Danish Greenhouse Gas Reduction Scenarios for 2020 and 2050

Størrelse: px
Starte visningen fra side:

Download "Danish Greenhouse Gas Reduction Scenarios for 2020 and 2050"

Transkript

1 Danish Greenhouse Gas Reduction Scenarios for 2020 and 2050 January 2008 Prepared by Ea Energy Analyses and Risø National Laboratory For the Danish Environmental Protection Agency

2 2

3 Content PREFACE 6 SUMMARY AND CONCLUSIONS 7 SEVEN SCENARIOS FOR THE FUTURE 9 SCENARIO ECONOMICS 15 MEASURES 20 PLANNING, RESEARCH, DEVELOPMENT AND DEMONSTRATION 24 SAMMENFATNING OG KONKLUSIONER 26 SYV FREMTIDSBILLEDER 27 SCENARIERNES ØKONOMI 34 VIRKEMIDLER 39 PLANLÆGNING, FORSKNING, UDVIKLING OG DEMONSTRATION 43 1 INTRODUCTION STRUCTURE 46 2 METHODOLOGY AND MAIN ASSUMPTIONS SCENARIO METHODOLOGY MODELLING TOOL ECONOMIC ANALYSES ECONOMIC GROWTH GROWTH IN ENERGY SERVICES FUEL PRICES CO 2 -PRICE TECHNOLOGY DATA ENERGY RESOURCES 56 3 DANISH GREENHOUSE GAS EMISSION GREENHOUSE GAS SOURCES 58 4 SCENARIOS FOR MAIN RESULTS ENERGY SAVINGS MEASURES MEASURES IN THE TRANSPORT SECTOR SUPPLY SIDE MEASURES INFRASTRUCTURE MEASURES IN THE AGRICULTURAL SECTOR MEASURES IN OTHER SECTORS RESEARCH, DEVELOPMENT & DEMONSTRATION 79 5 SCENARIOS FOR MAIN RESULTS ENERGY SAVINGS MEASURES MEASURES IN THE TRANSPORT SECTOR SUPPLY SIDE MEASURES INTEGRATION OF WIND POWER MEASURES IN THE AGRICULTURAL SECTOR RESEARCH, DEVELOPMENT & DEMONSTRATION 92 3

4 6 REFERENCES TRANSPORT TECHNOLOGIES 95 7 APPENDIX APPENDIX A: MODELLING TOOL APPENDIX B: TECHNOLOGY DATA ENERGY PRODUCTION TECHNOLOGIES 96 4

5 5

6 Preface In the autumn of 2006 and the spring of 2007, Ea Energy Analyses and Risø National Laboratory developed a number of greenhouse gas emissions reduction scenarios for Denmark for 2020 and 2050 for the [Danish Environmental Protection Agency]. The work was carried out under the auspices of a project steering group with the following representatives: - Jens Hauch, Danish Transport Research Institute - Kasper Wrang, Danish Ministry of Finance - Gy Larsen, Danish Board of Technology - Sigurd Lauge Pedersen, Danish Energy Authority - Bent Andersen, National Environmental Research Institute, University of Aarhus From the [Danish Environmental Protection Agency (DEPA)] Nadeem Niwaz and Christian van Maarschalkerweerd supervised the work. In addition, Ulla Blatt Bendtsen, Peter Christian Ibsen and Martin Hansen from [DEPA} participated in steering group meetings. From Risø National Laboratory and Ea Energy Analyses, the following team participated in the preparation of the scenarios: - Kenneth Karlsson, Risø National Laboratory - Kaj Jørgensen, Risø National Laboratory - Jesper Werling, Ea Energy Analyses - Helge Ørsted Pedersen, Ea Energy Analyses - Anders Kofoed-Wiuff, Ea Energy Analyses During the autumn of 2007 the scenarios have been revised, primarily in order to coordinate the assumptions of the reference projections for 2020 with the Danish Energy Authority. These adjustments have been made in a close collaboration between DEPA, the Danish Energy Authority, Ea Energy Analyses and Risø National Laboratory. In November 2007 a Climate and Energy Ministry was established. 6

7 Summary and conclusions The aim of the present project is to develop scenarios for reducing Danish greenhouse gas emissions in 2020 and The scenarios are to provide a basis for estimating which technologies should be combined in order to obtain future reductions in greenhouse gas emissions in a cost-effective way. The scenarios in this project include all emissions of greenhouse gases from agriculture, industry and oil extraction activities in the North Sea as well as the transport and energy sectors. Foreign air and sea carriage is not included because emissions related to such activities are not yet subject to international climate change agreements. The scenarios focus particularly on the technological possibilities and the necessary system changes in the Danish energy system and transport sector. Parallel to this, COWI has carried out analyses for the [Danish Environmental Protection Agency] focussing primarily on the reduction potentials in the transport sector and other emissions (Miljøstyrelsen/COWI, 2007). COWI s results regarding agriculture and other emissions have been included in this analysis. Two timeframes are applied in the scenarios: the medium term, 2020, and the long term, For each timeframe, we have set up indicative targets that the scenarios must reach: 2020: 30 and 40 per cent reduction in greenhouse gas emissions compared to : 60 and 80 per cent reduction in greenhouse gas emissions compared to 1990 The scenarios for 2020 focus primarily on technologies that are already commercially available, whereas the scenarios for 2050 also examine technological options at the experimental or developmental stage. This includes hydrogen technologies and fuel cells as well as CO 2 capture and sequestration (CCS) technologies. The scenarios should be seen in connection with the EU objectives of a per cent reduction in greenhouse gas emissions in 2020 and per cent in 2050 compared to The EU s 30 per cent objective is contingent upon global efforts to reduce the world s greenhouse gas emissions, implying that other countries such as the US, China, India and others will undertake the obligation to reduce emissions in a global climate change agreement for the period after The analyses in the present project have profited from the scenarios, tools and data used in connection with the project The Future Danish Energy System by the Danish Board of Technology. In 2004, the Danish Board of Technology invited a broad range of representatives from the major players in the energy sector, as well as researchers, NGOs and the Danish Parliament to participate in an investigation of possible ways forward for the Danish energy system. The cornerstone of this project was a so-called Future Panel comprising of members from the all-party parliamentary committee on energy policy. 7

8 In the above-mentioned project for the Danish Board of Technology, the scenarios focussed on two concrete targets for 2025: to halve CO 2 emissions compared to 1990 and to reduce oil consumption by 50 per cent compared to the present level. The project showed that by combining different technology specific measures in a so-called combination scenario both targets can be reached. In the combination scenario, the most important measures were more energy savings, increased use of wind power and domestic biomass resources in the energy sector, electric/hybrid vehicles and biofuels as well as better fuel efficiency in the transport sector. 1 In the present project the baseline projection for 2020 has been adjusted in order to match the corresponding baseline used by the Danish government in its proposal for A visionary Danish energy policy from January The Danish background The developments in the Danish energy sector over the last 35 years are unique in an international perspective. In spite of significant economic growth it has been possible for Denmark to maintain its gross energy consumption at a reasonably constant level (see Figure 1, p. 8). At the same time, the actual CO 2 emission from the energy sector (excluding transport) decreased by 19 per cent from 1990 to If foreign trade in electricity and seasonal variations in temperature are taken into account the decrease is 30 per cent. The most important tools in achieving this have been the insulation of buildings and improved fuel efficiency, particularly through co-generation of electricity and heat. The share of renewable energy has also grown and now covers 16 per cent of gross energy needs. At the same time, Denmark has succeeded in developing its energy system so that wind power covers 20 per cent of the present electricity consumption. 3 PJ coal natural gas RE oil Figure 1: Trends in Danish gross energy consumption ( ). Foreign air and sea carriage is not included. 1 The Danish Board of Technology Danish Energy Authority 2007: Basisfremskrivningen for En visionær dansk energipolitik 3 Danish Energy Authority: Energy Statistics

9 Seven scenarios for the future In the present project, seven different scenarios for the future have been analysed. This includes two reference forecasts for 2020 and 2050 respectively (see Table 1). All scenarios assume the same economic growth rate (approx. 1.7 per cent p.a. until 2020 and 1.1 per cent p.a. afterwards) and the same increase in the demand for energy services 4. Increased use of renewable energy, improved efficiency and energy savings are the central measures in the reference scenarios and the reduction scenarios. The references are used as a basis of comparison for the reduction scenarios. In the references, continued active efforts as regards energy savings, improved energy efficiency and renewable energy are presumed. It is thus assumed that the energy savings initiatives set out in the Danish government s action plan from are continued. This implies that the end consumption of energy, excluding transport, declines from approx. 430 PJ in 2003 to approx. 420 PJ in The end consumption of energy reflects the energy consumption by the end consumers of the private and public sectors as well as of households. To reach an end-use of 420 PJ in 2020, savings of approx. 1.5 per cent per year in the end consumption of energy (excl. the transport sector) must be implemented. Without efficiency improvements and energy saving measures end consumption would increase to approx. 540 PJ in After 2020, the end consumption of energy rises slightly and in 2050 it is 473 PJ. This development implies considerable savings, because the end consumption of energy on the demand side would have risen to nearly 700 PJ in 2050 if no savings measures had been implemented. In the reduction scenarios, further savings measures are implemented on the basis of the technical savings potentials stated in the background material for the Danish Energy Authority s energy savings plan from In all reduction scenarios, the savings efforts are greater than in the reference scenarios. In the transport sector, it is assumed that more fuel-efficient means of transport are used in 2020 in all the scenarios. In the reference, it is assumed that the fuel efficiency of the fleet of cars is improved by 10 per cent compared to the present level due to more rigorous international requirements. In the most ambitious reduction scenario, an improvement of per cent is assumed thanks to a combination of national and international measures. This corresponds to CO 2 emission of g/km for an average car in 2020 compared to approx. 170 g- CO 2 /km today. By way of comparison, the EU Commission has suggested a binding agreement with the European motor industry on a maximum average emission from new cars of 130g CO 2 /km in Furthermore, biofuels and electric/hybrid cars are introduced in the scenarios at various levels of ambition. 4 Cf. the Danish Energy Authority 2005: Fremskrivninger inkl. en styrket energibesparelsesindsats som følge af aftalen af 10. juni 2005 (Projections including enhanced energy savings efforts as a consequence of the agreement of 10 June 2005) 5 For the period , the energy savings agreement lays down a target according to which the annual effect of the energy savings activities must correspond to 1.7 per cent of the energy consumption in End consumption reflects the energy supplied to the end consumers, which means private and public trades and households. 9

