-løkke passer v.d og v.π værdierne for de korteste veje med højst k kanter.

16 Bellman-Ford, eksempel

17 Dikjstras algoritme [1959] Grådig algoritme som trinvis opbygger mængde S af knuder med korrekte v.d og v.π. Bruger en prioritetskø Q. Kræver alle kantvægte 0.

18 Dikjstras algoritme [1959] Grådig algoritme som trinvis opbygger mængde S af knuder med korrekte v.d og v.π. Bruger en prioritetskø Q. Kræver alle kantvægte 0. Køretid:

19 Dikjstras algoritme [1959] Grådig algoritme som trinvis opbygger mængde S af knuder med korrekte v.d og v.π. Bruger en prioritetskø Q. Kræver alle kantvægte 0. Køretid: n Insert (eller een Build-Heap), n Extract-Min og m Decrease-Key (i Relax).

20 Dikjstras algoritme [1959] Grådig algoritme som trinvis opbygger mængde S af knuder med korrekte v.d og v.π. Bruger en prioritetskø Q. Kræver alle kantvægte 0. Køretid: n Insert (eller een Build-Heap), n Extract-Min og m Decrease-Key (i Relax). I alt O(m log n) hvis prioritetskøen implementeres med en heap.

21 Dikjstras algoritme [1959] Grådig algoritme som trinvis opbygger mængde S af knuder med korrekte v.d og v.π. Bruger en prioritetskø Q. Kræver alle kantvægte 0. Køretid: n Insert (eller een Build-Heap), n Extract-Min og m Decrease-Key (i Relax). I alt O(m log n) hvis prioritetskøen implementeres med en heap. Sætning: Når algoritmen stopper er v.d og v.π sat korrekt for alle v V (hvis alle kantvægte er 0). Bevis: næste gang.

22 Dijkstra, eksempel

23 Algoritme for DAGs [unknown] Recall: DAG = Directed Acyclic Graph. Recall: En topologisk sortering kan findes via DFS i tid O(n + m).

24 Algoritme for DAGs [unknown] Recall: DAG = Directed Acyclic Graph. Recall: En topologisk sortering kan findes via DFS i tid O(n + m).

25 Algoritme for DAGs [unknown] Recall: DAG = Directed Acyclic Graph. Recall: En topologisk sortering kan findes via DFS i tid O(n + m). Køretid:

26 Algoritme for DAGs [unknown] Recall: DAG = Directed Acyclic Graph. Recall: En topologisk sortering kan findes via DFS i tid O(n + m). Køretid: O(n + m).

27 Algoritme for DAGs [unknown] Recall: DAG = Directed Acyclic Graph. Recall: En topologisk sortering kan findes via DFS i tid O(n + m). Køretid: O(n + m). Sætning: Når algoritmen stopper er v.d og v.π sat korrekt for alle v V.

28 Algoritme for DAGs [unknown] Recall: DAG = Directed Acyclic Graph. Recall: En topologisk sortering kan findes via DFS i tid O(n + m). Køretid: O(n + m). Sætning: Når algoritmen stopper er v.d og v.π sat korrekt for alle v V. Bevis: invarianten er at når den ydre for-løkke når til knude u, er v.d og v.π sat korrekt for alle tidligere knuder.

29 Algoritmen for DAG, eksempel

30 Korteste veje i vægtede grafer All-pairs shortest-path problemet: For alle s V, find δ(s, v) (og en konkret sti) for alle v V.

31 Korteste veje i vægtede grafer All-pairs shortest-path problemet: For alle s V, find δ(s, v) (og en konkret sti) for alle v V. Een mulighed: køre Dikjstra fra hver source s V :

32 Korteste veje i vægtede grafer All-pairs shortest-path problemet: For alle s V, find δ(s, v) (og en konkret sti) for alle v V. Een mulighed: køre Dikjstra fra hver source s V : O(nm log n) tid.

33 Korteste veje i vægtede grafer All-pairs shortest-path problemet: For alle s V, find δ(s, v) (og en konkret sti) for alle v V. Een mulighed: køre Dikjstra fra hver source s V : O(nm log n) tid. En anden mulighed: Floyd-Warshalls algoritme. O(n 3 ) tid.

