Global attractor for the Navier Stokes equations with fractional deconvolution

Størrelse: px
Starte visningen fra side:

Download "Global attractor for the Navier Stokes equations with fractional deconvolution"

Transkript

1 Nonlinear Differ. Equ. Appl. 5), c 4 Springer Basel -97/5/48-38 published online December 5, 4 DOI.7/s y Nonlinear Differential Equations and Applications NoDEA Global attractor for the Navier Stokes equations with fractional deconvolution Davide Catania, Alessandro Morando and Paola Trebeschi Abstract. We consider a large eddy simulation model for the 3D Navier Stokes equations obtained through fractional deconvolution of generic order. The global well-posedness of such a problem is already known. We prove the existence of the global attractor for the solution operator and find estimates for its Hausdorff and fractal dimensions both in terms of the Grashoff number and in terms of the mean dissipation length, with particular attention to the dependence on the fractional and deconvolution parameters. These results can be interpreted as bounds for the number of degrees of freedom of long-time dynamics, thus providing further information on the validity of the model for the simulation of turbulent 3D flows. Mathematics Subject Classification. 76D5, 35Q3, 76F65, 76D3. Keywords. Navier Stokes equations, Global attractor, Fractal and Hausdorff dimension, Approximate deconvolution models ADM) and methods, Fractional filter, Large eddy simulation LES).. Introduction We consider an approximate model for the Navier Stokes Equations for a homogeneous incompressible fluid, that read t u + u u) νδu + π = f, u =, u, ) =u, in [,T] D, where D is a three-space dimensional periodic domain under suitable conditions that we are going to make precise. We assume that the constant ν, called kinematic viscosity, is positive.

2 8 D. Catania, A. Morando and P. Trebeschi NoDEA It is well-known that, currently, we lack a good well-posedness theory for these equations is lacking, so that this system is not suited for numerical simulations. Moreover, the simulation of turbulent pointwise flows is prohibitively expensive and sensitive to small perturbations of the data, i.e. the pointwise flow is chaotic. Large eddy simulation may overcome these difficulties see the introductions in [, 6]). Instead of pointwise flows, averaged deterministic flows are considered, and systems satisfied by averages are studied. More precisely, some approximations are introduced in order to mitigate the nonlinearity and obtain well-posedness and the possibility to perform simulations. In particular, we are interested in fractional approximate deconvolution models ADM), introduced by Stolz Adams in [8]. We introduce the fractional filter, denoted by, setting A = I + α Δ), v = A v ) with periodic conditions in x), where α>and [, ] are fixed. Let us note that the filter is linear and commutes with differentiation. It is a generalization of the Helmholtz filter, which corresponds to the choice =, and it is known to produce excellent results in numerical simulations, at least for large Reynolds numbers and suitable geometries see [5] and the references therein). Filtering the equations for u, we obtain t u + u u) νδu + π = f, u =, u, ) =u. Set w = u and q = π, so that u = A w. We solve the so-called interior closure problem by the approximation u u D N, u D N, u = D N, w D N, w, where we have used the fractional deconvolution operator N ) D N, w := I A h w, ) h= defined for every integer N and any real [, ]. We finally deduce the fractional ADM t w + D N, w D N, w ) νδw + q = f, 3) w =, 4) w, ) =u. 5) This model has been introduced by Berselli Lewandowski [4], where global well-posedness for >3/4and convergence results are proved see Sect.. for the existence). This result has been generalized by Ali [] to the case of magnetohydrodynamics requiring only /. When the deconvolution order is, i.e. N =, and the power is nonfractional, i.e., we obtain the model introduced by Layton Lewandowski [3] and studied by Cao Lunasin Titi [5], who prove the existence of global solutions

3 Vol. 5) Global attractor for the Navier 83 and of the global attractor see Sect. 4) for the solution operator, providing also estimates of its fractal and Hausdorff dimensions. These notions are useful in order to test the validity of the model as a large eddy simulation model. Actually, the dimension of the global attractor can be interpreted as the number of degrees of freedom of the long-time dynamics of the system. In this paper, we are interested in extending such results to the fractional deconvolution model 3) 5), with particular concern to the dependence on the fractional power. First, we prove the existence of the global attractor associated to the semigroup generated by the operator St) that associates to the initial datum u the corresponding solution of 3) 4) evaluated at time t see Sect..3 for the definition of the function space H σ). Theorem.. Assume that / and let St)) t be the semigroup in H σ associated to the initial value problem 3) 5) defined in 8), with datum f H. Then a unique global attractor A exists for such a semigroup in H σ. The proof of Theorem. is given in Sect. 4. Note that the existence of solutions to 3) 5) see Sect..) is known just for /, whose assumption in our result, for this reason, is not restrictive. The subsequent step consists in finding estimates for the attractor A. We resort to the trace formula and the standard technique described for instance in [, 9]. This approach requires that the operator St) isfréchet differentiable with respect to the initial datum. After proving this result see Sect. 5), we introduce a suitable version of the Grashoff number adapted to the model we are considering: G := L3/ A / N, f ν. 6) First, we prove an estimate for the global attractor dimension in terms of this number. Theorem.. If f H for /, ], the Hausdorff dimension d H A) and the fractal dimension d F A) of the global attractor A are bounded above by d H A) d F A) C C ν +μ L +μ) 3 5+3σ )s G 6+6μ 5+3σ )s, 7) where C is a numerical constant independent of the other parameters appearing in the right-hand side, C is defined in 7), σis defined in 94), while μ and s are defined in 73). The Grashoff number takes into account the effect of the forcing term f, so that the previous theorem establishes a relation between the global attractor dimension and f. Notice that, in view of the definition 94) ofσ, it is convenient to analyze the estimate 7) by considering separately two cases corresponding to the different ranges /, /3) and [/3, ] for. i) For /3 wehaveσ )s = ; then the bound in the right-hand side reduces to C C ν +μ L +μ) 3 5 G 6+6μ 5, 8)