10 In 2050, hydrogen and electric car technologies are expected to be fully commercialised, playing an important role in all the reduction scenarios. In the 80 per cent reduction scenario focussing particularly on the use of renewable energy, all conventional oil-based fuels have been phased out of the transport sector. Moreover, the fuel efficiency in conventional cars equipped with combustion engines is assumed to have improved noticeably in the reduction scenarios (50-60 per cent compared to the present level, corresponding to 75g CO 2 /km). The fuel consumption for electricity and district heating production decreases considerably from 369 PJ 7 in 2006 to 316 PJ in the reference for The reason for this is that part the existing power plants are assumed to be replaced by new highly efficient plants (Best Available Technology) as the fleet of power plants is gradually replaced. Moreover two large coal power plants (Studstrup Unit 4 and Asnæs Unit 5) are assumed to be refurbished and in this connection an increase in their electric efficiency is assumed. Generally, it is assumed that investors in the electricity sector make their investments expecting that fuel prices will not get any lower than today and that CO 2 has a market value. If investors act on the basis of a short timeframe, there is a risk that the above-mentioned fuel savings potential will not be realised. The assumption that the Best Available Technology is used means that the average electricity efficiency will increase from just below 35 per cent today to almost 40 per cent in the reference for This contributes to fuel savings of approx. 25 PJ, owing among other things to the fact that the need for producing electricity without co-production of heat is reduced. Besides this, the expansion of wind power continues with the upgrading of onshore turbines and the offshore expansion by 400 MW that has already been decided according to previous political agreements 8, which also contributes to the fuel savings. It should be stressed, that the scenarios focus on domestic electricity supply only and therefore it is assumed that there is no exchange of electricity with neighbouring countries apart from export of surplus wind power in some of the scenarios. 9 In the real world Danish power producers compete against producers in neighbouring countries and therefore their generation will depend on their competitiveness. Yearly variations in production from the Nordic hydro power plants does among other things determine the need for production at Danish power plants. In dry years Danish power plants will generate more to compensate for the lacking hydro power and vice versa. Sector specific models such as Balmorel are capable of modelling this relationship with a high level of detail. On average Denmark experienced a net export of 3 TWh per annum during the last 10 years ( ). The exchange of electricity with neighbouring countries will affect the actual CO 2 - emissions from the sector in the scenarios, but not the chance of complying with international reduction targets since the power sector is covered by the EU emissions trading scheme. This implies that the generators each year are obliged to deliver quotas to the Danish state corresponding to their emissions. 7 Including wind power and corrected for variations in climate and electricity exchange (Danish Energy Authority 2007, Energistatistik 2006) 8 Cf. the energy policy agreements of 29 March In 2004, Denmark had a net electricity export of approx. 10 PJ. In 2005, there was an import of 5 PJ. 10

11 In the reduction scenarios, wind power and biomass become central measures on the supply side. In 2020, 40 per cent of electricity consumption is covered by wind power in the most ambitious scenario, and in 2050 wind power accounts for as much as 70 per cent of total electricity production in the 80 percent reduction scenario focusing on renewable energy. In this respect the transport sector will have a central role as storage for wind power either in the batteries of the cars or in caverns as a part of the overall hydrogen infrastructure in In one of the scenarios for 2050 CCS (carbon capture and storage) technologies are incorporated as a possibility, including depositing CO 2 in geological layers after it has been captured at central power plants. However, a number of important barriers related to CO 2 storage need to be clarified before this technology can be used fullscale in the future. For example CCS technologies have high investment costs and large energy consumption for capturing CO 2, which is expected to result in a loss of 8-10 percentage points of electric efficiency. In addition, even if the risk of seepage from carefully selected storage sites is considered to be negligible, the risk of leakage in connection with extraction, transport and storage processes is considerable. Furthermore, it is generally difficult to carry out long-term monitoring of leakage from storage sites under the seabed, since current satellite technologies cannot 'see through water'. In the CCS scenario, CO 2 capture technologies are installed at both coal-fired and biomass-fired power plants. The latter will thus contribute to a net reduction of CO 2 emissions Energy savings** Transport efficiency*** Transport fuels/techs. Reference Combi-30% Combi-40% Reference Red.- 60% Red.- 80%- RE 1.5% p.a. 2.7% p.a. 2.8% p.a. 0.8% p.a. 1.5% p.a. 1.7% p.a. 420 PJ +10% 150 g CO2/km 347 PJ +10% 150 g CO2/km 5% bio. 10% bio 5% el 341 PJ % g CO2/km 15% bio 10% el 473 PJ Approx. +15% 140 g CO2/km 340 PJ % Approx. 75 g CO2/km 5% bio 40% el 25% h 2 10% bio 310 PJ % Approx. 75 g CO2/km 40% el 50% h 2 10% bio Red.- 80%- CCS 1.5% p.a. 340 PJ % Approx. 75g CO2/km 40% el 25% h 2 10% bio 10 Renewable energy share of gross energy Electricity supply Agriculture 21% 28% 37% 23% 69% 98% 68% Continuation of present system 23% wind 16% bio/waste NERI forecast to 2020 More RE 35% wind 18% bio/waste NERI forecast to 2020 Considerably more RE 40% wind 33% bio/waste NERI forecast to 2020 Continuation of present system 30% wind 16% bio/waste NERI forecast to 2030* Considerably more RE 55% wind, 19% bio/waste 2% solar NERI forecast to 2030* Pure RE 70% wind 27% bio/waste 2% solar 1% wave NERI forecast to 2030* RE+CCS**** 60% wind 20% bio/waste NERI forecast to 2030* Table 1: Overview of the analysed scenarios * NERI (National Environmental Research Institute) projections are only available up till Emissions from agriculture are assumed to remain unchanged in the remaining period ** End consumption of energy excluding transport. *** average efficiency of the car fleet. **** CCS technologies are used on coal fired plants as well as on biomass fired plants. The latter therefore lead to a net reduction of CO2. Figure 2 gives an overview of total gross energy consumption in the scenarios. Compared to the present energy system, gross energy consumption remains more or less constant in the reference projections, while it decreases in all reduction scenarios It is assumed that biofuels are produced by means of second generation technology. 11

12 Today, renewable energy covers approx. 16 per cent of gross energy consumption. In the reference for 2020, this share rises to 23 per cent, in the 30 per cent reduction scenario to 28 per cent and in the 40 per cent reduction scenario to 37 per cent. In the scenarios for 2050, the share of renewable energy increases even further, so that renewable energy covers 69 per cent of total energy supply in the 60 per cent reduction scenario and 68 per cent in the 80 per cent reduction scenario applying CCS technologies. In the 80 per cent RE scenario fossil fuels are phased out and replaced by renewables. In the RE scenario for 2050, it is necessary to import biomass if it is assumed that the Danish biomass resources for energy purposes are of the same size as today. In this scenario, 220 PJ of biomass is used (excl. waste and biogas) whereas the present total resource of wood wastes and straw for energy purposes is about 80 PJ (including biomass from waste land). If Denmark were to cover its energy consumption with domestic resources only, it would be necessary to increase the use of wind power further or include large amounts of solar energy and wave power. Solar- and wave power only play a small role in the reduction scenarios because there is a significant degree of uncertainty as to whether these technologies will be competitive with wind power and biomass in The larger total energy consumption in the CCS scenario, compared to the other reduction scenarios, is due to the additional energy consumption used to separate CO 2 from flue gas at power plants. PJ/year Gross energy consumption Other RE Waste Biogas Biomass Wind Natural gas Coal Oil Reference 2020 Combi30%_2020 Combi40%_2020 Reference 2050 Red60%_2050 Red80%-CCS_2050 Red80%-RE_2050 Figure 2: Gross energy consumption in 2005, and in the scenarios for 2020 and Other RE includes production based on solar energy, photo-voltaics, geothermal energy and wave power. 11 Due to the model s simplification of the energy system, historical figures and the results of the model are, however, not completely comparable. Minor deviations might occur as the model makes a slightly simplified optimisation of the energy system. 12

13 The energy consumption in the scenarios has been converted into CO 2 emissions on the basis of the greenhouse gas emission factors of the fuels. Emissions from agriculture (primarily methane and N 2 O) and from industrial processes etc have been added to this. The emissions from agriculture are based on a projection of emissions up to 2030, made by the Danish National Environmental Research Institute (NERI, 2007). Over the period , emissions from agriculture are reduced by just below 2 Mt from 10.4 Mt to 8.7 Mt. In the period , emissions are assumed to be unchanged. The agricultural sector has not been subject to analyses of reduction potentials in this project. However, in parallel to this project, COWI has analysed the reduction potentials and costs in the agricultural sector. According to COWI, it is possible to reduce emissions from agriculture by a further 4.8 Mt, and emissions from industrial processes and waste/sewage can be reduced by 50 per cent (a reduction of approx. 1.4 Mt) (Miljøstyrelsen/COWI, 2007). Figure 3 shows the historical emissions of greenhouse gasses in 1990 and 2005 compared to the emissions in the seven scenarios of the future. It should be noted that the figures for 1990 are based on actual emissions. Today, emissions from the energy and transport sectors account for more than 70 per cent of the total emissions and in the scenarios, reduction measures are implemented particularly in these two sectors. CO 2 emissions from oil and gas recovery activities in the North Sea are expected to increase from approx. 2 Mt today to approx. 5.5 Mt in 2020 according to NERI. This increase is due to a continued high level of production and increased energy consumption for extraction as the fields get older. This includes increased use of gas for water injection and gas compression. In 2050 it is assumed that oil and gas are no longer extracted from the fields in the North Sea (cf. Figure 4) The total greenhouse gas emission in the reference for 2020 is approx. 59 Mt, which is 4 Mt more than the Danish Kyoto objective for This corresponds to a reduction of approx. 15 per cent compared to In the reduction scenarios for 2020, the emission of greenhouse gasses is reduced to 47 Mt (Combi30%) and 40 Mt (Combi40%) respectively. In 2050, it is only in RE scenario that an 80 per cent reduction of the emissions is obtained. However, the CCS scenario is close to attaining the target, and by use of further reduction measures within agriculture, for example, the 80 per cent objective can be achieved. 13