34 Korteste veje i vægtede grafer All-pairs shortest-path problemet: For alle s V, find δ(s, v) (og en konkret sti) for alle v V. Een mulighed: køre Dikjstra fra hver source s V : O(nm log n) tid. En anden mulighed: Floyd-Warshalls algoritme. O(n 3 ) tid. Bruger adjacency-matrix repræsentationen. Output også på matrice-form: D = (d ij ), d ij = δ(v i, v j ) = længden af en korteste sti fra v i til v j. Sættes til hvis ingen sti findes.

35 Korteste veje i vægtede grafer All-pairs shortest-path problemet: For alle s V, find δ(s, v) (og en konkret sti) for alle v V. Een mulighed: køre Dikjstra fra hver source s V : O(nm log n) tid. En anden mulighed: Floyd-Warshalls algoritme. O(n 3 ) tid. Bruger adjacency-matrix repræsentationen. Output også på matrice-form: D = (d ij ), d ij = δ(v i, v j ) = længden af en korteste sti fra v i til v j. Sættes til hvis ingen sti findes. Π = (π ij ), π ij = sidste knude før v j på en korteste sti fra knude v i til knude v j. Sættes til NIL hvis ingen sti findes.

36 Floyd-Warshalls algoritme [1962] Dynamisk programmeringalgoritme (kun konstruktion af D-matricen vises).

37 Floyd-Warshalls algoritme [1962] Dynamisk programmeringalgoritme (kun konstruktion af D-matricen vises). Køretid:

38 Floyd-Warshalls algoritme [1962] Dynamisk programmeringalgoritme (kun konstruktion af D-matricen vises). Køretid: O(n 3 ).

39 Floyd-Warshalls algoritme [1962] Dynamisk programmeringalgoritme (kun konstruktion af D-matricen vises). Køretid: O(n 3 ). Plads: O(n 2 ) (kun forrige D (k) matrice behøves gemmes).

40 Floyd-Warshalls algoritme [1962] Dynamisk programmeringalgoritme (kun konstruktion af D-matricen vises). Køretid: O(n 3 ). Plads: O(n 2 ) (kun forrige D (k) matrice behøves gemmes). Sætning: Når algoritmen stopper er d ij og π ij sat korrekt for alle v i, v j V.

41 Floyd-Warshalls algoritme [1962] Dynamisk programmeringalgoritme (kun konstruktion af D-matricen vises). Køretid: O(n 3 ). Plads: O(n 2 ) (kun forrige D (k) matrice behøves gemmes). Sætning: Når algoritmen stopper er d ij og π ij sat korrekt for alle v i, v j V. Bevis: Invarianten er, at D (k) indeholder længden af korteste veje mellem v i og v j som passerer knuderne v 1, v 2,..., v k (udover endepunkterne v i og v j ).

42 Floyd-Warshall, eksempel

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træer

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Grafer / Otto Knudsen 20-11-06

Grafer / Otto Knudsen 20-11-06 Grafer / Otto Knudsen -- Grafer Definition En graf er pr. definition et par G = (V, E). Grafen består af en mængde knuder V (eng: vertices) og en mængde kanter E (eng: edges), som forbinder knuderne. A

Læs mere

Vægtede grafer. I en vægtet graf har enhver kant tilknyttet en numerisk værdi, kaldet kantens vægt

Vægtede grafer. I en vægtet graf har enhver kant tilknyttet en numerisk værdi, kaldet kantens vægt Korteste veje 1 Vægtede grafer HNL I en vægtet graf har enhver kant tilknyttet en numerisk værdi, kaldet kantens vægt Vægte kan repræsentere afstande, omkostninger, o.s.v. Eksempel: I en flyrutegraf repræsenterer

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

DM02 Kogt ned. Kokken. Januar 2006

DM02 Kogt ned. Kokken. Januar 2006 DM02 Kogt ned Kokken Januar 2006 1 INDHOLD Indhold 1 Asymptotisk notation 2 2 Algoritme analyse 2 3 Sorterings algoritmer 2 4 Basale datastrukturer 3 5 Grafer 5 6 Letteste udspændende træer 7 7 Disjunkte

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.