4 84 D. Catania, A. Morando and P. Trebeschi NoDEA ) where μ = [cf. 77)]. In particular, for =wehaveμ =, hence the exponent of G in 8) reduces to 6/5 and we recover the already known estimate proved in [5] but now it holds for all N and not only for N = ). We also observe that, when <, the exponent worsens. ii) For / <</3 the result is worse with respect to the case i), not only because of the values of, but also since the exponent σ )s. Now, in order to understand more deeply the relation between the global attractor dimension and the number of degrees of freedom of the long-time dynamics, we introduce the mean rate of energy of the model) dissipation, defined by ε := L 3 sup T lim sup ν A / N, w A T + T wt) dt. Moreover, in analogy with Kolmogorov dissipation length in the classical theory of turbulence, we define the mean dissipation length for the model as ) ν 3 /4 l d :=, ε so that T sup lim sup ν A / N, w A T + T wt) dt = L3 ν 3 l 4. 9) d Theorem.3. If f H and /, ], the Hausdorff dimension d H A) and the fractal dimension d F A) of the global attractor A are bounded above by [ ) γ ) ] 6 6γ L L d H A) d F A) C N +) γ, α l d where C is a numerical constant independent of the other parameters appearing in the right-hand side, and γ is defined in 86). Considerations similar to those for Theorem. still hold. In particular, when =, we have again that γ = and the exponent of L/l d ) reduces to /5, exactly as in [5]. The mean dissipation length l d is defined to be the smallest length scale actively participating in the dynamics of the turbulent flow. This means that, when performing simulations, the size of every mesh can not be greater than l d and L/l d points for each space dimension) are needed and the number of degrees of freedom for a 3D turbulent flow is expected to be L/l d ) 3.The previous theorem shows the dependence of the number of degrees of freedom of the fractional deconvolution model with respect to and the other parameters. The effect of filtering is the reduction of this number for =,wehave/5, which is less than 3), and a reduced regularization <) increases the number of degrees of freedom. In particular, recalling the definition of γ 86), we can easily compute that = 3 holds for =9/. 6γ

5 Vol. 5) Global attractor for the Navier 85 Despite the use of standard techniques, the proofs are not trivial, since the presence of the deconvolution operator of generic order N and, above all, of the fractional power require a clever combination of several ad hoc estimates. When decreases, the regularization provided by the filter lessens, so that refined interpolation estimates are needed. Note that we do not compute the bound of the attractor dimension when =/; this is due to the fact that, in such a case, + =3/, and it is impossible to apply the fractional Agmon s inequality Lemma A.3) in order to estimate appropriately some L -norms by using 4). We are convinced that the theorems proved in this paper can be extended to other models, even for magnetofluids, generalizing the results concerning the global attractor in magnetohydrodynamics MHD), as in [7 9], to deconvolution and fractional deconvolution approximate MHD models, such as those in [, 3]. However, this would require several more computations, and it is postponed to future works. Outline of the paper Section is devoted to present the main notation, function spaces, the notion of regular weak solution, the properties of the filter and of the deconvolution operator. In Sect. 3 we prove some a priori estimates that will be used in the proofs of the main theorems. In Sect. 4 we recall some notions and properties concerning global attractors and prove Theorem.. Section 5 is devoted to the proof of the differentiability of the solution operator, while Sect. 6 contains all results concerning the bounds of the global attractor dimension, i.e. Theorems. and.3. Finally, the Appendix lists and proves some useful formulas and inequalities that play a crucial role in the proofs of the original results contained in this paper.. Preliminary results and basic tools.. Notation We set x =x,x,x 3 ), j = xj, Δ= + + 3, =,, 3 ). The space domain is T 3 = { x R 3 : πl<x,x,x 3 <πl}, L>, with πlperiodicity with respect to x i.e. with respect to x,x,x 3 ), i.e. a torus. We denote by L p and H s with p and s R) the standard Lebesgue and Sobolev spaces, and define C [,T]; X) and the Bochner spaces L p,t; X) in the usual way. We write H s for the Sobolev space of vector functions defined on T 3 with zero spatial mean and πlperiodicity in x, and set L = H. We denote by the subscript σ spaces of divergence-free classes of) functions, and we assume the domain T 3 when not specified. The symbol, ) is used to denote the standard scalar product in L. We will denote by C a generic positive constant, independent of the relevant parameters, which may differ at every occurrence, even in the same expression.

6 86 D. Catania, A. Morando and P. Trebeschi NoDEA.. Regular weak solutions Assume that f = fx) H 3/ is independent of time for simplicity), so that f H 3/,andu H σ, so that w := u H σ we may even require the stronger regularity u L σ, which is more natural for the unfiltered problem). We say that w :[, + ) T 3 R 3 is a regular weak solution of 3) 5) when, for all T>, the following properties are verified see also []). Regularity: w C [,T]; H σ) L,T; H + σ ), t w L,T; Hσ 3/ ), q L,T;H / ). Initial data: w, ) =w. Weak formulation: { w, t ϕ) ν w, ϕ)+d N, w D N, w, ϕ)+q ϕ } s)ds + = + f, ϕ)s)ds w), ϕ) ) for each ϕ C T 3 [,T)) ) 3. Theorem.. Assume /. Then there exists a unique regular weak solution of 3) 5). This solution depends continuously on the data the system is well-posed) and satisfies the energy of the model) identity for each t [, + ). A/ N, wt) + ν t = A/ N, w) + A / N, ws) ds t ) N, f,d/ N, ws) ds This result has been proved by Berselli Lewandowski [4] for > 3/4 and extended to / by Ali in [], where the equations are coupled with the equations for the magnetic field so the theorem above follows taking the magnetic field identically zero)..3. More on functional spaces Let L>begiven. Let T 3 be the torus defined as the compact quotient manifold, T 3 = R 3 /πlz 3. For general s R, we write H s for the Sobolev space of vector functions defined on T 3 with zero spatial mean, i.e. { } H s := w : T 3 R 3, w [H s T 3 )] 3, w dx = T 3, and set L = H.