14 mill. tonnes CO2 Greenhouse gas emissions (CO2-eqv.) wastewater landfill F-gasses industrial gasses agriculture oil/gas extraction transport energy purposes Reference 2020 Combi30%_2020 Combi40%_2020 Reference 2050 Red60%_2050 Red80%-CCS_2050 Red80%-RE_2050 Figure 3: Greenhouse gas emissions in 1990 and 2005 (actual emissions) and in the scenarios for 2020 and The Danish Kyoto objective for the period is indicated by a broken line. Greenhouse gas sources Energy purposes include emissions from electricity and heat production as well as other emissions from private households and industry, including the internal transport within industry, forestry, agriculture and fisheries. The transport sector includes both passenger transport and conveyance of goods. Foreign air and sea carriage is not included in the analyses. The agricultural sector s emissions are primarily related to methane from animal digestion and from handling of manure as well as to N 2 O from nitrogenous fertilisers in the fields. Industrial gasses cover non energy-related CO 2 from processes in industry (chemical, cement and metal industry) and from solvents F-gasses are HFC, PFC and SF 6. The F-gasses are mainly used as a refrigerant in refrigerating plants and as insulating foam for various purposes. F-gasses have a far larger greenhouse gas effect than CO 2 for example, 1 kg HFC corresponds to 1,300 kg CO 2. Emissions from oil/gas extraction cover the energy consumption for extraction and flaring of natural gas. Emissions from rubbish dumps and cleaning of sewage. In the scenarios for 2050, emissions are reduced to a level between 13 Mt (80 per cent reduction scenario with RE) and 27 Mt (60 per cent reduction scenario). In the RE scenario, the emission of greenhouse gasses from the energy sector is limited to approx. 1 Mt. The remaining emission is due to the fact that household waste contains a fossil fraction (plastic etc.) that is burnt during waste handling. 14

15 Figure 4: The Danish government s production forecasts for Dansk Undergrunds Consortium (DUC) 12. Scenario economics The economics of the scenarios are calculated as the annualised value of the entire energy system in the scenario years 2020 and 2050 respectively. This includes the average annual capital costs as well as costs for fuels, operation and maintenance. This financial calculation makes a relative comparison of scenarios and references possible. The calculations are made in fixed 2006 prices, and the discount rate is set at 6 per cent on the basis of the recommendations of the Danish Ministry of Finance regarding socio-economic calculations. Moreover, a sensitivity analysis is made with a discount rate of 3 per cent. The comparison in Figure 5 assumes an oil price of $60/barrel in 2020 and $75/barrel in 2050, and a CO 2 quota price of DKK 150/tonne. An oil price of $60/barrel in 2020 corresponds to the latest projection made by the International Energy Agency in World Energy Outlook The IEA has not made fuel price projections for 2050 in World Energy Outlook As oil is expected to become a more and more scarce resource a higher oil price of 75 $/barrel is assumed in Fuel costs are generally reduced in the reduction scenarios whereas investment costs increase. Also operation costs increase in all reduction scenarios, partly due to the fact that it is more demanding to handle biomass, biogas and waste than fossil fuels. The financial calculations also indicate that at the assumed CO 2 and fuel prices, CO 2 storage is a more cost effective measure than aiming for 100 per cent renewable energy. However, it should be noted that the economics of the CO 2 storage technologies are connected with a significant level of uncertainty as largescale plants are still in the demonstration phase. Moreover, a number of security, environmental and liability issues have not yet been clarified. On the whole, large uncertainties are connected with estimating long-term costs of operating an energy system. Not only the investment costs of the technologies may change significantly over more than 40 years also fuel costs may depart considerably from the assumptions made in this report. This is illustrated in Figure 12 Cf., Økonomi- og erhvervsministeren 2003: Redegørelse til Folketinget vedrørende Nordsøen (Statement on the North Sea to the Parliament by the Minister for Economic and Business Affairs, from 2003). 15

16 6 and Figure 7 showing the relative costs of the scenarios at an oil price of $35/barrel and $100/barrel respectively. At an oil price level of $100/barrel, all scenarios are less expensive than the corresponding references. The sensitivity analyses show the consequences of investing in specific energy producing technologies and transport technologies under different fuel price assumptions. It should be stressed, that the sensitivity analyses are static, in the sense, that the total fuel consumption and its composition is assumed to be unchanged regardless of the fuel prices examined. For example, the dispatching of power plants is not changing according to fuel prices and consumers do not reduce their demand for transportation at higher fuel prices. Furthermore, it must be emphasized that security of supply (e.g. in the form of failing fuel supplies) and other environmental and health costs (e.g. air pollution) are not valued in this study. Compared to the reference, the consumption of fossil fuels is brought down in all reduction scenarios, and a gain in the form of lower environmental and health costs as well as a more reliable supply may therefore be expected in this connection. The scenarios cover a range of measures on the demand side as well as the supply side and in the transport sector that must been seen as a whole. Measures that may seem relatively expensive when considered individually (e.g. heat pumps at CHP plants or electricity-based cars) may be advantageous in interaction with other measures (e.g. wind power). It has not been possible to estimate the marginal costs of individual initiatives within this project. mill. DKK. pr. annum 50,000 Additional annual costs of reduction scenarios 2020: 60 $/bbl 2050: 75 $/bbl 40,000 30,000 20,000 Combi30%_2020 Combi40%_2020 Red60%_2050 Red80%-RE_2050 Red80%-CCS_ , ,000 Fuel CO2 O&M Capital Total -20,000-30,000-40,000 Figure 5: Annualised additional costs of the scenarios compared to the reference at the same time. An oil price of $60/barrel in 2020 and $75/barrel in 2050 has been assumed. The calculations also include a CO2 quota price of DKK 150/tonne. A discount rate of 6 per cent is used. Please note that the costs have not been discounted to today s value. 16

17 mill. DKK. pr. annum 40,000 Additional annual costs of reduction scenarios Low fuel prices - 35 $/barrel 30,000 20,000 Combi30%_2020 Combi40%_2020 Red60%_2050 Red80%-RE_2050 Red80%-CCS_ ,000 0 Fuel CO2 O&M Capital Total -10,000-20,000 Figure 6: Sensitivity analysis. Annualised additional costs of the scenarios compared to the reference at the same time. An oil price of $35/barrel in 2020 and 2050 has been assumed. The prices of gas, coal and biomass are assumed to match the oil price to some extent. The calculations also include a CO2 quota price of DKK 150/tonne. A discount rate of 6 per cent is used. Please note that the costs have not been discounted to today s value. mill. DKK. pr. annum 50,000 40,000 30,000 20,000 Additional annual costs of reduction scenarios High fuel prices $/barrel Combi30%_2020 Combi40%_2020 Red60%_2050 Red80%-RE_2050 Red80%-CCS_ , ,000 Fuel CO2 O&M Capital Total -20,000-30,000-40,000-50,000-60,000 17

18 Figure 7: Sensitivity analysis. Annualised additional costs of the scenarios compared to the reference at the same time. An oil price of $100/barrel in 2020 and 2050 has been assumed. The prices of gas, coal and biomass are assumed to match the oil price to some extent. The calculations also include a CO2 quota price of DKK 150/tonne. A discount rate of 6 per cent is used. Please note that the costs have not been discounted to today s value. Sensitivity analysis with 3 per cent discount rate If a discount rate of 3 per cent is used as opposed to 6 per cent in the base case, the economy of the scenarios is improved relatively to the reference projections (Figure 8). This is due to the fact that the reduction scenarios comprise greater investments in production technologies, vehicles and energy savings. mill. DKK. pr. annum Additional annual costs of reduction scenarios 2020: 60$/bbl, 2050: 75$/bbl Discount rate 3 % Combi30%_2020 Combi40%_2020 Red60%_2050 Red80%-RE_2050 Red80%-CCS_ Fuel CO2 O&M Capital Total Figure 8: Sensitivity analysis 3 % discount rate. Annualised additional costs of the scenarios compared to the reference at the same time. An oil price of $60/barrel in 2020 and $75/barrel 2050 is assumed. The prices of gas, coal and biomass are assumed to match the oil price to some extent. The calculations also include a CO2 quota price of DKK 150/tonne. Please note that the costs have not been discounted to today s value. Sensitivity analysis higher costs of energy savings Estimating the costs of undertaking energy savings in future energy systems is believed to be associated with a high degree of uncertainty. Among other things it is difficult to assess the transaction costs, for example the costs of informing people and companies to choose the right energy efficient solutions. Therefore a sensitivity analysis is carried out assuming that the costs of energy savings are twice as high as in the base case. It appears from Figure 8 that the costs of energy savings measures have a significant impact on the economic results. Assuming saving costs are doubled all reduction scenarios have higher costs than the reference projections. 18

19 Additional annual costs of reduction scenarios 2020: 60$/bbl, 2050: 75$/bbl Double cost of energy savings mill. DKK. pr. annum Combi30%_2020 Combi40%_2020 Red60%_2050 Red80%-RE_2050 Red80%-CCS_ Fuel CO2 O&M Capital Total Figure 9: Sensitivity analysis double cost of energy savings. Annualised additional costs of the scenarios compared to the reference at the same time. An oil price of $60/barrel in 2020 and 75 $/barrel 2050 is assumed. The prices of gas, coal and biomass are assumed to match the oil price to some extent. The calculations also include a CO2 quota price of DKK 150/tonne. The discount rate is 6 per cent. Please note that the costs have not been discounted to today s value. CO2-abatement costs The economics of the scenarios can also be expressed by their average CO 2 abatement costs. The average CO 2 abatements costs are computed by dividing the additional costs of the scenarios (without including a price of CO 2 ) by their total CO 2 reduction compared to the reference. The average abatement costs are examined with the reference fuel prices as well as the low (35 $/bbl) and high fuel price level (100 $/bbl), see Table 2 below Fuel prices Combi30 % Combi40 % Red60% Red80% RE Red80% CCS Ref - 60/75 $/bbl Low 35 $/bbl High $/bbl Table 2: Average CO2 reduction costs (DKK/tonne) in the reduction scenarios compared to the references With the exception of biogas plants, potentials and costs of reducing greenhouse gas emissions from agriculture and from industrial processes and waste/sewage have not been examined in this report. According to COWI (Miljøstyrelsen/COWI, 2007) it is possible to reduce emissions by a total of 4 MT through measures costing less than DKK 500/tonne in these sectors (biogas not included). If more expensive measures are applied, emissions can be reduced by well over 6 Mt. 19

