Carbon Capture and Storage (CCS) renewable energy systems and economy



Relaterede dokumenter
Udfordringer ved bæredygtig omstilling af energisystemet

Transforming DONG Energy to a Low Carbon Future

Effektiv udnyttelse af træ i energisystemet

Fjerde Generation Fjernvarme

Experiences of Region Zealand

IDA National energiplan Elsystemer

Transition to Renewable Energy until in the EU, Denmark, and

Anvendelse af biomasse i scenarier for 100% vedvarende energi

Balancering af energisystemer, gassystemet i fremtiden: grønt, fleksibelt, effektivt

Næste generation solvarme / 4. Generation Fjernvarme

Omstilling af det danske energisystem til 100% vedvarende energi Scenarieanalyser i CEESA-projektet

Procuring sustainable refurbishment

Nighat Kamal, Farum Fjernvarme A.m.b.a Geodh Workshop 6.Februar 2013, Kbh

Biogas og andre VE-gassers rolle i fremtidens energisystemer - carbon footprint konsekvenser. Henrik Wenzel, Syddansk Universitet

Muligheder og udfordringer ved overskydende elproduktion. Seniorkonsulent Steen Vestervang, Energinet.dk

Kernekraft - i dag og i morgen. Bent Lauritzen Risø DTU 20. september 2011

Statistical information form the Danish EPC database - use for the building stock model in Denmark

Energi i fremtiden i et dansk perspektiv

Bioenergy and Renewable Energy Resources Husum RES messe and seminars Organized by Furgy, IHK URS et al. Friday the 21.


Burmeister & Wain Energy A/S

Svend Erik Mikkelsen, COWI

EU på Samsø energi og miljø

Strategisk energiplanlægning i. Energi Øresund 28. marts 2011 Kenneth Løvholt Gate 21

Kommune og Amts Revision Danmark Statsautoriseret Revisionsaktieselskab

TOPWASTE. Affald og 100% vedvarende energi. Seniorforsker Marie Münster Energi system analyse, DTU MAN ENG, Risø 6/6 2013

Baltic Development Forum

Vedvarende energi i fjernvarmesektoren Dansk Fjernvarme Frank Elefsen, CTO Energy & Climate

STREAM: Sustainable Technology Research and Energy Analysis Model. Christiansborg, 17. september 2007

Developments and outlooks for biogas in Denmark. Danish-German Bioenergy: Technologies, Opportunities and Outlook March 15, 2016

Skovgaard International In Denmark and Abroad

Mere biomasse. Hvorfra, hvordan og hvor meget? Niclas Scott Bentsen. Institut for Geovidenskab og Naturforvaltning

Biogas- og bioraffinaderi platforme i Danmark - Et indspil til

PSO i energipolitisk sammenhæng. Frede Hvelplund Institut for planlægning Aalborg Universitet WP3 Odense 12 April 2016

Supermarkeder og Smart Grid muligheder for fleksibelt elforbrug

De overordnede konklusioner fra den nationale biomasseanalyse. Henrik Wenzel, Syddansk Universitet

Biomasse ved konventionel landbrugsdrift

Small Autonomous Devices in civil Engineering. Uses and requirements. By Peter H. Møller Rambøll

Waste and District Heating Aarhus

Strategic Capital ApS has requested Danionics A/S to make the following announcement prior to the annual general meeting on 23 April 2013:

Energivision hvad koster det? Et overslag over prisen på udfasning af fossil energi indtil 2030

Hvad er EU's rimelige andel af en global klimaindsats? Og hvor langt kunne vi nå til 2030?