7 Vol. 5) Global attractor for the Navier 87 We denote by the subscript σ spaces of divergence-free classes of) functions, i.e. { } H s σ := w : T 3 R 3, w [H s T 3 )] 3, w =, w dx =. T 3 Since we work with periodic boundary conditions we can describe the spaces that we use in terms of the Fourier series on the 3D torus T 3. A vector field w H s σ can be expanded in terms of Fourier series of πl-periodic functions) as wx) = ŵ k e i k x, k T 3 where the space of frequencies T3 is defined by setting T 3 := π πl Z3 = L Z3 and T3 := T 3 \{}, and the Fourier coefficients are given by ŵ k = πl) 3 wx)e i k x dx. T 3 We set k := k + k + k 3, and we introduce the H s norm by w s, = k s ŵ k, ) k T 3 for s =weset :=, ). The inner product associated with this norm is w, v) H s = ) k s ŵ k, v k, k T 3 where here v k denotes the complex conjugate of v k if v k =vk,v k,v3 k )we have v k =vk, v k, v3 k )) and, ) in the right-hand side of the above formula is the scalar product in C 3. Since we are looking for real vector valued functions, we have that the Fourier coefficients satisfy v k = v k, k T3. Therefore, the spaces H s can be rewritten as H s := wx) = ŵ k e i k x, ŵ k = ŵ k, w s, = k s ŵ k < +. k T 3 k T 3 We note that ŵ = πl) 3 T 3 wx) dx =sincew has zero mean.

8 88 D. Catania, A. Morando and P. Trebeschi NoDEA.4. Filter properties In this paper we will use the deconvolution operator D N,, defined by ) and studied in Sect..5, which is constructed by using A defined in ), i.e. the Helmholtz operator with fractional regularization. For real p the pseudo-differential operator A p is defined in the periodic case as A p w := +α k ) p ŵk e i k x. k T 3 Lemma.. i) For all p the operator A p, as a linear operator in L, is self-adjoint and commutes with differentiation. ii) The inverse operator A is continuous from H s to H s+ with the estimate A w s+, α w s,. iii) We have A / w = w + α Δ) / w, w H. ) Proof. For the proof of i) ii) we refer to []. Concerning iii), using that A / and Δ) / are self-adjoint, we get ) A / w = A / w,a / w =w,a w) = w, I + α Δ) )w ) = w + α ) Δ) / w, Δ) / w = w + α Δ) / w. Remark.3. Since the relevant cases and applications concern small values of α, fromnowon, weassume <α ; this makes some terms less cumbersome and does not limit the generality of the results. Remark.4. Formula ) implies the following equivalence of norms A / w w, α A/ w, w H. ) By the same reason we have also that A w w, α A w, w H. 3).5. The deconvolution operator We can express the pseudo-differential deconvolution operator in terms of the Fourier series. We have: D N, w = D N, k) ŵ k e i k x k T 3 where α D N, k) =+α k k ) N+ )ρ N,k, ρ N,k = +α k.

9 Vol. 5) Global attractor for the Navier 89 The following lemma is proved in []. Lemma.5. The symbol DN, k) of the operator D N, satisfies the following properties: D, k) =, D N, k) N +, 4) D N, k) Âk) := +α k ). The following lemma is given in [4] and []). Lemma.6. For all s and N>, the operator D N, : H s H s is self-adjoint; commutes with differentiation. Moreover, for all w sufficiently smooth we have w s, D N, w s, A / N, w s,. 5) Remark.7. In [] the above inequalities are formulated in terms of a suitable constant C. In fact, one can take C =, so we do not write C in the above inequalities. Lemma.8. For all p,s and N>, and for all w sufficiently smooth we have w s, D p N, w s, N +) p w s,. 6) Proof. We use the definition of the norm ) and 4) tohave w s, = k s ŵ k k s D p N, k) ŵ k k T 3 k T 3 N +) p k s ŵ k =N +) p w s,. k T 3 In the sequel we will make use of the following estimates which come from the estimates 5) and 6) as particular cases: D N, w A / N,w ; 7) A / D N, w N +) / A / N,w ; 8) A / D N, w N +) / A / N,w ; 9) A D N, w N +) / A N,w. ) In particular estimate 7) is estimate 5) with s =, while 8) ) come from 6) taking p =/ and replacing w by A / N,w, A/ N, w and A N, w respectively.

10 8 D. Catania, A. Morando and P. Trebeschi NoDEA 3. A priori estimates In this section, we collect suitable a priori estimates for the weak solution to the problem 3) 5), that will be used from Sect. 4 on to prove the existence of the global attractor. We set λ := L first eigenvalue for the Laplace operator Δ), Λ := Δ) / with domain H and periodic boundary conditions Λ is a positive self-adjoint operator in L ), Λ := Λ,and k := A / N, w), ) K := Λ A / N, f, ) ν k := k + K. 3) νλ Theorem 3.. If w is a regular weak solution of 3) 5), for arbitrary t,r > we have A / N, wt) k e νλt + K νλ e νλt ) k, 4) t+r t t Remark 3.. ν A / N, ws) ds rk + k, 5) e νλs/c ν A / N, ws) ds CK νλ + k, C> given. 6) i) From 4) we get that t A / N, wt) L, + ). Then, in view of ), we obtain that N, w L, + ; H σ) and, in view of Lemma.8 with p =/, we also deduce ii) From 5) we find that w L, + ; H σ). t A / N, wt) L loc, + ), which yields, in view of Lemma.8 and ), w L loc, + ; Hσ + ). Proof. To be rigorous, in order to prove the estimates one should pass through a sequence of Galerkin approximating solutions of 3) 5), then pass to the limit in the resulting estimates. In order to avoid overloading calculations, here, we derive the estimates by arguing directly, at a formal level, on the solution of the problem 3) 5). We refer to [] and [4] for a detailed discussion of the Galerkin approximation technique.

