The role of power to heat Heat pumps, electrical heat boilers and heat storage Lessons from Denmark



Relaterede dokumenter
Varmekilder Overfladevand Sø, å, fjord, hav

Tekniske og økonomiske råd om store varmepumper

Varmepumper i fjernvarmen

Store varmepumper i fjernvarmen Hvorfor & Hvordan

Store varmepumper i fjernvarmen Hvorfor og hvordan?

Fjerde Generation Fjernvarme

85/15 Moving energy. forward. Charles Nielsen, Director R&D. Kystdirektoratet 28. november Fremtidens anvendelse af søterritortiet

Mega solvarmeanlæg og transmissionsledninger - Hvor kommer vi fra, hvor skal vi hen, og hvor skal vi stille alle solfangerne?

Mega solvarmeanlæg og transmissionsledninger. - Hvor kommer vi fra, hvor skal vi hen, og hvor skal vi stille alle solfangerne?

Brint og grønne brændstoffers rolle i fremtidens smarte energi systemer

BALANCERING AF FJERNVARME FOR ØGET OPTAG AF LAVTEMPERATUR OVERSKUDSVARME

Anvendelse af grundvand til varmefremstilling

Hvordan kan brint reducere behovet for biomasse i fremtidens energisystem?

Næste generation solvarme / 4. Generation Fjernvarme

Local Heating Concepts for Power Balancing

TOPWASTE. Affald og 100% vedvarende energi. Seniorforsker Marie Münster Energi system analyse, DTU MAN ENG, Risø 6/6 2013

TMC - Klima

Muligheder og udfordringer ved overskydende elproduktion. Seniorkonsulent Steen Vestervang, Energinet.dk

Omstilling af det danske energisystem til 100% vedvarende energi Scenarieanalyser i CEESA-projektet

Balancering af energisystemer, gassystemet i fremtiden: grønt, fleksibelt, effektivt

Supermarkeder og Smart Grid muligheder for fleksibelt elforbrug

Baggrund og introduktion til fagområder

100% VE i EU med eksempler Towards 100% Renewable Energy Supply within the EU, examples. Gunnar Boye Olesen

Anvendelse af biomasse i scenarier for 100% vedvarende energi

Vedvarende energi i fjernvarmesektoren Dansk Fjernvarme Frank Elefsen, CTO Energy & Climate

Vedvarende energi - rollefordelinger

FJERNVARMENS UDFORDRINGER OG MULIGHEDER I ET ELEKTRIFICERET ENERGISYSTEM ANALYSECHEF JESPER KOCH, GRØN ENERGI

Procuring sustainable refurbishment

Store varmepumper i fjernvarmen Hvorfor & Hvordan

INTELLIGENT HEAT GRIDS. by Energy Service and Grundfos

Energy-saving potential A case study of the Danish building stock. Kim B. Wittchen Danish Building Research Institute, SBi AALBORG UNIVERSITY

PlanEnergi. Independent consultant Established in 1983 Specialised in:

Experiences of Region Zealand

Heat Roadmap Europe: Markedspotentiale I EU

Transition to Renewable Energy until in the EU, Denmark, and

House of Energy Energilagring. Sammentænkning af energisystemerne - Hvad kan gassen byde på? Thea Larsen, adm. direktør

Driftsoptimering af produktionen

CASE - Energy renovation of buildings and 4.th Generation of District Heating

Erfaring med varmepumper i fjernvarmen Rye Kraftvarmeværk A.m.b.a.

Baltic Development Forum

Agenda. Hvad er Smart City og hvem er aktørerne? Udfordringer. Muligheder

Solcelle Selvbyg Projekt støttet af EnergiNet.dk

The Danish Energy System - Developments and Plans

Deep Geothermal for District Heating Production - Experiences from Denmark

Fremtidens brugerinstallationer for fjernvarmen. Jan Eric Thorsen, Director DHS Application Centre and HEX research, Danfoss Heating

DBDH Seminar 19. november 2014

FJERNVARME I FREMTIDEN?