Kan vi flyve på vind? Energinet.dk 1

Transkript:

Carbon Capture and Storage (CCS) renewable energy systems and economy Klimaforum9 DGI-Byen December 14, 29 Assistant Professor, PhD, Brian Vad Mathiesen Department of Development and Planning, Aalborg University people.plan.aau.dk/~bvm/

General introduction Aalborg University, Denmark Master of Sustainable Energy Planning and Management PhD courses within the area More information at www.energyplanning.aau.dk

General introduction Denmark (Jylland) 2% (25% west) wind power 12, owners of wind turbines High share of the world s offshore power More than 3% distributed generation 5% of electricity from CHP Comprehensive energy conversation policy Company plans CCS plant

3 years of stable energy consumption with an active energy policy World Primary Energy Consumption PJ 1 Danish Primary Energy Supply 1 PJ 4 3 2 1 RES Nuclear Ngas Oil Coal 8 19 192 194 196 198 2 6 4 2 1972 198 1988 1996 24 27 Oil Coal Natural Gas Renewable Energy

Energy and Economic Growth in Denmark Danish Energy Intensity Index 1972 = 1 2 18 16 14 12 1 8 6 4 2 1972 198 1988 1996 21 GDP PES Intensity

The long-term Objective of Danish Expressed by former Prime Minister Anders Fogh Rasmussen in his opening speech to the Parliament in 26 and in several political agreements since then: To convert to 1% Renewable Energy Energy Policy Former Prime Minister Rasmussen 16 November 28: We will free Denmark totally from fossil fuels like oil, coal and gas position Denmark in the heart of green growth Prime Minister Rasmussen 6 October 29: before the next general elections we will present a plan of how and when Denmark will be free of fossil fuels

One scenario out of many possible pathways IDA s Climate Plan 25

Danish Energy Production, PJ The IDA Climate Plan 25 1,4 1,2 1, RE 4 targets To reduce the emission of green house gasses by 9% in 25 (including farming) To maintain security of energy supply To expand Denmark's position within energy and climate technologies To improve the Danish economy and prosperity 8 6 4 2 1972 198 199 1995 2 23 24 25 26 27 Self sufficient Natural gas Oil 1993 217 Danish Energy Authority, 28

The IDA Climate Plan 25 CO2-emissions 7, 4 targets To reduce the emission of green house gasses by 9% in 25 (including farming) To maintain security of energy supply To expand Denmark's position within energy and climate technologies To improve the Danish economy and prosperity Mio. tons CO2 65, 6, 55, 5, 45, 4, 199 1994 1998 22 26 Actual Adjusted Energy and the Balance of payment 8 6 Energy export 4 1. MDKK 2 Energy import Net Energy technology Net Energy products Balance of payment 198 1985 199 1995 2 25-2 Based on Statistics Denmark, 27, Danish Energy Authority, 27-4 -6

The IDA Climate Plan 25 Builds on two previous plans: IDAs Energy Plan 23 (26), Green future (28) Inputs based on 4 meetings and seminars conducted by the IDA groups and societies More than 16 participants More than 15 seminars and workshops following up on with updates of inputs Draft report presented on the May 11, 29 Subject to a public hearing until May 21, 29 Coordination by the IDA Committee for energy and climate and 12 groups of professionals Part of international efforts of engineers in the Future Climate Engineering solutions as COP15 input from 13 countries Overall technical and socio-economic analyses at Aalborg University

Technical comparison Primary energy consumption in IDA 215, 23 and 25, PJ 1. 9 8 7 6 5 4 3 2 1 Export Wind, PV, wave power Solar thermal Biomass Natural gas Oil Coal 215 23 25 215 23 25 Reference IDA

CCS in Denmark Test and research project in Esbjerg (Castor) 26 Plan for large-scale demonstration in Aalborg (original target 213)

CCS the case of Nordjyllandsværket Nordjyllandsværket worlds most efficient (91%) 1% Post-combustion facility 3 km pipeline to Vedsted Seismic survey and appraisal drilling (ongoing) Application at the Danish Energy Authority Vedsted structure storage for approx. 4 years, 4 8 mio. ton CO2and 5,5 m 2 Operation in 215? Local protest group