11 Vol. 5) Global attractor for the Navier 8 Let us prove 4). We test the Eq. 3) against A D N, w. Leibniz s rule and differentiation under the integral sign give ) t w,a D N, w)= t A / N, w,a/ N, w = d dt A/ N, wt). Since w =, by using 93) weget DN, w D N, w ),A D N, w ) = D N, w D N, w),d N, w)=; by using that the operators A /, N, are self-adjoint, we get ν Δw,A D N, w)= ν w),a D N, w)=ν w, A D N, w) ) = ν A / N,w, A/ N, w = ν A / N, w ; by using w = and integration by parts, we get moreover q, A D N, w)= q, A D N, w)) = ; f,a D N, w)=f,d N, w)= N, f,d/ N, w). Collecting the previous estimates we get d dt A/ N, wt) + ν A / N, wt) = N, f,d/ N, wt)). We estimate the right-hand side by Λ = Δ) / ) N, f,d/ N, w) = Λ A / N, f, ΛA/ N, w) Λ A / N, f ΛA/ N, w Λ A / N, f ν = { K + ν A / N, w } + ν ΛA/ N, w by Cauchy Schwarz inequality and definition of K. We notice that in the estimate above we used that Λw = w. We deduce d dt A/ N, w + ν A / N, wt) K 7) and, thanks to the Poincaré inequality, For every w we compute by Parseval s identity w = j w = i k j ŵ k = k j ŵ k = k ŵ k = Λw. j= j= k j= k k

12 8 D. Catania, A. Morando and P. Trebeschi NoDEA d dt A/ N, wt) + νλ A / an application of Gronwall s Lemma yields N, wt) K ; A / N, wt) k e νλt + K e νλt ) νλ which gives 4) and in particular A / N, wt) k, which implies see Remark 3.) w L, ; H σ). Let us prove now 5). Integrating 7) over[t, t + r] and neglecting A / N, wt + r) in the left-hand side, we get t+r t ν A / N, ws) ds rk + A / N, wt) and using 4) yields 5). Let us prove 6). Now, let us multiply 7)bye νλt/c > and integrate in time over the interval [,t]: t e νλs/c t d ds A/ N, ws) ds + t e νλs/c ν A / N, ws) dt K e νλs/c ds = CK e νλt/c) CK. νλ νλ Integrating by parts, the first integral in the left-hand side of the above inequality becomes [ e νλs/c A / N, ws) ] t + νλ t e νλs/c A / N, C ws) ds, hence we have e νλt/c A / N, wt) + νλ C + t t e νλs/c ν A / N, ws) ds e νλs/c A / N, ws) ds CK + k ; νλ neglecting the first two terms, which are positive quantities, provides 6). 4. Existence of the global attractor 4.. Some basic definitions To make the exposition self-contained, we recall below some basic concepts and results on invariant sets and attractors in dynamical systems that will be used later on.

13 Vol. 5) Global attractor for the Navier 83 Definition 4.. Let W, d) be a metric space. A semigroup on W, d) is a family of operators St)) t, St) :W W, such that i) S)w = w, for all w W ; ii) Ss)St)w = St + s)w for all w W and for every s, t. A semigroup St)) t is said to be continuous or a semiflow) if St) :W W is a continuous operator from W to itself, for every t. Definition 4.. Let St)) t be a semigroup on W, d). We say that the operators St) areuniformly compact for t large if for every bounded set B there exists t, which may depend on B, such that St)B t t is relatively compact in W. Definition 4.3. We say that A W is a global attractor for the semiflow if ) A is nonempty and compact; ) St)A = A for all t i.e. A is invariant); 3) for all bounded sets B W,wehave lim δ St)B,A) =, t + where δx, Y ):= supinf dx, y) is the Hausdorff semidistance between x X y Y the pair of sets X, Y W. In order to establish the existence of attractors, a useful concept is the related concept of absorbing set. Definition 4.4. Let B be a subset of W and U be an open set containing B. We say that B is absorbing in U if B U, B bounded, t B ) such that St)B B, t t. When U = W in the preceding definition, then we simply say that B is an absorbing set in W. Remark 4.5. Let us observe that a global attractor for a semigroup St)) t, if it exists, is necessarily unique and coincides with the omega-limit of an absorbing set. We remind that the omega-limit of a set B W is defined by ωb) := St)B. s t s The following theorem on the existence of the global attractor is proven in [9] seealso[7]). Theorem 4.6. Let W, d) be a metric space and St)) t a continuous semigroup on W, such that St) is uniformly compact for t large. Assume moreover that there exists a bounded absorbing set B W. Then there exists the unique)

14 84 D. Catania, A. Morando and P. Trebeschi NoDEA global attractor A for the semigroup St)) t, which is given by the omegalimit of the set B, i.e. A = ωb) = St)B. s t s 4.. Existence proof of Theorem.) In this section, the theoretical results collected above will be applied to the continuous semigroup St)) t on H σ defined by t, St) :H σ H σ w St)w := wt, ), 8) where w = wt, ) is the regular weak solution of the problem 3) 5) with initial data w. We notice that the continuity of the operators St) in8) directly follows from the definition of regular weak solution, see Sect... In order to prove the existence of the global attractor for the semigroup 8), as an application of Theorem 4.6, we need the following lemmas. Observe that, in this section, we provide the spaces H σ and H σ with the norms w H := A / N, w, w H := A N, w, which are respectively equivalent to the norms w, and w, [see Remark.4 and 6)]. Lemma 4.7. If / and B is a bounded subset of H σ, then there exists t = t B ) > such that, if w is a regular weak solution of 3) 5) with arbitrary initial datum w B, then A / N, wt) K, t t, 9) νλ where K is defined in ) and λ is the first eigenvalue of the Laplace operator Δ. In particular, we have lim sup A / N, wt) K =: r t + νλ. Notice that the constant r is independent of the initial datum. Proof. The estimate 9) follows at once from the estimate 4) by noticing that the right-hand side of the latter estimate gt) :=k e νλt + K e νλt ) R e νλt + K e νλt ) νλ νλ tends to K νλ as t +, where R =sup w B A / N, w ; thus there exists t > such that gt) K νλ for t t. Remark 4.8. As a consequence of Lemma 4.7, see also 5), we obtain that the ball B = B ; r ):= { } w H σ : A / N, w r 3)