20 The reason why the average CO 2 reduction costs are lower in the Combi40% scenario than in the Combi30% scenario is in part that the fleet of cars is expected to become more efficient in the Combi40% scenario and that a number of motorists are transferred to public transport and bicycling decreasing the car share of passenger transport from 76 per cent to 69 per cent. The costs of these initiatives have not been assessed, and they might require considerable political efforts in relation to car producers, both nationally and internationally. If the Combi40% scenario is implemented without these initiatives, the average CO 2 reduction costs will rise to approx. DKK 290/tonne under reference fuel prices. Summary Altogether, the additional costs in the reduction scenarios can be calculated to between -0.1 and 0.3 per cent of total GDP in the scenario years 2020 and 2050 respectively when applying reference fuel prices (Table 3). These figures do not include a price on CO 2. Taking into account the sensitivity analyses shown above the gap ranges from -0.2 % to % of GDP in 2020 corresponding to an interval of -600 to DKK/inhabitant per year. For the 2050 scenarios the gap stretches from % to +1.0 % of GDP corresponding to somewhere between and DKK/inhabitant. The development in fuel prices constitutes the greatest element of uncertainty Combi30% Combi40% Red60% Red80% RE Red80% CCS 2.4 bn 2.0 bn -3.0 bn 6.3 bn 1.0 bn 0.1 % of GDP 0.1 % of GDP -0.1 % of GDP 0.3 % of GDP 0.0 % of GDP 445 DKK/capita 370 DKK/capita -550 DKK/capita 1140 DKK/capita 185 DKK/capita Table 3: Total additional costs (DKK) per annum in the reduction scenarios compared to the reference projections (without a CO2 price). Additional costs are also shown as share of GDP and per capita. Reference fuel prices (60/75 $/bbl). Assuming 5.5 mill. inhabitants in Denmark in 2020 as well as in Measures The references presuppose that the existing energy policy is continued. This means that the current energy savings efforts are continued, there is a certain level of wind power expansion and that existing power plants are gradually replaced with new ones with high fuel efficiency (Best Available Technology) or refurbished. In order to realise the reduction scenarios or elements of these additional efforts are needed in Denmark, in the EU and at global level. This will require long-term targets for the energy and transport sectors as well as framework conditions and measures that may contribute to pushing development in the desired direction. In that connection, it is important to underline that the scenarios focus on the technical and financial perspectives of the various technologies, and it has not been analysed in detail which measures could or should be applied. Consequently, the effects of trade in CO 2 quotas, certificate systems, taxes and similar measures have not been examined separately in the work with the scenarios. Energy savings and improvement of energy efficiency are central elements in all scenarios and require efforts in relation to buildings, industry and appliances. There 20

21 is a need for a continued effort both at EU level and at the national level in order to promote more energy efficient products. One example is dynamic minimum standards for the energy efficiency of a number of products (white goods, engines, pumps, boilers, computers, television sets, chargers, standby consumption etc.) within the framework of the Eco-design Directive. Also the energy labelling requirements could be extended to include more products in order to promote the best products in the market. To illustrate which potentials could be achieved by promoting best available technology, the trend in the energy consumption of refrigerators and freezers is shown in the figure below kwh/year kwh/år Køleskab Refrigerator Fryser Freezer New nyt 1975 New nyt 1988 New nyt 2001 Best Bedst Figure 10: There is a great potential in consumers using the most efficient technologies. Example: Energy consumption of new and old refrigerators and freezers. In the building sector, there is a need to tighten up requirements for new construction projects. In the 2020 scenario, in which the total emission of greenhouse gasses is reduced by 40 per cent, the energy consumption for heating falls by approx. 30 per cent. This is in part based on the assumption that all new houses are built as zero-energy houses from In Figure 9, the energy consumption in an average Danish building is compared to the requirements in the building regulations from 1982, 1995 and Furthermore, possible tightening of the building regulations for 2010 and 2015 as well as the low-energy concepts Bolig+ and Passivhaus are shown. 21

22 Liters of oil per m 2 Average energy consumptio n in Danish buildings Figure 11: Energy consumption in Danish buildings. The average Danish building compared to the requirements in the building regulations from 1982, 1995 and Furthermore, possible tightening of the building regulations for 2010 and 2015 (lowenergy class 2 and 1) as well as the low-energy concepts Bolig+ 13 and Passivhaus are shown. However, the greater part of the savings is to be made in the existing housing stock. This means that the requirements regarding renovation of existing buildings will be further tightened through energy efficiency requirements in connection with replacement of various parts of the building such as the roof, windows and boilers. A central measure may also be the promotion of so-called ESCOs Energy Service Companies, for example on the basis of a common market in Europe for energy savings certificates. The transport sector is a special challenge because Denmark is to a large extent dependent on common measures at international level and particularly in the EU. In the ambitious 40 per cent reduction scenario for 2020, it is assumed that the existing fleet of cars exploits the fuels per cent more efficiently than today. This corresponds to an average emission of g CO 2 /km from all cars in Denmark in By way of comparison the EU Commission has proposed a binding agreement with the European motor industry according to which the emission from new cars is not allowed to exceed an average of 130g CO 2 /km in In addition to this, the Commission intends to find further reductions of 10g CO 2 /km by means of other technical improvements and by increased use of biofuels. As the renewal of the car fleet takes place gradually it may be necessary 13 Bolig+ houses will be energy neutral on a yearly basis due to their self-production of energy from e.g. solar energy or photovoltaics. In the figure, the self-production is indicated as a negative consumption. 22

23 to introduce stricter minimum requirements after 2012 in order to reach the efficiency target of the 40 per cent reduction scenario. Figure 12 shows the emissions from new cars in 2006 divided on different classes of cars. There appears to be a very large difference between the CO 2 -emissions within the different classes of cars. For all classes it is possible to find vehicles emitting less than 150 g CO 2 /km. Simply by choosing the most efficient cars, that are already on the market today, it should be possible to come very close to the efficiency target of the 40 percent reduction scenario in Figure 12: Emissions from different classes of new Cars in 2006 (MPV: Multi Purpose Vehicle, SUV: sport utility vehicle (Source: Mullin 2007, King Review: Potential for CO2 reductions in the road transport sector. Study presented at STOA-workshop in the European Parliament 20 November 2007) In the scenarios, it has not been decided if fuel efficiency should be improved through ambitious EU agreements with the motor industry, through direct regulation with fixed minimum requirements for the energy efficiency of new passenger cars and delivery vans (more km per litre) or by means of other measures. Large CO 2 and fuel reductions can also be gained by improving the passenger utilization rate of cars. Today there is on average of 1.5 passengers in a car, but in 2020 this figure is expected to decrease to 1.3 passengers per car in If measures are implemented to prevent this development approx. 15 PJ of fuel and 1.1. Mt of CO 2 can be saved (approx. 8 % of emissions from the transport sector). As previously mentioned, foreign air and sea carriage is not included in the scenarios. In the 2050 reduction scenarios, a further improvement of the vehicles energy consumption corresponding to a CO 2 emission of approx. 75 g/km (well over 30 km/l) is assumed. This implies that the cars become roughly twice as efficient as new cars today. In 2050, however, the main part of the fleet of cars in the reduction scenarios has been replaced by electricity or hydrogen-powered cars. 23

24 The massive expansion of wind power assumed in the scenarios will increase the need for a long-term plan of action for installation of offshore wind farms and corresponding infrastructure. It would be appropriate to coordinate the plans with Denmark s neighbours in order to ensure a coherent expansion of the electricity infrastructure. On the supply side, it will also be necessary to create suitable framework conditions for the construction of new efficient biomass and biogas plants. Moreover, incentives are required to ensure a higher use of biomass at existing central power plants. A key challenge will be to ensure the cost effectiveness of the measures while at the same time offering investors sufficient security for their investments. One way to do this is to ensure stable framework conditions. As regards the future infrastructure, it should be analysed which roles the district heating and natural gas systems should have. When the energy consumption for heating is reduced and the share of wind power is increased, the basis for district heating will decrease in many places. On the other hand the district heating system provides a valuable storage medium for integrating wind power through the use of electric boilers and heat pumps. It is important to clarify in which areas district heating should be given priority, how energy losses from district heating can be reduced and how energy efficiency can be further improved by dynamic use of heat pumps, geothermal energy and district cooling. Also the cost and benefits of having larger heat storage facilities in relation to district heating should be analysed. Planning, research, development and demonstration There is a need for continued targeted research efforts as well as commitment to technological development that are adjusted on an ongoing basis according to longterm political goals. Moreover, the research and development activities should be focussed on the areas in which Denmark has a particular potential for promoting new energy technology solutions for energy savings, improvement of energy efficiency and RE. Efforts should also be made to make EU research activities reflect long-term Danish priorities. Denmark could play a special role as the EU s test lab for the flexible energy system of the future, based on the principles of the market. This implies a system in which consumers play a far more active role than today in creating coherence in the system, and where the possibilities that lie in information technologies for communication between market players and appliances are fully exploited. Important elements comprise flexible district heating systems with electricitypowered heat pumps, components for electricity/hydrogen cars (intelligent recharging in relation to needs of both the electricity system and the motorist) and, not least, activation of other demand response from consumers and industry. For Denmark, energy technologies represent a great industrial potential. As a consequence of the Danish energy policy commitments since the 1980s, the energy sector contributes considerably to economic growth and employment in Denmark. The export of Danish energy technology calculated in current prices has developed from approx. DKK 17 bn in 1996 to DKK 46 bn in The global market for pollution control technologies is estimated at DKK 4,100 bn with an annual growth of approx. 5 per cent according to the Danish government s strategy to promote eco-efficient technology. 14 A strengthened and coordinated 14 The Danish Government 2006: Promoting Eco-efficient Technology. 24