CCS The case analysed Capacity 31 MW (reduced from 372 MW) Extra capacity needed 71 MW (1 mill. DKK/MW) Increased district heating production 9% reduction in CO 2 -emissions Approx. 2% extra coal CC costs 1.7 billion DKK (lifetime 25 years) Pipeline and storage costs 1.3 billion DKK (lifetime 5 years) Operations and maintenance 2% Socio-economic interest rate 3% Coal prices 31.1 DKK/GJ

CCS The case analysed Without CCS With CCS Capacity 372 MW 31 MW Coal consumption 792 MW 792 CO 2 -emissions 1% 1% For 1 TWh electricity Electricity 1. TWh 1. TWh Coal consumption (47%) 2.13 TWh 2.63 TWh Extra coal.5 TWh CO 2 -emissions.728 Million ton CO 2.9 Million ton CO 2 CCS (9% reduction) -.81 Million ton CO 2 Net CO 2 -emmisions.728 Million ton CO 2.9 Million ton CO 2 Net CO 2 -emmisions reduction -.638 Million ton CO 2

CCS analysed with two operation strategies and two fundamentally different energy systems

CCS results with base load operation in conventional energy systems 7 Costs and benefits with base load operation, mio. DKK/year 6 5 4 3 2 1 Costs Benefits Costs Benefits Costs Benefits Ref 215 Ref 23 Ref 25 Saved CO2-costs Change in exchange PP compensation CCS plant & operation Increased system O&M Increased fuel

CCS results with base load operation in conventional energy systems 1. 9 8 CO2-reduction costs with base load operation DKK/ton CO2 reduction cost CO2 market costs 7 6 5 4 3 2 1 Ref 215 Ref 23 Ref 25

CCS results with base load operation in Renewable energy systems 7 Costs and benefits with base load, mill. DKK/year 6 5 4 3 2 1 Costs Benefits Costs Benefits Costs Benefits IDA 215 IDA 23 IDA 25 Saved CO2-costs Change in exchange PP compensation CCS plant & operation Increased system O&M Increased fuel

CCS results with base load operation in Renewable energy systems 1. 9 8 CO2-reduction costs with base load operation DKK/ton CO2 reduction cost CO2 market costs 7 6 5 4 3 2 1 IDA 215 IDA 23 IDA 25

CCS results with base load operation in Renewable energy systems 3, Extra fuel consumption, one CCS base load plant in Denmark, TWh/year 2,5 2, 1,5 1,,5 Net-export Biomass Natural gas Oil Coal, -,5 215 23 25 215 23 25 Ref IDA -1,

Technical energy system analyses of IDA 23 Excess electricity Boiler share 1. 9 8 7 6 5 4 3 2 Objectives: Reduce excess electricity Decrease fuel demand Primary energy consumption in IDA 23, PJ Export Solar thermal Natural gas Coal Wind, PV, wave power Biomass Oil Step 1: Starting Point Step 2: CHP regulation Step 3: Large Heat Pumps 44% 1% 17% 36% 16% 15% 1 Starting Point CHP regulation 5 45 4 35 3 25 Large Heat Pumps Flexible electricity demand CO2-emissions in IDA 23, mio. ton/year Smart charge of BEV FC regulation Export Domestic consumption Step 4: Flexible electricity demand 14% 16% Reference Step 1 Step 22 Step 3 Step 4 Step 5 IDA 23 15 1 5 Starting Point CHP regulation Large Heat Pumps Flexible electricity demand Smart charge of BEV FC regulation Step 5: Smart charge of battery electric vehicles 1% 2% Reference Step 1 Step 2 Step 3 Step 4 Step 5 IDA 23 Step 6: FC regulation 5% 23%

Technical comparison Primary energy consumption in IDA 215, 23 and 25, PJ 1. 9 8 7 6 5 4 3 2 1 Export Wind, PV, wave power Solar thermal Biomass Natural gas Oil Coal 215 23 25 215 23 25 Reference IDA 1% renewable energy strategy to be presented in the Green Room, Tuesday at 14.15.