15 Vol. 5) Global attractor for the Navier 85 is a bounded absorbing set in H σ; indeed by Lemma 4.7 we get that for every bounded set B H σ we have St)B B, t t, being t > the time given in Lemma 4.7. Lemma 4.9. Assume that f H, / and let B be a bounded subset of H σ.thereexistr = r ν, N,, K,λ ) > andatimet = t B ) >t such that, if w is the regular weak solution of 3) 5) with arbitrary initial datum w B, then A N, wt) r, t t. 3) In particular, we have lim sup A N, wt) r. t + Proof. We use A D N,w as test function for the Eq. 3) now formally, but the procedure actually goes through the Galerkin approximation). Thus, testing the Eq. 3) against A D N,w, and arguing as in the proof of Theorem 3. we get t w,a D N, w ) = ) t A N, w,a N, w = d dt A N, w ; DN, w D N, w ),A D N, w ) = D N, w D N, w),a D N, w); using that Δ =Λ and w = ν Δw,A D N, w ) = ν Λ w,a D N, w ) ) = ν ΛA N, w, ΛA N, w = ν ΛA N, w = ν A N, w ; q, A D N, w ) = q, A D N, w) ) =. Finally, we observe that f,a D N, w ) =f,a D N, w) ) ) = N, f,a N, w = Λ N, f, ΛA N, w Λ N, f ΛA N, w = Λ N, f A N, w Λ N, f + ν ν 4 A N, w. Collecting the previous inequalities we get d dt A N, w + ν A N, w ) = N, f,a N, w D N, w D N, w),a D N, w) 3) Λ N, f + ν ν 4 A N, w + D N, w D N, w),a D N, w).

16 86 D. Catania, A. Morando and P. Trebeschi NoDEA Now we are going to make an estimate of the nonlinear term D N, w D N, w),a D N, w) in the right-hand side of the above inequality. We firstly make use of the formula 9) recall that w = ) and Hölder s inequality to get D N, w D N, w),a D N, w) = D N, w ) D N, w,a D N, w) D N, w L 3 D N, w L 3 A D N, w L 3. Now we estimate each of the L 3 -factors appearing in the right-hand side of the inequality above as follows. The estimate of D N, w L 3. We apply 95) to the function u = D N, w to get D N, w L 3 C A / D N, w a D N, w a. 33) The estimate of D N, w L 3. We apply 96) to the function u = D N, w to get D N, w L 3 C A D N, w b A / D N, w b. 34) The estimate of A D N, w L 3. We apply 97) to the function u = D N, w to get A D N, w L 3 C A D N, w c A / D N, w c. 35) The exponents a, b, c involved in the estimates 33) 35) above are those calculated in 99). Using 33) 35), we get D N, w D N, w),a D N, w) C A / D N, w a D N, w a A D N, w b A / D N, w b A D N, w c A / D N, w c = C D N, w a A / D N, w b c+a A D N, w b+c. 36). We estimate the factor involving D N, w by using 7) toget D N, w a A / N, w a. 37). We estimate the factor involving A / D N, w by using 8) toget A / D N, w b c+a N +) b c+a A / N, w b c+a. 38) 3. Finally, we estimate the factor involving A D N, w by using ) toget From 36) 39) we get A D N, w b+c N +) b+c A N, w b+c. 39)

17 Vol. 5) Global attractor for the Navier 87 D N, w D N, w),a D N, w) CN +) + a / A N, w 3 b c A N, w b+c ν 4 A N, w + C ν N a b+c +)+ )p A / p N, w 3 b c)p = ν 4 A N, w + C N +) + ν 4 ) + / A N, w 3+, 4) where Young s inequality has been used with p = b+c = + and p = b c = + is the conjugate exponent of p [note that p>, as b + c< thanks to )] and where we have computed [see 99)] b + c p = +, a ) p = + ) +, 3 b c)p =3+ 4. Coming back to 3) and using 4) to estimate the nonlinear term in the right-hand side, we obtain d dt A N, w + ν A N, w Λ N, f + ν ν A N, w + C N +) + ν 4 ) + / A N, w 3+. Absorbing on the left the term ν A N, w appearing in the right-hand side of the estimate above, estimating A / N, w 3+/ by 9) we then get d dt A N, w + ν A N, w Λ N, f + C ) N +) + ν ν 4 ) + K 3+ ) =: K, t t. νλ 4) Finally, using Poincaré s inequality λ A N, w A N, w we get d dt A N, w + νλ A N, w K, t t. 4) Then setting yt) := A N, wt),4) becomes y t)+νλ yt) K, t t. 43) Multiplying 43) bye νλt then gives d dt e νλ t yt) ) =e νλt y t)+νλ e νλt yt) K e νλt, t t, hence integrating in time over t,t) for an arbitrary t>t ) yt) e νλt t ) yt )+ K νλ e νλt t ), t t. 44)

18 88 D. Catania, A. Morando and P. Trebeschi NoDEA Let us observe that the value K introduced in 4) does not depend on the initial data in 5). Since the right-hand side of 44) tends to K νλ as t +, one can find a time t >t such that A N, wt) = yt) K νλ, t t. inde- This just provides an estimate of type 3), where we take r := K νλ pendent of the initial data). This ends the proof. Remark 4.. The result of Lemma 4.9 [see estimate 3)] tells that, as long as /, a regular weak solution w to problem 3) 5) with arbitrary initial datum w H σ gains some additional regularity, definitely in time, with respect to the one originally required at the beginning of Sect..: from the time t > on, the solution w belongs to H σ pointwise in time. Notice that, as a direct consequence of the definition of regular weak solution, we only deduce that w L loc, + ; H σ ) observing that + as long as ). Let us denote by B the ball in H B = B ; r ):= σ : { } w H σ : A N, w r. As a consequence of Lemma 4.9, see also the norm equivalence in 3) and 6) with p =/), we deduce that for every bounded set B H σ t t St)B B, being t = t B) > the time given in Lemma 4.9. Since H σ is compactly imbedded in H σ, the ball B is a relatively compact subset of H σ. Hence for every bounded set B H σ St)B t t is a relatively compact subset of H σ, which means, according to Definition 4., that the operators St) are uniformly compact for large t. In view of the results collected in the previous Lemmas 4.7, 4.9, and the Remarks 4.8, 4., we may conclude that the semigroup St)) t of operators defined in 8) enjoys all the assumptions required in Theorem 4.6. Hence applying the result of that theorem, we deduce that a unique global attractor A exists and is given by the omega-limit of the absorbing ball B in 3), namely We have thus proved Theorem.. A = ωb ).