Svend Erik Mikkelsen, COWI

Damvarmelagre Per Alex Sørensen

Det Fremtidige Energisystem

Energilagring en hjørnesten i fremtidens energisystem

BIOGAS OG BIOBRÆNDSLER I DET SMARTE ENERGISYSTEM

BYGNINGER OG FREMTIDENS ENERGISYSTEM

Implementation of the Building directive in Denmark. Contents. (from a layman in urban planning)

Stoholm Fjernvarme a.m.b.a. Ekstraordinær generalforsamling den 29. januar 2014

Energispareordningens betydning for varmepumper og solfangere

Store eldrevne varmepumper. ny teknologi, nye afgifter, nye tider. Morten Boje Blarke, Aalborg Universitet

Kan vi flyve på vind? Energinet.dk 1

Dansk Fjernvarme Teori og praksis for små og store varmepumper i fjernvarmeproduktion

Måleresultater fra store varmelagre til Fjernvarme I Danmark

Future Gas projektet. Gas som en integreret del af det fremtidige Energisystem

Can renewables meet the energy demand in heavy industries?

Lars Yde, Hydrogen Innovation & Research Centre v/ HIH Århus Universitet

Midt Energistrategi To-dages seminar for hele partnerskabet Scandic Silkeborg, marts 2015 Input til strategiplanerne

IDA National energiplan Elsystemer

Nye fjernvarmesystemer. Svend Svendsen DTU BYG

Naturgassens afløser. Eksempler på værker ved Niels From, PlanEnergi. Naturgassens afløser Erritsø, den 6. januar 2011 Niels From 1

/Danish waste management model

Statistical information form the Danish EPC database - use for the building stock model in Denmark

ANVENDELSEN AF BIOMASSE TIL VE-GAS PRODUKTION OG EL. INTEGRATION I DET DANSKE ENERGISYSTEM

VINDKRAFTENS ROLLE I FREMTIDENS ENERGISYSTEM

DBDH medlemsmøde Skanderborg, 22. november 2016

TERMISKE ENERGILAGRE ATV - NATIONALT CENTER FOR ENERGILAGRING

Smart Energy Networks partnerskab

Dansk Cleantech til Kina Myndigheds- til myndighedssamarbejde

Fjernvarmens rolle i samarbejde med el, gas og affald - fjernvarmen som energilager

PSO i energipolitisk sammenhæng. Frede Hvelplund Institut for planlægning Aalborg Universitet WP3 Odense 12 April 2016

Smart Energy Networks partnerskab

Per Alex Sørensen, PlanEnergi Thomas Schmidt, Solites. Steinbeis Research Institute for Solar and Sustainable Thermal Energy Systems

Fremtidens elsystem det bygger vi i dag

Biogas og andre VE-gassers rolle i fremtidens energisystemer - carbon footprint konsekvenser. Henrik Wenzel, Syddansk Universitet

TWENTIES. Transmission system operation with large penetration of Wind and other renewable Electricity sources in Networks.

Skalerbare elektrolyse anlæg til produktion af brint i forbindelse med lagring af vedvarende energi

Integrated Coastal Zone Management and Europe

Reporting on dissemination activities carried out within the frame of the DESIRE project (WP8)

Præsentation af EMD International A/S ved medlemsmøde i

Udredning vedrørende store varmelagre og varmepumper

Optimering af processer og uider i varmepumper

Hvordan kommer Forskningen i spil. Lars Martiny Afdelingschef, Afdelingen for Strålingsforskning Formand for koordineringsgruppen for innovation

Fire årtier med et stabilt energiforbrug

Carbon Capture and Storage (CCS) renewable energy systems and economy

Store varmepumper i industrien. Lars Reinholdt 8. November 2018

Energi i fremtiden i et dansk perspektiv

Seminar om fjernkøling

Effektiv udnyttelse af træ i energisystemet

GEOENERGI EN EFFEKTIV ENERGIRESSOURCE. Præsentation af Lars Hjortshøj Jacobsen ATES A/S ÈN KONCERN MED TRE FAGLIGE SPOR