Socio-economic costs 2. Socio-economic costs in the 215 reference 2. Socio-economic costs in the 23 reference 18. 18. 16. 16. Mio. /year 14. 12. 1. CO2-costs Fuel Mio. /year 14. 12. 1. CO2-costs Fuel 8. O&M 8. O&M 6. 4. Investment 6. 4. Investment 2. 2. 6$/b-3 CO2 122$/b-3 CO2 132$/b-3 CO2 6$/b-6 CO2 122$/b-6 CO2 132$/b-6 CO2 6$/b-3 CO2 122$/b-3 CO2 132$/b-3 CO2 6$/b-6 CO2 122$/b-6 CO2 132$/b-6 CO2 Socio-economic costs in IDA 215 Socio-economic costs in IDA 23 2. 2. 18. 18. 16. 16. Mio. /year 14. 12. 1. CO2-costs Fuel Mio. /year 14. 12. 1. CO2-costs Fuel 8. O&M 8. O&M 6. Investment 6. Investment 4. 4. 2. 2. 6$/b-3 CO2 122$/b-3 CO2 132$/b-3 CO2 6$/b-6 CO2 122$/b-6 CO2 132$/b-6 CO2 6$/b-3 CO2 122$/b-3 CO2 132$/b-3 CO2 6$/b-6 CO2 122$/b-6 CO2 132$/b-6 CO2

Socio-economic costs Mio. /year Mio. /year 2. 18. 16. 14. 12. 1. 8. 6. 4. 2. 2. 18. 16. 14. 12. 1. 8. 6. 4. 2. Million DKK/year 12. 1. 8. Socio-economic costs in the 215 reference 6$/b-3 CO2 122$/b-3 CO2 132$/b-3 CO2 6$/b-6 CO2 122$/b-6 CO2 132$/b-6 CO2 6. 4. 2. Socio-economic costs in the reference Socio-economic costs in IDA 215 215 23 Reference 6$/b-3 CO2 122$/b-3 CO2 132$/b-3 CO2 6$/b-6 CO2 122$/b-6 CO2 132$/b-6 CO2 CO2-costs Fuel O&M Investment CO2-costs Fuel O&M Investment Mio. /year Mio. /year 2. 18. 16. 14. 12. 1. 8. 6. 4. 2. 2. 18. 16. 14. 12. 1. 8. 6. 4. 2. Socio-economic costs in the 23 reference Socio-economic costs in the Climate Plan 6$/b-3 CO2 122$/b-3 CO2 132$/b-3 CO2 6$/b-6 CO2 122$/b-6 CO2 132$/b-6 CO2 Socio-economic costs in IDA 23 215 23 IDA CO2-costs Fuel 6$/b-3 CO2 122$/b-3 CO2 132$/b-3 CO2 6$/b-6 CO2 122$/b-6 CO2 132$/b-6 CO2 CO2-costs Fuel O&M Operations and maintenance Investments Investment CO2-costs Fuel O&M Investment