19 Vol. 5) Global attractor for the Navier Differentiability In this section we study the differentiability of the semigroup St) :H σ H σ, given by St)w = wt, ) [see8)], with respect to the initial datum w.the reason is that, in the subsequent section, we will investigate the Hausdorff and fractal dimensions of the global attractor A: the differentiability of the semigroup St) is a sufficient condition in order to prove that the Hausdorff dimension of the attractor A is finite and to find an appropriate estimate of its value see [9, Theorem 3.]). Consider the following systems of equations: t w νδw + q = f D N, w D N, w, w =, w) = w ; t v νδv + q = f D N, v D N, v, v =, v) = v ; 45) t W νδw + Q = D N, W ) D N, w D N, w ) D N, W W =, W ) = w v, and set η := w v W. In order to prove the Fréchet differentiability with respect to the initial datum of St) :H σ H σ,itissufficienttoprovethat for each t [,T). A / N, ηt) C A/ N, w v ) 46) Lemma 5.. Assume /. Given T > and defined V := w v, there exists C = CT,N,,K ) > such that A / N, V t) + ν for each t [,T). t Proof. The equations satisfied by V are A / N, V s) ds C A / N, V ) t V νδv + q q )=D N, v ) D N, v D N, w ) D N, w = D N, V ) D N, V D N, V ) D N, w D N, w ) D N, V 47) V =, V ) = w v. Testing 47) bya D N, V and, recalling that u )V, V ) = provided that u =, we obtain [see formula 9) in Lemma A.] d dt A/ N, V + ν A / N, V = D N, V ) D N, w,d N, V ) =D N, V ) D N, V,D N, w). 48) We estimate D N, V ) D N, V,D N, w) C D N, V L 3 D N, V L 3 D N, w L 3. 49)

20 83 D. Catania, A. Morando and P. Trebeschi NoDEA We estimate the L 3 -norms in 49) by using the inequality 95) toget,for a =, D N, V ) D N, V,D N, w) D N, V a A / D N, V a D N, V a A / D N, V a D N, w a A / D N, w a. To bound the factors involving the norms D N, w, D N, V and D N, V in the right-hand side above, we apply the estimate 7) respectively to w, V and V ; to bound the factors involving the norms A / D N, w, A / D N, V and A / D N, V, we apply the estimates 8) and 9) to w and V. Thus, from Young s inequality, we obtain D N, V ) D N, V,D N, w) CN +) 3 a A / N, V A/ N, V A/ N, w ν A/ N, V + C ν N +)3a A / N, w A / N, V. 5) Coming back to 48) and using 5) weget d dt A/ N, V + ν A / N, V ν A/ N, V + C ν N +)3a A / N, w A / N, V. Absorbing in the left-hand side the term ν A/ N, V we find d dt A/ N, V + ν A/ N, V C ν N +)3a A / N, w A / N, V C ν N +)3a A / N, V, 5) where we have used Theorem 3., see 4) in order to bound A / N, w with a suitable constant C. We neglect in the left-hand side the term ν A/ N, V andweapply Gronwall s Lemma to obtain, for all t [,T), A / N, V t) A / N, V ) e t C ν N+)3a ds A / N, V ) e CT. 5)

21 Vol. 5) Global attractor for the Navier 83 Coming back to 5) and integrating in time over,t) and using again 5), we get A / N, V t) + ν A / t A / N, V s) ds N, V ) + C ν N +)3a t A / N, V s) ds A / N, V ) + C ν N +)3a e CT A / N, V ) T = C A / N, V ), where C =+ CT ν N +)3a e CT. We are going to prove the announced estimate 46). Lemma 5.. Assume /. There exists a constant C = C T,N,,K ) > such that, for each t [,T) A / N, ηt) C A / N, w v ). Proof. The equations satisfied by η are t η νδη + Q = D N, V ) D N, V D N, η ) D N, w D N, w ) D N, η 53) η =, η) =, for a suitable Q depending on q, q and Q in the Eq. 45). Testing 53) bya D N, η and recalling that D N, w ) D N, η,d N, η) = since w =, we obtain d dt A/ N, η + ν A / N, η =D N, V ) D N, V,D N, η) D N, η ) D N, w,d N, η) = I + II. 54) Let us firstly estimate II. Observing that from Lemma A. II =D N, η ) D N, η,d N, w), we apply the same arguments used to provide the estimate 5), to get II ν A/ N, η + C ν N +)3a A / N, w A / N, η, 55) where a is the same value involved by the Gagliardo Nirenberg inequality 95).

22 83 D. Catania, A. Morando and P. Trebeschi NoDEA As regards to I, we use once again Hölder s inequality, the estimates 95), 7), 8) and Young s inequality to get I D N, V L 3 D N, V L 3 D N, η L 3 D N, V a A / D N, V a D N, V a A / D N, V a D N, η a A / D N, η a CN +) 3 a A / N, V A/ N, V A/ N, η Cν A / N, V A / N, V + C ν N +)3a A / N, η. 56) Coming back to 54), using 55) and 56), we get d dt A/ N, η + ν A / N, η ν A/ N, η + C ν N +)3a A / N, w A / N, η +Cν A / N, V A / N, V + C ν N +)3a A / = ν A/ N, η + C ν N +)3a A / N, w + +Cν A / N, V A / N, V ν A/ N, η + C ν N +)3a A / N, η ) N, η A / N, η / + Cν A N, V ) A / N, V, 57) where we have used Theorem 3.; see 4) in order to bound A / N, w with a suitable constant C and Lemma 5. to bound A / N, V with C A / N, V ). Absorbing ν A/ N, η in the left-hand side of 57) weget d dt A/ N, η + ν A/ N, η C ν N +)3a A / N, η / + Cν A N, V ) A / N, V. 58) Neglecting ν A/ N, η in the left-hand side of 58) and integrating in time over,t) recall that η) = ) weget A / N, ηt) C ν N +)3a t / + C A N, V ) ν C N t t A / N, ηs) ds A / N, V s) ds A / N, ηs) ds + C A / N, V ) 4, with C N := C ν N +)3a and in view of Lemma 5..