Solcelle Selvbyg Projekt støttet af EnergiNet.dk

Solvarme Perspektiver og udfordringer - og lidt om baggrunden

The effects of occupant behaviour on energy consumption in buildings

Store langtids- og sæsonvarmelagre Typer, erfaringer og muligheder

Transkript:

The role of power to heat Heat pumps, electrical heat boilers and heat storage Lessons from Denmark Marie Münster Senior Researcher DTU Management Engineering maem@dtu.dk Agora, Berlin 24/9 2015 25-09-2015

Outline District heating (DH) - the past and future potentials DH heat pumps (HP) - status and potentials Individual HP DH HP in Copenhagen Solar heating and DH HP DH research projects 2 25.09.2015

Outline District heating (DH) - the past and future potentials DH heat pumps (HP) - status and potentials Individual HP DH HP in Copenhagen Solar heating and DH HP DH research projects 3 25.09.2015

Household heating 62% DH 4 (EA 2015. The Danish Experience with Integrating Variable Renewable Energy: Lessons 25.09.2015 Learned and Options for Improvement )

Future potentials Today covering ~46% of heat consumption In the future: between 55-57% (Münster et al 2012. The role of district heating in the future Danish energy system) between 50-70% (Lund et al. 2010 The role of district heating in future renewable energy systems) 5 25.09.2015

Future Energy Consumption DH 6 http://www.ens.dk/sites/ens.dk/files/undergrund-forsyning/el-naturgasvarmeforsyning/energianalyser/nyeste/energiscenarier_-_analyse_2014_web.pdf 25.09.2015

DH supply - historical development 7 (EA 2015. The Danish Experience with Integrating Variable Renewable Energy: Lessons 25.09.2015 Learned and Options for Improvement )

Short run marginal heat production cost 8 (EA 2015. The Danish Experience with Integrating Variable Renewable Energy: Lessons 25.09.2015 Learned and Options for Improvement )

Outline District heating (DH) - the past and future potentials DH heat pumps (HP) - status and potentials Individual HP DH HP in Copenhagen Solar heating and DH HP DH research projects 9 25.09.2015

DH HP status Electrical driven DH heat pumps in DK www.planenergi.dk/varmepumper Accumulated no. of heat pumps 25 20 15 10 5 0 50 45 40 35 30 25 20 15 10 5 0 Accumulated heat capacity / [MW] No. planned No. in operation Heat capacity Heat capacity Year for operation 10

Thermal driven heat pumps in DK Termisk drevne varmepumper i danske fjernvarmesystemer, 2013 Ejer Installeret år Systemløsning Varmekilde Drivtemp. Temp. kilde Køleydelse (genvundet varme) Thisted Varmeforsyning 1988 Halmkedel som drivkilde Geotermi 155 C 20 C 3,2 MW Thisted Varmeforsyning 2000 Halmkedel som drivkilde Geotermi 155 C 43 C 4 MW Amagerværket 2004 Damp som drivkilde Geotermi 160 C 50 C 9 MW Bjerringbro Varmeværk 2007 Komb. med motor Røggas 400 C 25 C 0,95 MW Vestforbrænding 2007 Damp som drivkilde Røggas 180 C 60 C 13,3 MW Strandby 2008 Komb. med gaskedel Røggas/sol 90 C 15 C 0,28 MW Langå Varmeværk 2009 Komb. med motor Røggas 380 C 30 C 0,7 MW Gråsten Varmeværk 2011 Komb. med træpillekedel Røggas/sol 150 C 22 C 0,7 MW Hillerød 2011 Komb. med fliskedel Røggas 105 C 30 C 0,5 MW Vojens varmeværk 2011 Gaskedel Røggas/sol 100 C 45 C 0,65 MW Galten Varmeværk 2012 Komb. med fliskedel Røggas 100 C 50 C 0,5 MW Hurup Fjernvarme 2012 Komb. med fliskedel Røggas 105 C 35 C 0,45 MW Skagen Varmeværk 2012 Komb. med motor Røggas 350 C 30 C 4 MW Dronninglund 2013 Oliekedel som drivkilde Damvarmelager 150 C 45-10 C 2 MW Sønderborg 2013 Fliskedel som drivkilde Geotermi 150 C 48 C 12,5 MW Tarm Varmeværk 2013 Komb. med fliskedel Røggas/sol 110 C 35 C 1 MW Toftlund 2013 Komb. med motor Røggas/sol 150 C 45-20 C 1,9 MW Tørring 2013 Komb. med træpillekedel Røggas/sol 150 C 50-20 C 0,7 MW 11 ~56 MW