Analyse af enkeltteknologier Landvindmøller Samfundsøkonomiske besparelser ved enkelttiltag vurderet i 23 Reduktioner i CO2-emissioner Landvindmøller Havvindmøller Vindmøller (alle) Solceller Bølgeenergi Affaldskraftvarme forbedringer Geotermi Profits from CO2-savings from zero to 1, DKK/ton Havvindmøller Vindmøller (alle) Solceller Bølgeenergi Affaldskraftvarme forbedringer Geotermi Affaldskraftvarme forbedringer og geotermi Store solvarmeænlæg i fjernvarmeområder Store varmepumper Fleksibelt elforbrug 5% brændselsceller i decentrale kraftvarmeværker 33% brændselsceller i centrale kraft- og kraftvarmeværker Brændselsceller (alle) Elbesparelser i husholdninger Nye huse i Bolig+ standard Varmebesparelser i fjernvarmeområder Varmebesparelser i individuelt opvarmede områder Omlægning til fjernvarme og besparelser i alle husstande Omlægning til fjernvarme Individuelle varmepumper Individuelle solvarme Elbesparelser i industri og erhverv Fjernkøling Brændselsbesparelser i industrien Omlægning til biomasse i industrien Mindre vækst i transportbehov Effektivisering af skibe Elbiler med intelligent opladning Elbiler uden intelligent opladning Udbygning af jernbanen og elektrificering Bio-ethanol Affaldskraftvarme forbedringer og geotermi Store solvarmeænlæg i fjernvarmeområder Store varmepumper Fleksibelt elforbrug 5% brændselsceller i decentrale kraftvarmeværker 33% brændselsceller i centrale kraft- og kraftvarmeværker Brændselsceller (alle) Elbesparelser i husholdninger Nye huse i Bolig+ standard Varmebesparelser i fjernvarmeområder Varmebesparelser i individuelt opvarmede områder Omlægning til fjernvarme og besparelser i alle husstande Omlægning til fjernvarme Individuelle varmepumper Individuelle solvarme Elbesparelser i industri og erhverv Fjernkøling Brændselsbesparelser i industrien Omlægning til biomasse i industrien Mindre vækst i transportbehov Effektivisering af skibe Elbiler med intelligent opladning Elbiler uden intelligent opladning Udbygning af jernbanen og elektrificering Bio-ethanol Marginal værdi i Dansk reference 23 Marginal værdi i IDA 23-1. 1. 2. 3. 4. 5. 6. Mio. DKK/år Marginal værdi i Dansk reference 23 Marginal værdi i IDA 23-2 -1 1 2 3 4 5 6 7 Mio. ton CO2/år

CCS results with normal operation in renewable energy systems 35 Costs and benefits with "normal" operation, mill. DKK/år 3 25 2 15 1 5 Saved CO2-costs PP compensation CCS plant & operation Increased fuel Costs Benefits Costs Benefits Costs Benefits IDA 215 IDA 23 IDA 25

CCS results with normal operation in renewable energy systems 1. 9 8 7 6 CO2-reduction costs with "normal" operation, DKK/ton CO2 reduction cost CO2 market costs Accumulated costs 7 billion DKK!! 5 4 3 2 1 IDA 215 IDA 23 IDA 25

Proposal by Danish power producers Producers Climate Plan Power to the people 3, MW (7,5 of Nordjyllands værket) Losses with one plant: 12 32 mill. DKK 9 2,4 mill. DKK for 3, MW Losses over 5 years with one plant: 6-16 bill. DKK 45 12 bill. DKK for 3, MW Extra fuel with one plant: 3,6-7,2 PJ 27-54 PJ for 3, MW (total Danish Potential approx. 3 PJ)

Thank you for your attention! H. Lund and B. V. Mathiesen, "Fagligt notat -Konsekvensanalyse af tilføjelse af CCS-anlæg til IDAs klimaplan 25 (IDAs Climate Plan 25, Analyses of CCS)," Danish Society of Engineers (IDA, Ingeniørforeningen Danmark), Copenhagen, Denmark,Aug.29. B. V. Mathiesen, "1% Renewable Energy Systems in Project Future Climate -the Case of Denmark," Dubrovnik, Croatia: 5th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems, 29. B. V. Mathiesen, H. Lund, and K. Karlsson, "IDA s Klimaplan 25, baggrundsrapport -Tekniske systemanalyser, brændselsforbrug, drivhusgasser, samfundsøkonomiske konsekvenser, erhvervspotentialer, beskæftigelseseffekter samt helbredsomkostninger (IDA s Climate Plan 25, Background Report), Danish Society of Engineers (IDA, Ingeniørforeningen Danmark), Copenhagen, Denmark,August29. Klimaforum9 DGI-Byen December 14, 29 Assistant Professor, PhD, Brian Vad Mathiesen Department of Development and Planning, Aalborg University people.plan.aau.dk/~bvm/