25 effort within the energy sector would contribute to maintaining and expanding Denmark s position in the market. 25

26 Sammenfatning og konklusioner Formålet med dette projekt er at opstille scenarier for, hvordan Danmarks udledning af drivhusgasser kan reduceres i 2020 og Scenarierne skal tilvejebringe et grundlag for at vurdere, hvilke kombinationer af teknologier der er nødvendige for at opnå fremtidige drivhusgasreduktioner på en omkostningseffektiv måde. Scenarierne i dette projekt omfatter alle emissioner af drivhusgasser fra landbrug, industri og indvindingsaktiviteter i Nordsøen, samt fra transport- og energisektoren, dog ikke udenrigs luft- og søtransport, da emissioner herfra ikke på nuværende tidspunkt er omfattet af internationale klimaaftaler. Scenarierne har særlig fokus på de teknologiske muligheder og systemændringer, der er nødvendige i det danske energisystem og på transportområdet i Danmark. COWI har parallelt hermed gennemført analyser for Miljøstyrelsen, der primært fokuserer på reduktionspotentialer inden for transportsektoren og andre emissioner (Miljøstyrelsen/COWI, 2007). COWIs potentiale- og omkostningsopgørelser vedr. landbrug og øvrige emissioner er inddraget i denne analyse. I scenarierne arbejdes med to tidshorisonter, hhv. det mellemlange sigt, 2020, og det lange sigt For hver tidshorisont er der angivet indikative målsætninger, som scenarierne skal opfylde: 2020: 30 og 40 % reduktion i emissionen af drivhusgasser sammenlignet med : 60 og 80 % reduktion i emissionen af drivhusgasser sammenlignet med 1990 Scenarierne for 2020 har primært fokus på allerede kommercielle teknologier, mens der i 2050-scenarierne også ses på teknologiske muligheder, som i dag er i forsøgs- eller udviklingsstadiet. Det drejer sig bl.a. om brint og brændselsceller samt CO 2 -lagringsteknologier. Scenarierne skal ses i sammenhæng med EU s målsætninger om reduktion af udledningen af drivhusgasser med % i 2020 samt % i 2050 sammenlignet med EU s 30 % målsætning er betinget af en global indsats for at reducere verdens drivhusgasemissioner, dvs. at andre lande som USA, Kina, Indien m.fl. vil påtage sig reduktionsforpligtelser i en global klimaaftale for perioden efter Analyserne i dette projekt drager nytte af de scenarier, scenarieværktøjer og data, der blev anvendt i forbindelse med teknologirådsprojektet Det fremtidige danske energisystem. I 2004 inviterede Teknologirådet et bredt udsnit af repræsentanter for de største aktører i energisektoren, forskere, NGO ere og Folketinget til at belyse mulige veje for udviklingen af det danske energisystem. Hjørnestenen i projektet var det såkaldte Fremtidspanel, bestående af medlemmer fra Folketingets Energipolitiske Udvalg. 26

Danish Greenhouse Gas Reduction Scenarios for 2020 and 2050

Danish Greenhouse Gas Reduction Scenarios for 2020 and 2050 Danish Greenhouse Gas Reduction Scenarios for 2020 and 2050 February 2008 Prepared by Ea Energy Analyses Risø DTU ISBN: 978-87-7844-723-4 2 Content PREFACE 6 SUMMARY AND CONCLUSIONS 7 SEVEN SCENARIOS FOR

Læs mere

Statistical information form the Danish EPC database - use for the building stock model in Denmark

Statistical information form the Danish EPC database - use for the building stock model in Denmark Statistical information form the Danish EPC database - use for the building stock model in Denmark Kim B. Wittchen Danish Building Research Institute, SBi AALBORG UNIVERSITY Certification of buildings

Læs mere

TMC - Klima

TMC - Klima NOTAT TMC Klima 97218 CO 2regnskab 217 Ifølge HøjeTaastrup Kommunes KlimaKommuneaftale med Danmarks Naturfredningsforening skal der udarbejdes og offentliggøres et årligt regnskab over kommunens CO 2 udledning.

Læs mere

Baltic Development Forum

Baltic Development Forum Baltic Development Forum 1 Intelligent Water Management in Cities and Companies developing and implementing innovative solutions to help achieve this objective. Hans-Martin Friis Møller Market and Development

Læs mere

85/15 Moving energy. forward. Charles Nielsen, Director R&D. Kystdirektoratet 28. november 2012. Fremtidens anvendelse af søterritortiet

85/15 Moving energy. forward. Charles Nielsen, Director R&D. Kystdirektoratet 28. november 2012. Fremtidens anvendelse af søterritortiet 85/15 Moving energy forward Charles Nielsen, Director R&D Kystdirektoratet 28. november 2012 Fremtidens anvendelse af søterritortiet June 2012 DONG Energy activities / Danish Energy consumption Danish

Læs mere

Small Autonomous Devices in civil Engineering. Uses and requirements. By Peter H. Møller Rambøll

Small Autonomous Devices in civil Engineering. Uses and requirements. By Peter H. Møller Rambøll Small Autonomous Devices in civil Engineering Uses and requirements By Peter H. Møller Rambøll BACKGROUND My Background 20+ years within evaluation of condition and renovation of concrete structures Last

Læs mere

Procuring sustainable refurbishment

Procuring sustainable refurbishment SURE den 21. marts 2012 Procuring sustainable refurbishment Niels-Arne Jensen, Copenhagen City Properties (KEjd) Copenhagen Municipality KOMMUNE 1 Agenda About Copenhagen City Properties Background and

Læs mere

ESG reporting meeting investors needs

ESG reporting meeting investors needs ESG reporting meeting investors needs Carina Ohm Nordic Head of Climate Change and Sustainability Services, EY DIRF dagen, 24 September 2019 Investors have growing focus on ESG EY Investor Survey 2018

Læs mere

Basic statistics for experimental medical researchers

Basic statistics for experimental medical researchers Basic statistics for experimental medical researchers Sample size calculations September 15th 2016 Christian Pipper Department of public health (IFSV) Faculty of Health and Medicinal Science (SUND) E-mail:

Læs mere

Methods to increase qualifications for energy savings in buildings

Methods to increase qualifications for energy savings in buildings Methods to increase qualifications for energy savings in buildings By Iben Østergaard The Danish government has a goal 2025 decrease 25 % RE from 19 to 30 % One tool is the national Knowledge Centre for

Læs mere

IDA National energiplan Elsystemer

IDA National energiplan Elsystemer IDA National energiplan Elsystemer 2. jan 29 Ingeniørhuset Kbh. Betina Knudsen, Vattenfall Nordic Agenda Vattenfalls klima målsætning Initiativer for at nå klima målsætning Største udfordringer 2 The Investment

Læs mere

Central Statistical Agency.

Central Statistical Agency. Central Statistical Agency www.csa.gov.et 1 Outline Introduction Characteristics of Construction Aim of the Survey Methodology Result Conclusion 2 Introduction Meaning of Construction Construction may

Læs mere

Sustainable investments an investment in the future Søren Larsen, Head of SRI. 28. september 2016

Sustainable investments an investment in the future Søren Larsen, Head of SRI. 28. september 2016 Sustainable investments an investment in the future Søren Larsen, Head of SRI 28. september 2016 Den gode investering Veldrevne selskaber, der tager ansvar for deres omgivelser og udfordringer, er bedre

Læs mere

Transition to Renewable Energy until 2030 2050 in the EU, Denmark, and

Transition to Renewable Energy until 2030 2050 in the EU, Denmark, and Transition to Renewable Energy until 2030 2050 in the EU, Denmark, and more - The INFORSE Visions Gunnar Boye Olesen, International Network for Sustainable Energy (INFORSE) EU Stakeholder Seminar on Low

Læs mere

Energy-saving potential A case study of the Danish building stock. Kim B. Wittchen Danish Building Research Institute, SBi AALBORG UNIVERSITY

Energy-saving potential A case study of the Danish building stock. Kim B. Wittchen Danish Building Research Institute, SBi AALBORG UNIVERSITY Energy-saving potential A case study of the Danish building stock Kim B. Wittchen Danish Building Research Institute, SBi AALBORG UNIVERSITY Short and long term potentials Potential energy savings on short

Læs mere

ATEX direktivet. Vedligeholdelse af ATEX certifikater mv. Steen Christensen stec@teknologisk.dk www.atexdirektivet.

ATEX direktivet. Vedligeholdelse af ATEX certifikater mv. Steen Christensen stec@teknologisk.dk www.atexdirektivet. ATEX direktivet Vedligeholdelse af ATEX certifikater mv. Steen Christensen stec@teknologisk.dk www.atexdirektivet.dk tlf: 7220 2693 Vedligeholdelse af Certifikater / tekniske dossier / overensstemmelseserklæringen.

Læs mere

Integrated Coastal Zone Management and Europe

Integrated Coastal Zone Management and Europe Integrated Coastal Zone Management and Europe Dr Rhoda Ballinger Format of talk What is ICZM Europe and the coast non-iczm specific Europe and ICZM ICZM programme development ICZM Recommendation What is

Læs mere

FOKUSGRUPPE TYSKLAND. LOGSTOR Claus Brun

FOKUSGRUPPE TYSKLAND. LOGSTOR Claus Brun FOKUSGRUPPE TYSKLAND LOGSTOR Claus Brun Market overview Customer Segments Contractors End User Consulting Engineer 60% of turnover Main Focus: 1. Price 2. Delivery performance 3. Product Quality 25% of

Læs mere

The soil-plant systems and the carbon circle

The soil-plant systems and the carbon circle The soil-plant systems and the carbon circle Workshop 15. november 2013 Bente Hessellund Andersen The soil-plant systems influence on the climate Natural CO 2 -sequestration The soil-plant systems influence

Læs mere

Constant Terminal Voltage. Industry Workshop 1 st November 2013

Constant Terminal Voltage. Industry Workshop 1 st November 2013 Constant Terminal Voltage Industry Workshop 1 st November 2013 Covering; Reactive Power & Voltage Requirements for Synchronous Generators and how the requirements are delivered Other countries - A different

Læs mere

Unitel EDI MT940 June 2010. Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004)

Unitel EDI MT940 June 2010. Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004) Unitel EDI MT940 June 2010 Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004) Contents 1. Introduction...3 2. General...3 3. Description of the MT940 message...3 3.1.