Heat storages and heat pumps in DK Report made for the Danish Energy Agency Report made by PlanEnergi Teknologisk Institut GEO Grøn Energi http://www.ens.dk/undergrundforsyning/el-naturgasvarmeforsyning/forsyningvarme/fjernvarme/analysefremtidens 12 Visit from Germany

Manual for DH heat pump projects Drejebog til store varmepumpeprojekter i fjernvarmen 32 34 Simpel beregning af selskabsøkonomien i et varmepumpeprojekt Gaskedel u/eco 500 14. november 2014 Hold musen over denne celle! Gaskedel m/eco 450 Projektbeskrivelse 1 Andeby Kraftvarmeværk - Grundvandsvarmepumpe Gasmotor 400 Forudsætninger Varmepumpe 355 +73 2 Varmebehov 20.000 MWh/år www.planenergi.dk/varmepumper 3 GraddøgnsAfhængigt Forbrug (GAF) 70% - - Solvarmeanlæg 0 100 200 300 400 500 600 4 Areal 0 m2 Marginale varmeproduktionsomkostninger 5 Marginalpris 10 kr./mwh-varme + kapitalomkostninger for varmepumpen / [kr./mwh-varme] Billigste produktionsenhed (excl. solvarme) 6 Betegnelse Gasmotor 33 25.000 35 7 Varmeeffekt 3,0 MW 8 Tilgængelighed 25% - 9 Marginalpris 400 kr./mwh-varme 20.000 736 3.104 Gaskedel u/eco Næstbilligste produktionsenhed (excl. solvarme) 15.000 7.341 Gaskedel m/eco 10 Betegnelse Gaskedel m/eco 10.472 11 Varmeeffekt 2,0 MW Gasmotor 10.000 4.523 12 Tilgængelighed 100% - Varmepumpe 13 Marginalpris 450 kr./mwh-varme - 5.000 6.425 7.399 Spidslastenhed 14 Betegnelse Gaskedel u/eco 0 15 Marginalpris 500 kr./mwh-varme Uden VP Med VP Produktionsenhed Varmeproduktionsfordeling / [MWh/år] Varmeeffekt / [MW] Varmeeffekt / [MW] 6 5 4 3 2 1 0 6 5 4 3 2 1 0 Varighedskurve uden varmepumpe Gaskedel u/eco Gaskedel m/eco Gasmotor Varmepumpe - Varighedskurve med varmepumpe Gaskedel u/eco Gaskedel m/eco Gasmotor Varmepumpe - Varmepumpe 16 Varmekilde afkøles fra 9 C 17 Varmekilde afkøles til 2 C 18 Fjernvarmevand opvarmes fra 35 C Resultater Fuldlasttimer Varmeproduktion Varmefordeling timer/år timer/år MWh/år MWh/år - - 19 Fjernvarmevand opvarmes til 75 C 20 Lorentz-virkningsgrad 50% - Uden VP Med VP Uden VP Med VP Uden Med 36 COP-varm (årsgennemsnit) 3,34-47 Produktionsenhed VP VP 21 Investering 6,0 mio. 37 Varmepumpens marginalpris 355 kr./mwh-varme - - - 0 0 0,0% 0,0% kr./mw-varm 22 Varmeeffekt 1,0 MW 38 Varmepumpens fuldlasttimer 7.399 timer/år Varmepumpe 0 7.399 0 7.399 0,0% 37,0% 23 Tilgængelighed 90% - 39 Investering 6.000.000 kr. Gasmotor 2.142 1.508 6.425 4.523 32,1% 22,6% 24 El-pris (incl. afgifter 110,0 øre/kwh-el 40 Driftsomkostninger uden VP 8.833.942 kr./år = 442 Gaskedel m/eco 5.236 3.671 10.472 7.341 52,4% 36,7% m.m.) kr./mwh 8.105.002 25 Drift og vedligehold 25 kr./mwh-varme 41 Driftsomkostninger med VP kr./år = 405 kr./mwh Gaskedel u/eco - - 3.104 736 15,5% 3,7% 728.940 26 Pris for varmekilde (købspris) 0 kr./mwh-køl 42 Driftsbesparelse kr./år = 36 kr./mwh I alt 20.000 20.000 100,0% 100,0% 27 Værdi af køling (salgspris) 300 kr./mwh-køl 43 Simpel tilbagebetalingstid 8,2 år 28 Andel af solgt køling 0% - 29 Teknisk levetid 15 år 44 Intern rente 8,6% p.a. 30 Afskrivningsperiode 15 år 45 1. års kapitalomkostninger 539.647 kr. = 73 kr./mwh-varme 48 189.293 31 Lånerente 4% - 46 1. års nettobesparelse kr. 49 Varmepumpens varmepris incl. kapitalomkost. 428 kr./mwh-varme http://www.danskfjernvarme.dk/groen-energi/projekter/drejebog-om-storevarmepumper 13