Læs mere

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Philip Bille Introduktion Kortete veje. Givet

Læs mere

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Philip Bille Introduktion Kortete veje. Givet

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træ

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen lukket kreds af kanter

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 6. juni 2016, kl. 15:00 19:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Datalogisk Institut Aarhus Universitet MasterClass Matematik, Mærsk Mc-Kinney Møller Videncenter, Sorø, 29-31. oktober 2009 Algoritmer: Matricer

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Sommeren 2001, opgave 1

Sommeren 2001, opgave 1 Sommeren 2001, opgave 1 Vi antager at k 3, da det ellers er uklart hvordan trekanterne kan sættes sammen i en kreds. Vi ser nu at for hver trekant er der en knude i kredsen, og en spids. Derfor er n =

Læs mere

02105 Eksamensnoter. Lasse Herskind S maj Sortering 3

02105 Eksamensnoter. Lasse Herskind S maj Sortering 3 02105 Eksamensnoter Lasse Herskind S153746 12. maj 2017 Indhold 1 Sortering 3 2 Analyse af algoritme 4 2.1 Køretid.......................................... 4 2.2 Pladsforbrug.......................................

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning)

Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning) Skriftlig Eksamen Algoritmer og Datastrukturer 2 (2003-ordning) Datalogisk Institut Aarhus Universitet Fredag den 28. maj 2004, kl. 9.00 13.00 Opgave 1 (20%) En (r, k) kryds-graf er en orienteret graf

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er)

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er) Algoritmeanalyse Identificer essentiel(le) operation(er) Øvre grænse for algoritme Find øvre grænse for antallet af gange de(n) essentielle operation(er) udføres. Øvre grænse for problem Brug øvre grænse

Læs mere

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Invarianter. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen.

Invarianter. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af)

Læs mere

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer Philip Bille. Vedligehold en dynamisk mængde S af elementer. Hver element x er tilknyttet en nøgle x.key og satellitdata x.data. MAX(): returner element med største nøgle. EXTRACTMAX(): returner og fjern

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer Philip Bille (priority-queues). Vedligehold en dynamisk mængde S af elementer. Hver element x er tilknyttet en nøgle x.key og satellitdata x.data. MAX(): returner element med største nøgle. EXTRACTMAX():

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Datastrukturer (recap) Datastruktur = data + operationer herpå

Datastrukturer (recap) Datastruktur = data + operationer herpå Dictionaries Datastrukturer (recap) Datastruktur = data + operationer herpå Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data (ofte underforstået, også

Læs mere

Førsteårsprojekt F2008 Flere grafalgoritmer, og visualisering SØGES

Førsteårsprojekt F2008 Flere grafalgoritmer, og visualisering SØGES Førsteårsprojekt F2008 Flere grafalgoritmer, og visualisering Peter Sestoft 2008-03-11* SØGES 1-2 studerende til Åbent Hus torsdag 10. april kl 1700-1800 Skal kunne fortælle 5-10 minutter om hvad hvordan

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Onsdag den. august 200, kl. 9.00.00 Opgave (25%) Lad A = A[] A[n] være et array af heltal. Længden af det længste

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur (struktur opbygget af et endeligt antal enkeltdele) blandt mange mulige. Eksempler:

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): 11 (elleve) Eksamensdag: Torsdag den 1. juni 01,

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

DM507 - Algoritmer og datastrukturer

DM507 - Algoritmer og datastrukturer - Algoritmer og datastrukturer Køretid g(n) Udtryk Beskrivelse lim n f(n) o(f) Vokser langsommere end f = 0 O(f) Vokser højst så hurtigt som f < Θ(f) Vokser som f = c(c > 0) Ω(f) Vokser mindst så hurtigt

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET STTUT FR DTG, RUS UVERSTET Science and Technology ESE ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. juni 0, kl. 9.00-.00 Tilladte medbragte hjælpemidler: lle sædvanlige

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): (fjorten) Eksamensdag: Mandag den. juni 0, kl. 9.00-.00 Tilladte medbragte hjælpemidler:

Læs mere

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs

Korteste veje. Korteste veje. Introduktion. Introduktion. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Kortete veje Egenkaber for kortete veje Dijktra algoritme Kortete veje på DAG Philip Bille Introduktion Kortete veje. Givet

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Hamilton-veje og kredse:

Hamilton-veje og kredse: Hamilton-veje og kredse: Definition: En sti x 1, x 2,...,x n i en simpel graf G = (V, E) kaldes en hamiltonvej hvis V = n og x i x j for 1 i < j n. En kreds x 1, x 2,...,x n, x 1 i G kaldes en hamiltonkreds

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering 1 / 36 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 6, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTLOGI, RHUS UNIVERSITET Science and Technology EKSMEN ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Mandag den. august 07, kl. 9.00-.00 Tilladte medbragte hjælpemidler:

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 10. juni, 2016. Kl. 9-13. Nærværende eksamenssæt består af 11 nummererede sider med ialt 16 opgaver. Alle opgaver

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 26. maj 2009. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 0205. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Sortering i lineær tid

Sortering i lineær tid Sortering i lineær tid Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel. Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel.