Læs mere

Implementation of the Building directive in Denmark. Contents. (from a layman in urban planning)

Implementation of the Building directive in Denmark. Contents. (from a layman in urban planning) Implementation of the Building directive in Denmark Contents (from a layman in urban planning) 3 Average temperature ( C) 4 Hours of sunshine FEMSEK the new secretariat for the Danish Schemes Background

Læs mere

Omstilling af det danske energisystem til 100% vedvarende energi Scenarieanalyser i CEESA-projektet

Omstilling af det danske energisystem til 100% vedvarende energi Scenarieanalyser i CEESA-projektet Omstilling af det danske energisystem til 100% vedvarende energi Scenarieanalyser i CEESA-projektet Mandag Morgens Klimakonference 26. februar 2013 Poul Alberg Østergaard / Brian Vad Mathiesen Aalborg

Læs mere

TOPWASTE. Affald og 100% vedvarende energi. Seniorforsker Marie Münster Energi system analyse, DTU MAN ENG, Risø 6/6 2013

TOPWASTE. Affald og 100% vedvarende energi. Seniorforsker Marie Münster Energi system analyse, DTU MAN ENG, Risø 6/6 2013 TOPWASTE Seniorforsker Marie Münster Energi system analyse, DTU MAN ENG, Risø 6/6 2013 Affald og 100% vedvarende energi Affaldsmængder forventes fortsat at stige og energiforbruget at falde => affald kan

Læs mere

Experiences of Region Zealand

Experiences of Region Zealand Bioenergy promotion Experiences of Region Zealand Tyge Kjær - tk@ruc.dk Roskilde University Denmark Introduction Solrod / Solrød Experience of Solrod Municipality Topic: General background - Opportunities

Læs mere

The Danish Energy System - Developments and Plans

The Danish Energy System - Developments and Plans Planlæg d præsenta Indledn scenen Indhold Afslutn eller pe The Danish Energy System - Developments and Plans Energie-Effizienz made in Denmark Ein Marktmodell als Beispiel für die Schweiz? Bern, 9 September

Læs mere

Developments and outlooks for biogas in Denmark. Danish-German Bioenergy: Technologies, Opportunities and Outlook March 15, 2016

Developments and outlooks for biogas in Denmark. Danish-German Bioenergy: Technologies, Opportunities and Outlook March 15, 2016 Developments and outlooks for biogas in Denmark Danish-German Bioenergy: Technologies, Opportunities and Outlook March 15, 2016 Agenda Brief overlook history and status Targets for biogas development in

Læs mere

PEMS RDE Workshop. AVL M.O.V.E Integrative Mobile Vehicle Evaluation

PEMS RDE Workshop. AVL M.O.V.E Integrative Mobile Vehicle Evaluation PEMS RDE Workshop AVL M.O.V.E Integrative Mobile Vehicle Evaluation NEW - M.O.V.E Mobile Testing Platform Key Requirements for Measuring Systems Robustness Shock / vibrations Change of environment Compact

Læs mere

Sustainable use of pesticides on Danish golf courses

Sustainable use of pesticides on Danish golf courses Indsæt nyt billede: Sustainable use of pesticides on Danish golf courses Anita Fjelsted - Danish EPA Ministry of the Environment 27 May 2015 - STERF The Danish Environmental Protection Agency 450 employees

Læs mere

TEKSTILER. i det nye affaldsdirektiv. - Kravene til, og mulighederne for, de danske aktører

TEKSTILER. i det nye affaldsdirektiv. - Kravene til, og mulighederne for, de danske aktører TEKSTILER i det nye affaldsdirektiv. - Kravene til, og mulighederne for, de danske aktører Artikel 3, stk. 2b definitionen af municipal waste Municipal waste means a) mixed waste and separately collected

Læs mere

CASE - Energy renovation of buildings and 4.th Generation of District Heating

CASE - Energy renovation of buildings and 4.th Generation of District Heating CASE - Energy renovation of buildings and 4.th Generation of District Heating Theodor Møller Moos MSc. Senior Project- and Market Manager, Energy Planning and District Heating 1 Albertslund Syd The district

Læs mere

Afgrænsning af miljøvurdering: hvordan får vi den rigtig? Chair: Lone Kørnøv MILJØVURDERINGSDAG 2012 Aalborg

Afgrænsning af miljøvurdering: hvordan får vi den rigtig? Chair: Lone Kørnøv MILJØVURDERINGSDAG 2012 Aalborg Afgrænsning af miljøvurdering: hvordan får vi den rigtig? Chair: Lone Kørnøv MILJØVURDERINGSDAG 2012 Aalborg Program Intro om Systemafgrænsning og brug af LCA med fokus på kobling mellem arealindtag og

Læs mere

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US Generalized Probit Model in Design of Dose Finding Experiments Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US Outline Motivation Generalized probit model Utility function Locally optimal designs

Læs mere

New Nordic Food 2010-2014

New Nordic Food 2010-2014 New Nordic Food 2010-2014 Mads Randbøll Wolff Senior adviser Nordic Council of Ministers New Nordic Food The questions for today concerning New Nordic Food: - What is the goal for New Nordic Food? - How

Læs mere

l i n d a b presentation CMD 07 Business area Ventilation

l i n d a b presentation CMD 07 Business area Ventilation l i n d a b presentation CMD 07 Business area Ventilation 1 Ventilation Sales LTM June 4 097 MSEK EBIT LTM June 449 MSEK 11,0% Two Divisions ADS 85% Comfort 15% YTD June 07 % Sales +31 Nordic countries

Læs mere

Melbourne Mercer Global Pension Index

Melbourne Mercer Global Pension Index 15 October 2009 Melbourne Global Pension Index Dr David Knox www.mercer.com.au The Genesis Victorian Government wants to highlight the significant role that Melbourne plays in the pension and funds management

Læs mere

Hvordan kan brint reducere behovet for biomasse i fremtidens energisystem?

Hvordan kan brint reducere behovet for biomasse i fremtidens energisystem? Christiansborg 5. februar 2018 Hvordan kan brint reducere behovet for biomasse i fremtidens energisystem? Henrik Lund Professor i Energiplanlægning Aalborg Universitet IDA Energiplan 2030 Smart Energy

Læs mere

Kommune og Amts Revision Danmark Statsautoriseret Revisionsaktieselskab

Kommune og Amts Revision Danmark Statsautoriseret Revisionsaktieselskab Kommune og Amts Revision Danmark Statsautoriseret Revisionsaktieselskab RESULTATOPGØRELSE 1. JANUAR - 31. DECEMBER Note 23 Nettoomsætning Andre eksterne omkostninger Bruttoresultat 1 Afskrivninger Resultat

Læs mere

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov.

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov. På dansk/in Danish: Aarhus d. 10. januar 2013/ the 10 th of January 2013 Kære alle Chefer i MUS-regi! Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov. Og

Læs mere

BILAG 8.1.B TIL VEDTÆGTER FOR EXHIBIT 8.1.B TO THE ARTICLES OF ASSOCIATION FOR

BILAG 8.1.B TIL VEDTÆGTER FOR EXHIBIT 8.1.B TO THE ARTICLES OF ASSOCIATION FOR BILAG 8.1.B TIL VEDTÆGTER FOR ZEALAND PHARMA A/S EXHIBIT 8.1.B TO THE ARTICLES OF ASSOCIATION FOR ZEALAND PHARMA A/S INDHOLDSFORTEGNELSE/TABLE OF CONTENTS 1 FORMÅL... 3 1 PURPOSE... 3 2 TILDELING AF WARRANTS...

Læs mere

EU funding guide: Why and how to apply in Horizon 2020

EU funding guide: Why and how to apply in Horizon 2020 Horizon2020 (2014-2020): budget of just over 70 billion EU funding guide: Why and how to apply in Horizon 2020 Nikolaj Helm-Petersen nikhel@um.dk Innovation Centre Denmark Munich. Danish research attaché

Læs mere

Strategic Capital ApS has requested Danionics A/S to make the following announcement prior to the annual general meeting on 23 April 2013:

Strategic Capital ApS has requested Danionics A/S to make the following announcement prior to the annual general meeting on 23 April 2013: Copenhagen, 23 April 2013 Announcement No. 9/2013 Danionics A/S Dr. Tværgade 9, 1. DK 1302 Copenhagen K, Denmark Tel: +45 88 91 98 70 Fax: +45 88 91 98 01 E-mail: investor@danionics.dk Website: www.danionics.dk

Læs mere

100% vedvarende energi

100% vedvarende energi Energitopmøde 212 Udfordringer og muligheder i et fremtidigt grønt energisystem Hub North & FleksEnergi Aalborg Kongres og Kultur Center 28. Juni 212 Brian Vad Mathiesen Institut for Planlægning, Aalborg

Læs mere

From innovation to market

From innovation to market Nupark Accelerace From innovation to market Public money Accelerace VC Private Equity Stock market Available capital BA 2 What is Nupark Accelerace Hands-on investment and business developmentprograms

Læs mere

Economic policy in the EU. The Danish Case: Excessive Loyalty to Austerity Bent Gravesen

Economic policy in the EU. The Danish Case: Excessive Loyalty to Austerity Bent Gravesen Economic policy in the EU The Danish Case: Excessive Loyalty to Austerity Bent Gravesen begr@foa.dk Disposition Global crisis 2008 Danish version 2010ff Austerity - the Danish political consensus version

Læs mere

Elite sports stadium requirements - views from Danish municipalities

Elite sports stadium requirements - views from Danish municipalities Elite sports stadium requirements - views from Danish municipalities JENS ALM Ph.d. student Malmö University jens.alm@mah.se Analyst Danish Institute for Sports Studies jens.alm@idan.dk Background Definitions

Læs mere

Challenges for the Future Greater Helsinki - North-European Metropolis

Challenges for the Future Greater Helsinki - North-European Metropolis Challenges for the Future Greater Helsinki - North-European Metropolis Prof. Dr.-Ing. / M.A. soc. pol. HafenCity University Hamburg Personal introduction background: - urban and regional planning - political