Future role of HP's? DEA 2050 scenarios Scenario Wind Biomass Bio+ Hydrogen (Brint) Fuel consumption Self sufficiency Gross energy consumption Fossil 255 PJ 443 PJ 710 PJ 192 PJ 483 PJ 104% 79% 58% 116% (*) 575 PJ 590 PJ 674 PJ 562 PJ 546 PJ 14 25.09.2015

Future heat production Decentral DH Central DH Boiler HP Solar Industry 15 http://www.ens.dk/sites/ens.dk/files/undergrund-forsyning/el-naturgasvarmeforsyning/energianalyser/nyeste/energiscenarier_-_analyse_2014_web.pdf 25.09.2015

Future heat production Process heat Individual heating Boiler HP Solar 16 http://www.ens.dk/sites/ens.dk/files/undergrund-forsyning/el-naturgasvarmeforsyning/energianalyser/nyeste/energiscenarier_-_analyse_2014_web.pdf 25.09.2015

Power to heat potential Existing measures Interconnectors to Norway and Sweden Interconnectors to Germany 4.1 GW 2.4 GW Electric boilers in district heating 0.4 GW Examples of options towards 2030 Heat pumps in DH Additional electric boilers in DH schemes Heat pumps in individual houses 0.6 GW 1.0 GW 0.15 GW (1.5 GW) Total power to heat potential 2.2-3.5 GW 17 25.09.2015 (EA 2015. The Danish Experience with Integrating Variable Renewable Energy: Lessons Learned and Options for Improvement )

Outline District heating (DH) - the past and future potentials DH heat pumps (HP) - status and potentials Individual HP DH HP in Copenhagen Solar heating and DH HP DH research projects 18 25.09.2015

Flexible individual heat pumps 2030 scenarios K. Hedegaard, M. Münster Influence of individual heat pumps on wind power integration Energy system investments and operation / Energy Conversion and Management 75 (2013) 673 684 19 25.09.2015

Optimised investment capacities Investments in the Danish system by 2030 for different scenarios (a) investments in electricity generation capacities, (b) investments in district heat generation capacities and (c) Investment in thermal storages in the district heating system. (d) On: onshore, Off: offshore. WoodC: wood chips/waste, OC-GasT: open cycle gas turbines, DH: district heating, HO: heat only, MN: municipal waste. SOL: solar thermal.