23 Vol. 5) Global attractor for the Navier 833 Applying then Gronwall s lemma to the last inequality we get for t [,T) A / N, ηt) C A / N, V ) 4 e CN t C A / N, V ) 4, where C := C e CN T. This ends the proof. 6. Estimate for the global attractor dimension First, we linearize Eq. 3), projected onto the space of divergence free functions, about a solution w. The linear equation satisfied by a perturbation δw is ) ) t δw + D N, w D N, δw + D N, δw D N, w νδδw =, that is to say where d δw + T t)δw =, 59) dt ) ) T t) = νδ+ D N, w ) + ) D N, w. 6) If δw j,, j =,...,M,areM linearly independent functions in H σ, we denote by δw j t) the corresponding solutions to 59), computed at time t, with δw j ) = δw j,.wesete = { δw t),...,δw M t) } and denote by P M t) the orthogonal projection of H σ onto the span of E, denoted hereafter by E. In this section we provide H σ with the inner product [u, v] := A / N, u,a/ N, v) 6) and introduce the operator T M t) defined by T M t) =TraceP M t) T t) P M t)). Let {ϕ j t)} M j= be an orthonormal with respect to [, ] defined in 6)) basis of E = P M t)h σ, so that [ϕ i t), ϕ j t)] = δ ij Kronecker symbol), i,j =,...,M. 6) Using 6) and 6) weget T M t) = = [T t)ϕ i t), ϕ i t)] i= [ ) νδϕ i t)+ D N, w D N, ϕ i t) i= ) ] + D N, ϕ i t) D N, w, ϕ i t). 63)

24 834 D. Catania, A. Morando and P. Trebeschi NoDEA Accordingto6) wehavethat ) [ νδϕ i t), ϕ i t)] = νδa / N, ϕ it),a / N, ϕ it) ) = ν A / N, ϕ it), A / N, ϕ it) = ν A / N, ϕ it), 64) [ ) ] D N, w D N, ϕ i t), ϕ i t) ) ) = A / N, D N, w D N, ϕ i t),a / N, ϕ it) ) ) = A D N, w D N, ϕ i t),d N, ϕ i t) = D N, w D N, ϕ i t) ),D N, ϕ i t) ) =D N, ϕ i t) )D N, w,d N, ϕ i t)), 65) [ ) ] D N, ϕ i t) D N, w, ϕ i t) ) ) = A / N, D N, ϕ i t) D N, w,a / N, ϕ it) ) ) = A D N, ϕ i t) D N, w,d N, ϕ i t) = D N, ϕ i t) D N, w ),D N, ϕ i t) ) =, 66) where integration by parts and formulas 9), 93) have been used in the calculations above remember that w = ϕ i = ). Substituting 64) 66) into63) we get T M t) = i= ν A / N, ϕ it) + D N, ϕ i t) )D N, w,d N, ϕ i t)) i= = Q M t)+r M t). 67) The next goal is to prove that T X M := lim inf T M t) dt >, 68) T + T provided that M is taken sufficiently large, and find an estimate for M see the next Lemma 6.5). In fact see [9, Sect. 3.4] and []) if M is sufficiently large such that 68) is satisfied, then M is an upper bound for the Hausdorff dimension d H A) and the fractal dimension d F A) of the global attractor A: d H A) d F A) M. To get this result, we need to provide useful estimates for Q M t) andr M t) in the representation 67) oft M t). Lemma 6.. Assume that /. There exists a numerical constant C> such that

25 Vol. 5) Global attractor for the Navier 835 Q M t) νλ M 5/3, 69) C where λ = L is the first eigenvalue of Δ. Proof. We use the Lieb Thirring inequality in Lemma A.5 for j x) =A / N, ϕ jt, x). By 6) it follows that { j } M j= defined above is an orthonormal set in L σt 3 ). For the functions j above, the right-hand side of Lieb Thirring s inequality 5) becomes A / N, ϕ jt, x) : A / N, ϕ jt, x) dx T 3 j= = j= T 3 A / N, ϕ jt, x) dx = j= A / N, ϕ jt) = Q Mt). ν As regards to the left-hand side of 5) we get by the use of Jensen s inequality 5/3 A / N, ϕ jt, x) dx T 3 = j= T 3 /3 T 3 /3 T 3 j= j= A / A / N, ϕ jt) N, ϕ jt, x) dx 5/3 = 5/3 T 3 /3 M 5/3, 7) where T 3 =πl) 3 is the Lebesgue measure of the torus T 3, and where we used that A / N, ϕ jt) = because of the orthonormality). The estimate 69) comes from combining Lieb Thirring s inequality with the estimate in 7). Remark 6.. We notice that the same estimate 69) could be obtained by the following alternative argument. The asymptotic behavior of the eigenvalues of the operator Δ is such that see [,9]) λ i λ i /3 C, i =,,... and Q M t) ν λ i. Hence Q M t) νλ M 5/3 5 3 i /3 M 5/3. i= C i= since, by induction, one can easily prove that

26 836 D. Catania, A. Morando and P. Trebeschi NoDEA Lemma 6.3. Assume that / < and let σ = σ) be defined as in 94). Then the following estimate holds R M t) Q M t) where + CC M σ)s A / N, w A / N, w μ, 7) N +) σ+/ L 3/q ) s C :=, 7) α σ ν σ3/ ) for a suitable numerical constant C>, and μ := +3σ σ 3σ +σ, q := 6 + σ), s := 3σ +σ. 73) Proof. For a given, such that / <, let σ = σ) befixedasinthe statement above. The Cauchy Schwarz and the Hölder inequalities together with 7) give R M t) DN, ϕ i t) ) D N, w D N, ϕ i t) dx T 3 i= D N, ϕ i t) D N, w dx T 3 i= T 3 M ) σ M ) σ D N, ϕ i t) D N, ϕ i t) D N, w dx i= i= M ) σ M ) σ D N, ϕ i t) L D N, ϕ i t) i= D N, w L p T 3 /q σ C D N, ϕ i t) i= σ C D N, ϕ i t) i= L L i= L σ M ) σ D N, ϕ i t) D N, w L pl 3/q i= M i= A / N, ϕ it) ) σ D N, w L pl 3/q σ = C D N, ϕ i t) M σ D N, w L pl 3/q, 74) i= L where p is the exponent defined by ), through σ and, while q is given in 73) and makes satisfied the needed identity p + q = σ.