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DTOI, RUS UNIVERSITET Science and Technology ESEN lgoritmer og Datastrukturer (00-ordning) ntal sider i opgavesættet (incl. forsiden): (elleve) Eksamensdag: Fredag den. juni 0, kl. 9.00-.00

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2013 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 5. marts, 2013 Dette projekt udleveres i to dele. Hver del har sin deadline, således

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid 6 april Løsning af N P -hårde problemer Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid Oversigt Grænseværdier (repetition) Branch-and-bound algoritmens komponenter Eksempler

Læs mere

FPTAS er for korteste vej med restriktion

FPTAS er for korteste vej med restriktion FPTAS er for korteste vej med restriktion DIKU-opgave i kurset Approksimationsalgoritmer Allan Nordlunde Hjorth Tommy Clausen Kenneth Lyneborg Hvam 18. december 2003 INDHOLD INDHOLD Indhold 1 Forord 3

Læs mere

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè

Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives. Type Expr = Sumèplus, minus, times, div: Args, const: Int, name: Textè Opgave 1 è20èè Et udtrykstrç med de ære regnearter, heltalskonstanter og variabler beskrives af fçlgende rekursive Trine-type: Type Expr = Sumèplus, minus, times, div: rgs, const: Int, name: Textè Type

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Science and Technology EKSAMEN Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Fredag den 22. juni 2012, kl. 9.00-13.00 Eksamenslokale: Finlandsgade

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 3/2. n logn (3/2) n. 2 3logn (3/2) n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 3/2. n logn (3/2) n. 2 3logn (3/2) n Side af 0 sider Opgave (4%) Ja Nej n er O(n / )? n +n er O(n )? (logn) er O( logn )? n er O()? /n er O(logn)? Opgave (4%) Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: logn

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Mandag den 11. august 008, kl.

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET EKSAMEN. Grundkurser i Datalogi. Algoritmer og Datastrukturer 1 (2003-ordning)

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET EKSAMEN. Grundkurser i Datalogi. Algoritmer og Datastrukturer 1 (2003-ordning) INSTITUT FOR DATALOGI, AARHUS UNIVERSITET EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 10. august 2012, kl. 9.00-11.00 Eksamenslokale: Finlandsgade

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 6 (seks) Eksamensdag: Onsdag den 11. august 2004, kl.

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 2 2 n 1/n (logn) n. n 2

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 2 2 n 1/n (logn) n. n 2 Side af sider Opgave (%) Ja Nej n er O(n n)? n er O(n+n )? ( n ) er O( n )? logn er O(n / )? n +n er O(n)? Opgave (%) Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn)

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første studieår ved Det Teknisk-Naturvidenskabelige Fakultet 23. august, 2016, 9.00-13.00 Dette eksamenssæt består af 11 nummerede sider med 16 opgaver. Alle opgaver er multiple

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DTLOS NSTTUT, RUS UNVERSTET Det Naturvidenskabelige akultet ESMEN rundkurser i Datalogi ntal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag: Torsdag den 14. juni 007, kl. 9.00-1.00 Eksamenslokale:

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 0205. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F09 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 009. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 0205. Varighed: 4 timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET

DATALOGISK INSTITUT, AARHUS UNIVERSITET DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Algoritmer og Datastrukturer (00-ordning) Antal sider i opgavesættet (incl. forsiden): 7 (syv) Eksamensdag:

Læs mere

Datastrukturer. Datastruktur = data + operationer herpå

Datastrukturer. Datastruktur = data + operationer herpå Prioritetskøer Prioritetskøer? Datastrukturer Datastruktur = data + operationer herpå Datastrukturer Data: Datastruktur = data + operationer herpå Ofte en ID + associeret data. ID kaldes også en nøgle

Læs mere