Wind production and heat consumption 4000 3500 3000 2500 2000 1500 1000 500 0 900 800 700 600 500 400 300 200 100 0 Heat cons DK-W wind prod (STREAM and Energinet.dk market data) 21 25.09.2015

Conclusion Heat pumps, even without flexible operation, can contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also crucial for the feasibility of the heat storages. Socio-economic feasibility is identified for control equipment enabling intelligent heat storage in the building structure and in existing hot water tanks. In contrast, investments in new heat accumulation tanks are not found competitive. 22 25.09.2015

Outline District heating (DH) - the past and future potentials DH heat pumps (HP) - status and potentials Individual HP DH HP in Copenhagen Solar heating and DH HP DH research projects 23 25.09.2015

DH HP in Copenhagen Bach et al. 2015 Integration of Large-scale Heat Pumps in the District Heating Systems of Greater Copenhagen (In process) 24 25.09.2015

Copenhagen DH HP heat sources Drinking water: (output assuming a COP of 3) based on the drinking water network Sewage water: available at sewage water treatment plants Sea water: when connected to the distribution grid. Total: ~10% of winter peak 25 25.09.2015

Conclusions Limited heat sources available in practice (~10%) Higher number of full load hours in distribution grid (and in a future with more wind) Displacement: peak load production in winter time some CHP plants in summer time 26 25.09.2015

Outline District heating (DH) - the past and future potentials DH heat pumps (HP) - status and potentials Individual HP DH HP in Copenhagen Solar heating and DH HP DH research projects 27 25.09.2015

Solar heating and heat pumps DH can cut down the use of fuels by using solar thermal, seasonal heat storages and heat pumps (www.planenergi.dk) 28 25.09.2015

29 2013

Solar District Heating in Denmark Sum of collector area and the number of operating and upcoming plants 900.000 90 800.000 80 Installed collector area [m²] (thick bars) 700.000 600.000 500.000 400.000 300.000 200.000 70 60 50 40 30 20 Number of plants (thin bars) 100.000 10 0 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Year 0 30

SUNSTORE 4 demonstration plant in Marstal The SUNSTORE 4 project Supported by EC 7 th framework programme Demonstration plant in Marstal, 2012 A district heating system with 100% RE > 50% solar thermal A seasonal heat storage A heat pump District heating system consisting of 33,300 m 2 solar plant 75,000 m 3 pit heat storage 1.5 MW th heat pump 4 MW wood chip boiler 750 kw e ORC Solar collectors HP Biomass Boiler ORC Pit thermal energy storage District heating to the town 31

Conclusion Solar heating can be an important ressource for district heating Heat storages even out timeshifts between heat production and heat demand Heat pumps provide flexible power consumption that utilizes low temperature heat sources This makes it possible to integrate more fluctuating RE in the energy system 32

Outline District heating (DH) - the past and future potentials DH heat pumps (HP) - status and potentials Individual HP DH HP in Copenhagen Solar heating and DH HP DH research projects 33 25.09.2015

4DH - Danish research centre 4th generation district heating (4GDH) Hypothesis: 4GDH systems and technologies will play a big part in future costeffective sustainable energy systems and are likely to replace the import of fossil fuels and create jobs and economic growth in Denmark and in Europe. Collaboration between industry, universities and the public sector 1) District Heat Grids and Components, 2) District Heating Production and System Integration, 3) District Heating Planning and Implementation http://www.4dh.dk/ 34 25.09.2015

Heat Roadmap Europe http://www.heatroadmap.eu/ 35 25.09.2015

progressheat http://www.progressheat.eu/ 36 25.09.2015

About progressheat Goal: assisting local, regional, national and EU political leaders in developing policy and strategies to ensure a quick and efficient deployment of renewables in heating and cooling networks applying model-based quantitative impact assessment of local, regional and national policies up to 2050 (Local: EnergyPro, National: TIMES) Running from March 2015 to October 2017. The project is supported by the Horizon 2020 programme 37 25.09.2015

38 25.09.2015

Extras 39 25.09.2015

DH HP in Copenhagen Heat source temp (a) Temperatures of heat sources and district heating forward temperatures of transmission and distribution 40 25.09.2015

DH HP in Copenhagen Seasonal COPs (b) Seasonal COP for the different technologies connected to 41 25.09.2015 distribution grid and transmission grid.

DH HP in Copenhagen Seasonal COPs (b) Seasonal COP for the different technologies connected to 42 25.09.2015 distribution grid and transmission grid.

DH HP in CPH Full load hours 2025 2013 43 25.09.2015