Læs mere

Status of & Budget Presentation. December 11, 2018

Status of & Budget Presentation. December 11, 2018 Status of 2018-19 & 2019-20 Budget Presentation December 11, 2018 1 Challenges & Causes $5.2M+ Shortfall does not include potential future enrollment decline or K-3 Compliance. Data included in presentation

Læs mere

Handelsbanken. Lennart Francke, Head of Accounting and Control. UBS Annual Nordic Financial Service Conference August 25, 2005

Handelsbanken. Lennart Francke, Head of Accounting and Control. UBS Annual Nordic Financial Service Conference August 25, 2005 Handelsbanken Lennart Francke, Head of Accounting and Control UBS Annual Nordic Financial Service Conference August 25, 2005 UBS Annual Nordic Financial Service Conference Handelsbanken, first half-year

Læs mere

Brint og grønne brændstoffers rolle i fremtidens smarte energi systemer

Brint og grønne brændstoffers rolle i fremtidens smarte energi systemer SerEnergy, Lyngvej 3, 9000 Aalborg 18. april 2018 Brint og grønne brændstoffers rolle i fremtidens smarte energi systemer Henrik Lund Professor i Energiplanlægning Aalborg Universitet Den langsigtede målsætning

Læs mere

PlanEnergi. Independent consultant Established in 1983 Specialised in:

PlanEnergi. Independent consultant Established in 1983 Specialised in: PlanEnergi Independent consultant Established in 1983 Specialised in: - renewable energy - rational use of energy and energy sawing - energy planning - ecological techniques Region 21 The route to CO2-reduction

Læs mere

Privat-, statslig- eller regional institution m.v. Andet Added Bekaempelsesudfoerende: string No Label: Bekæmpelsesudførende

Privat-, statslig- eller regional institution m.v. Andet Added Bekaempelsesudfoerende: string No Label: Bekæmpelsesudførende Changes for Rottedatabasen Web Service The coming version of Rottedatabasen Web Service will have several changes some of them breaking for the exposed methods. These changes and the business logic behind

Læs mere

Financing and procurement models for light rails in a new financial landscape

Financing and procurement models for light rails in a new financial landscape Financing and procurement models for light rails in a new financial landscape Jens Hoeck, Partner, Capital Markets Services 8 November 2011 Content 1. Why a need for rethinking 2. Criteria for a rethought

Læs mere

Bilag. Resume. Side 1 af 12

Bilag. Resume. Side 1 af 12 Bilag Resume I denne opgave, lægges der fokus på unge og ensomhed gennem sociale medier. Vi har i denne opgave valgt at benytte Facebook som det sociale medie vi ligger fokus på, da det er det største

Læs mere

Fjerde Generation Fjernvarme

Fjerde Generation Fjernvarme Dansk Fjernvarmes 56. landsmøde Aalborg Kongres & Kultur Center, 30-31. oktober 2014 Fremtidens fjernvarmesystem Fjerde Generation Fjernvarme Professor Henrik Lund, Aalborg Universitet 4DH Forskningscenter

Læs mere

Semco Maritime - Vækst under vanskelige vilkår. Offshoredag 2009 Vice President Hans-Peter Jørgensen

Semco Maritime - Vækst under vanskelige vilkår. Offshoredag 2009 Vice President Hans-Peter Jørgensen Semco Maritime - Vækst under vanskelige vilkår Offshoredag 2009 Vice President Hans-Peter Jørgensen Agenda Semco Maritime forretningen Vækst via internationalisering Fremtidig vækststrategi Konsekvenser

Læs mere

Sport for the elderly

Sport for the elderly Sport for the elderly - Teenagers of the future Play the Game 2013 Aarhus, 29 October 2013 Ditte Toft Danish Institute for Sports Studies +45 3266 1037 ditte.toft@idan.dk A growing group in the population

Læs mere

Userguide. NN Markedsdata. for. Microsoft Dynamics CRM 2011. v. 1.0

Userguide. NN Markedsdata. for. Microsoft Dynamics CRM 2011. v. 1.0 Userguide NN Markedsdata for Microsoft Dynamics CRM 2011 v. 1.0 NN Markedsdata www. Introduction Navne & Numre Web Services for Microsoft Dynamics CRM hereafter termed NN-DynCRM enable integration to Microsoft

Læs mere

Anvendelse af biomasse i scenarier for 100% vedvarende energi

Anvendelse af biomasse i scenarier for 100% vedvarende energi 15-12-211 Anvendelse af biomasse i scenarier for 1% vedvarende energi Osramhuset, København 8. december, 211 Lektor Brian Vad Mathiesen Institut for Planlægning, Aalborg Universitet people.plan.aau.dk/~bvm/

Læs mere

applies equally to HRT and tibolone this should be made clear by replacing HRT with HRT or tibolone in the tibolone SmPC.

applies equally to HRT and tibolone this should be made clear by replacing HRT with HRT or tibolone in the tibolone SmPC. Annex I English wording to be implemented SmPC The texts of the 3 rd revision of the Core SPC for HRT products, as published on the CMD(h) website, should be included in the SmPC. Where a statement in

Læs mere

KALK- OG TEGLVÆRKSFORENINGEN. CPR Sustainable Construction

KALK- OG TEGLVÆRKSFORENINGEN. CPR Sustainable Construction CPR Sustainable Construction 1 Tommy Bisgaard - Direktør i Kalk- og Teglværksforeningen - Formand for DS 417 (CEN TC350 & 351) - Formand for miljøkomiteen i TBE & CU (keramiske industrier i Europa) - Medlem

Læs mere

Design til digitale kommunikationsplatforme-f2013

Design til digitale kommunikationsplatforme-f2013 E-travellbook Design til digitale kommunikationsplatforme-f2013 ITU 22.05.2013 Dreamers Lana Grunwald - svetlana.grunwald@gmail.com Iya Murash-Millo - iyam@itu.dk Hiwa Mansurbeg - hiwm@itu.dk Jørgen K.

Læs mere

STRABAG SE Q results 31 May 2010

STRABAG SE Q results 31 May 2010 STRABAG SE Q1 2010 results 31 May 2010 Record order backlog, harsh winter Output volume ( m) 1,837-16.1% 2,190 13,021 Output volume / Revenue Harsh winter conditions and finalised projects in the Middle

Læs mere

Interim report. 24 October 2008

Interim report. 24 October 2008 Interim report 24 October 2008 2 2008 Key figures July-September 2008 Net sales were SEK 3,690 m (3,748) Organic growth was 1% Operating profit (EBIT) declined by 32% to SEK 186 m (272). Negative currency

Læs mere

Traffic Safety In Public Transport

Traffic Safety In Public Transport Traffic Safety In Public Transport 13 October 2014 Arriva Denmark 2 Arriva Denmark Arriva has been part of public transport in Denmark since 1997 Arriva Denmark provides passenger transport by bus, train

Læs mere

H2020 DiscardLess ( ) Lessons learnt. Chefkonsulent, seniorrådgiver Erling P. Larsen, DTU Aqua, Denmark,

H2020 DiscardLess ( ) Lessons learnt.   Chefkonsulent, seniorrådgiver Erling P. Larsen, DTU Aqua, Denmark, H2020 DiscardLess (2015-2019) Lessons learnt www.discardless.eu Chefkonsulent, seniorrådgiver Erling P. Larsen, DTU Aqua, Denmark, Fra ændrede fiskeredskaber til cost-benefit analyser Endnu et skifte i

Læs mere

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September 2005. Casebaseret eksamen. www.jysk.dk og www.jysk.com.

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September 2005. Casebaseret eksamen. www.jysk.dk og www.jysk.com. 052430_EngelskC 08/09/05 13:29 Side 1 De Merkantile Erhvervsuddannelser September 2005 Side 1 af 4 sider Casebaseret eksamen Engelsk Niveau C www.jysk.dk og www.jysk.com Indhold: Opgave 1 Presentation

Læs mere

Waste and District Heating Aarhus

Waste and District Heating Aarhus Waste and District Heating Aarhus x Waste and District Heating Waste and District Heating Aarhus Staff Department of Climate Action Waste WasteCenter District heating A tariff financed company Politically

Læs mere

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen.  og 052431_EngelskD 08/09/05 13:29 Side 1 De Merkantile Erhvervsuddannelser September 2005 Side 1 af 4 sider Casebaseret eksamen Engelsk Niveau D www.jysk.dk og www.jysk.com Indhold: Opgave 1 Presentation

Læs mere

Can renewables meet the energy demand in heavy industries?

Can renewables meet the energy demand in heavy industries? Sune Thorvildsen Can renewables meet the energy demand in heavy industries? Senior Advisor Sune Thorvildsen DI Energy Confederation of Danish Industry 2 Strong sector associations 3 4 5 Top 10 Receiving

Læs mere

Carbon Capture and Storage (CCS) renewable energy systems and economy

Carbon Capture and Storage (CCS) renewable energy systems and economy Carbon Capture and Storage (CCS) renewable energy systems and economy Klimaforum9 DGI-Byen December 14, 29 Assistant Professor, PhD, Brian Vad Mathiesen Department of Development and Planning, Aalborg

Læs mere

Susan Svec of Susan s Soaps. Visit Her At:

Susan Svec of Susan s Soaps. Visit Her At: Susan Svec of Susan s Soaps Visit Her At: www.susansoaps.com Background Based on All-Natural Soap and Other Products Started Due to Experience with Eczema Common Beginning Transition to Business Started

Læs mere

BALANCERING AF FJERNVARME FOR ØGET OPTAG AF LAVTEMPERATUR OVERSKUDSVARME

BALANCERING AF FJERNVARME FOR ØGET OPTAG AF LAVTEMPERATUR OVERSKUDSVARME BALANCERING AF FJERNVARME FOR ØGET OPTAG AF LAVTEMPERATUR OVERSKUDSVARME eksempel på samarbejde mellem Viborg Varme, Aalborg Universitet/DTU, PlanEnergi og Niras 1 AGENDA Viborg Fjernvarme grundlaget Samarbejdet

Læs mere

Mandara. PebbleCreek. Tradition Series. 1,884 sq. ft robson.com. Exterior Design A. Exterior Design B.

Mandara. PebbleCreek. Tradition Series. 1,884 sq. ft robson.com. Exterior Design A. Exterior Design B. Mandara 1,884 sq. ft. Tradition Series Exterior Design A Exterior Design B Exterior Design C Exterior Design D 623.935.6700 robson.com Tradition OPTIONS Series Exterior Design A w/opt. Golf Cart Garage

Læs mere

Appendix 1: Interview guide Maria og Kristian Lundgaard-Karlshøj, Ausumgaard

Appendix 1: Interview guide Maria og Kristian Lundgaard-Karlshøj, Ausumgaard Appendix 1: Interview guide Maria og Kristian Lundgaard-Karlshøj, Ausumgaard Fortæl om Ausumgaard s historie Der er hele tiden snak om værdier, men hvad er det for nogle værdier? uddyb forklar definer

Læs mere

SiteCover Supplying fair weather for the construct ionindust ry

SiteCover Supplying fair weather for the construct ionindust ry SiteCover Supplying fair weather for the construct ionindust ry SiteCover Præsentation Erfaring med at rejse kapital Lessons learned SiteCover Supplying fair weather for the construct ionindust ry When

Læs mere

Trolling Master Bornholm 2012

Trolling Master Bornholm 2012 Trolling Master Bornholm 1 (English version further down) Tak for denne gang Det var en fornøjelse især jo også fordi vejret var med os. Så heldig har vi aldrig været før. Vi skal evaluere 1, og I må meget

Læs mere

BioConcens: Biogas Socio-economy

BioConcens: Biogas Socio-economy NaturErhvervstyrelsen Seminar 31.10.2011 København BioConcens: Biogas Socio-economy Biomass and bioenergy production in organic agriculture consequences for soil fertility, environment, spread of animal

Læs mere

House of Energy Energilagring. Sammentænkning af energisystemerne - Hvad kan gassen byde på? Thea Larsen, adm. direktør

House of Energy Energilagring. Sammentænkning af energisystemerne - Hvad kan gassen byde på? Thea Larsen, adm. direktør House of Energy 2016 - Energilagring Sammentænkning af energisystemerne - Hvad kan gassen byde på? Thea Larsen, adm. direktør 1 Problemstilling(er) i energisystemet 20xx Energi, der kommer fra sol og vind

Læs mere

Burmeister & Wain Energy A/S

Burmeister & Wain Energy A/S Burmeister & Wain Energy A/S Your partner for steam power by Hans Peder Svensgaard Product Sales Manager The Danish Fuel history 50ties Lignite and Peat (lower grades of coal) Oil 60ties 70ties 80ties

Læs mere

Improving data services by creating a question database. Nanna Floor Clausen Danish Data Archives

Improving data services by creating a question database. Nanna Floor Clausen Danish Data Archives Improving data services by creating a question database Nanna Floor Clausen Danish Data Archives Background Pressure on the students Decrease in response rates The users want more Why a question database?

Læs mere

TMS programmet på energi 2008/9

TMS programmet på energi 2008/9 TMS programmet på energi 2008/9 TMS (Teknologi, Menneske, Samfund) forløbet skal give de studerende kundskaber og værktøjer til at vurdere tekniske løsninger i et bredere, samfundsmæssigt perspektiv. Klimakrise

Læs mere

Dumped ammunition - an environmental problem for sediment management?

Dumped ammunition - an environmental problem for sediment management? 5th International SedNet Conference, 27th-29th May 2008, Oslo, Norway Dumped ammunition - an environmental problem for sediment management? Jens Laugesen, Det Norske Veritas Harald Bjørnstad, Forsvarsbygg

Læs mere

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen The X Factor Målgruppe 7-10 klasse & ungdomsuddannelser Engelskundervisningen Læringsmål Eleven kan give sammenhængende fremstillinger på basis af indhentede informationer Eleven har viden om at søge og

Læs mere

Molio specifications, development and challenges. ICIS DA 2019 Portland, Kim Streuli, Molio,

Molio specifications, development and challenges. ICIS DA 2019 Portland, Kim Streuli, Molio, Molio specifications, development and challenges ICIS DA 2019 Portland, Kim Streuli, Molio, 2019-06-04 Introduction The current structure is challenged by different factors. These are for example : Complex

Læs mere

Fremtidsbilleder i energisektoren

Fremtidsbilleder i energisektoren Fremtidsbilleder i energisektoren Af Villy Søgaard Lektor Institut for Miljø-og Erhvervsøkonomi Det er svært at spå Men nødvendigt at forsøge Og vigtigt at vide, hvordan vi gør det - for fremtiden afhænger

Læs mere

Gusset Plate Connections in Tension

Gusset Plate Connections in Tension Gusset Plate Connections in Tension Jakob Schmidt Olsen BSc Thesis Department of Civil Engineering 2014 DTU Civil Engineering June 2014 i Preface This project is a BSc project credited 20 ECTS points written

Læs mere

SKEMA TIL AFRAPPORTERING EVALUERINGSRAPPORT

SKEMA TIL AFRAPPORTERING EVALUERINGSRAPPORT SKEMA TIL AFRAPPORTERING EVALUERINGSRAPPORT OBS! Excel-ark/oversigt over fagelementernes placering i A-, B- og C-kategorier skal vedlægges rapporten. - Følgende bedes udfyldt som del af den Offentliggjorte

Læs mere

Klimastrategi Københavns Lufthavne A/S

Klimastrategi Københavns Lufthavne A/S Klimastrategi Københavns Lufthavne A/S 1 2 CO 2 -udledning i Københavns Lufthavn Scope 3 Samlet CO 2 -udledning i 2018: 386.573 ton 93% Scope 3: Flyselskaber, handlere, forpagtere, lejere og tilbringertrafik

Læs mere

United Nations Secretariat Procurement Division

United Nations Secretariat Procurement Division United Nations Secretariat Procurement Division Vendor Registration Overview Higher Standards, Better Solutions The United Nations Global Marketplace (UNGM) Why Register? On-line registration Free of charge

Læs mere

Hvad bestemmer prisen på landbrugets produkter?

Hvad bestemmer prisen på landbrugets produkter? Hvad bestemmer prisen på landbrugets produkter? Den 1. november 2012 v. Niels Dengsø Jensen, bestyrelsesformand DLG 1 Kort om DLG Blandt Europas største landbrugsselskaber Lokaliseret i 25 lande Blandt

Læs mere

USERTEC USER PRACTICES, TECHNOLOGIES AND RESIDENTIAL ENERGY CONSUMPTION

USERTEC USER PRACTICES, TECHNOLOGIES AND RESIDENTIAL ENERGY CONSUMPTION USERTEC USER PRACTICES, TECHNOLOGIES AND RESIDENTIAL ENERGY CONSUMPTION P E R H E I S E L BERG I N S T I T U T F OR BYGGERI OG A N L Æ G BEREGNEDE OG FAKTISKE FORBRUG I BOLIGER Fra SBi rapport 2016:09

Læs mere

Experience. Knowledge. Business. Across media and regions.

Experience. Knowledge. Business. Across media and regions. Experience. Knowledge. Business. Across media and regions. 1 SPOT Music. Film. Interactive. Velkommen. Program. - Introduktion - Formål og muligheder - Målgruppen - Udfordringerne vi har identificeret

Læs mere

Analyseinstitut for Forskning

Analyseinstitut for Forskning Analyseinstitut for Forskning CIS3 The Danish Non-response Analysis Peter S. Mortensen Notat 2003/1 fra Analyseinstitut for Forskning The Danish Institute for Studies in Research and Research Policy Finlandsgade

Læs mere

Biogas og andre VE-gassers rolle i fremtidens energisystemer - carbon footprint konsekvenser. Henrik Wenzel, Syddansk Universitet

Biogas og andre VE-gassers rolle i fremtidens energisystemer - carbon footprint konsekvenser. Henrik Wenzel, Syddansk Universitet Biogas og andre VE-gassers rolle i fremtidens energisystemer - carbon footprint konsekvenser Henrik Wenzel, Syddansk Universitet Milepælene i dansk energipolitik Year Target Political status 2020 50 %

Læs mere

Øjnene, der ser. - sanseintegration eller ADHD. Professionshøjskolen UCC, Psykomotorikuddannelsen

Øjnene, der ser. - sanseintegration eller ADHD. Professionshøjskolen UCC, Psykomotorikuddannelsen Øjnene, der ser - sanseintegration eller ADHD Professionshøjskolen UCC, Psykomotorikuddannelsen Professionsbachelorprojekt i afspændingspædagogik og psykomotorik af: Anne Marie Thureby Horn Sfp o623 Vejleder:

Læs mere

Carbondebt(kulstofgæld) hvad er det og hvordan reduceres det?

Carbondebt(kulstofgæld) hvad er det og hvordan reduceres det? Carbondebt(kulstofgæld) hvad er det og hvordan reduceres det? Niclas Scott Bentsen Lektor, PhD Københavns Universitet Det Natur og Biovidenskabelige Fakultet Institut for Geovidenskab og Naturforvaltning

Læs mere

Bachelorprojekt. Forår 2013 DMD10

Bachelorprojekt. Forår 2013 DMD10 + Bachelorprojekt Forår 2013 DMD10 +! 1. Om at skrive bachelorprojekt! 2. Typer af bachelorprojekter! 3. To eksempler på DMD-projekter! 4. Overvejelser over samarbejdsformer, proces, sprog! 5. ITUs generelle

Læs mere

Climate adaptation in Denmarkand a groundwater dilemma

Climate adaptation in Denmarkand a groundwater dilemma Climate adaptation in Denmarkand a groundwater dilemma Rolf Johnsen www.regionmidtjylland.dk Challenges with water Denmark 10-40% Precipitation ½-1m Sea level change 5-15 % Increase in runoff 0-2 m Groundwater

Læs mere

Project Step 7. Behavioral modeling of a dual ported register set. 1/8/ L11 Project Step 5 Copyright Joanne DeGroat, ECE, OSU 1

Project Step 7. Behavioral modeling of a dual ported register set. 1/8/ L11 Project Step 5 Copyright Joanne DeGroat, ECE, OSU 1 Project Step 7 Behavioral modeling of a dual ported register set. Copyright 2006 - Joanne DeGroat, ECE, OSU 1 The register set Register set specifications 16 dual ported registers each with 16- bit words

Læs mere