27 Vol. 5) Global attractor for the Navier 837 It is understood that the splitting of M D N, ϕ i t) into the σ and σ)- i= powers becomes trivial as long as σ = [when /3, cf. 94)]. In this case L and L σ -norms of those two powers collapse into the L -norm of the whole M D N, ϕ i t) thus M σ in the last expression above reduces to i= ), while p and q become the conjugate exponents p = 6 7 6, q = 6 6. Now, we use Lemma A.4 in the Appendix to estimate the L -norm in the right-hand side of 74) by D N, ϕ i t) i= L C ) 3/ QM t) N +), 75) α ν for a suitable numerical constant C. It is just the application of the above inequality see Lemma A.3) that requires to exclude the border value = / from our subsequent considerations. By the use of 98) in Lemma A. in the Appendix, we estimate the L p - norm of D N, w as D N, w L p C A / D N, w β A / D N, w β, with β given in ). Then we apply estimates 8), 9) toget D N, w L p CN +) / A / N, w β A / N, w β. 76) From 74), 75) and 76) we find R M t) CN +)σ+/ L 3/q M σ α σ A / N, w β. QM t) ν ) σ3/ ) A / N, w β Now, we apply to the last expression above the Young inequality ab ar r + bs s, where the conjugate exponents r = σ3/ ) = σ3 ) and s = σ3/ ) = ar QM t) 3σ+σ arechoseninsuchawaythat r = ; then we get R M t) Q Mt) N +) σ+/ L 3/q M σ + C α σ ν σ3/ ) A / N, w s β), ) s A / N, w sβ which gives the desired estimate in view of 7) and since sβ =,s β) = μ.

28 838 D. Catania, A. Morando and P. Trebeschi NoDEA Remark 6.4. According to 94) one explicitly derives the following values of the exponent μ involved in the estimate 7) [see73)] μ = {, if / </3, ), if /3. 77) In particular it follows that μ< as / </3 and μ as /3. In view of the subsequent analysis, it is also worth noticing that because of 94) and 73) one has < σ)s as / </3 and σ)s = as/3. Let us prove now that 68) holds. To this end, we are going to prove that the following lemma holds true. Lemma 6.5. Assume that / <. Then T X M = lim inf T M t) dt νλ M 5/3 T + T C where C is defined in 7). M σ)s C C K+μ ν +μ λ μ, 78) Proof. Let us start by the representation formula 67). In view of 7), we have the following estimate T M t) =Q M t)+r M t) Q M t) R M t) Q Mt) CC M σ)s A / N, w A / N, w μ, where the exponents σ, μ and s are given in 94) and 73). We recall that the use of estimate 7) requires >/. We calculate T X M = lim inf T M t) dt T + T lim inf T + T T Q M t) CC M σ)s lim sup T + νλ M 5/3 C dt T T CC M σ)s lim sup T + A / N, w A / N, w μ dt T A / N, T w A / N, w μ dt 79) in view of 69). It remains to produce an estimate for the limit superior in the previous inequality. We will show see the next Lemma 6.7) that the following estimate lim sup T + T A / N, T w A / N, w μ dt C K+μ ν +μ λ μ

29 Vol. 5) Global attractor for the Navier 839 holds true. We use now the estimate above in 79) to find T X M = lim inf T M t) dt T + T νλ M 5/3 C M σ)s C C K+μ ν +μ λ μ, which is just the estimate 78) of the lemma. Remark 6.6. The estimate 78) implies X M to be positive for M>large enough, since the exponent σ)s of the power of M in the second term of the right-hand side above lies in the interval, ] as long as / <, see Remark 6.4. Lemma 6.7. Assume that /. There exists a suitable positive constant C such that T lim sup A / N, T + T w A / N, w μ dt C K+μ ν +μ λ μ, 8) where K is defined in ). Proof. From estimate 4) we find in particular A / N, wt) k e νλt + K νλ from which { ) μ } A / N, wt) μ C k μ K e νμλt +. νλ We note that the constant C in the inequality above can be chosen to be independent of μ, since μ as/, see Remark 6.4. Hence lim sup T + T T Ck μ lim sup T T + K A / N, w A / N, w μ dt T e νμλt A / N, w dt 8) ) μ T +C lim sup A / N, νλ T + T w dt = I + I. To estimate I we use 6) with the constant C in 6) equal to μ )tofind T e νλμt A / N, ws) ds K μν + k λ ν, k, K being defined in ), ), hence I = Ck μ lim sup T + T T To estimate I,weuse5) with t =,r = T to find T e νμλt A / N, wt) dt =. 8) A / N, wt) dt TK + k, ν

30 84 D. Catania, A. Morando and P. Trebeschi NoDEA where k is defined in 3), from which ) μ K I = C lim sup νλ T + T ) μ K C lim sup νλ T + T Then 8) follows from 8), 8) and 83). TK + k T ν A / N, w dt = C K+μ ν +μ λ μ. 83) 6.. Estimate by the Grashoff number proof of Theorem.) Using 78), let us firstly derive an estimate of M in terms of the Grashoff number G defined in 6). Comparing G with K defined in ), through the Poincaré inequality where we use that λ = L ), we get K = Λ A / N, f λ ν = ν3 G L. Using 84) in78) then gives A / N, f ν = L A / N, f ν 84) X M νλ M 5/3 C M σ)s C C ν+μ G +μ L +μ λ μ = νl M 5/3 M σ)s C Cν +μ G +μ L μ, C from which X M > holds true provided that M>C C ν +μ L +μ) 3 5+3σ )s G 6+6μ 5+3σ )s. 6.. Estimate by mean dissipation length proof of Theorem.3) In order to get the desired estimate, we are going to produce an estimate from below of X M, defined in 68), different from the one provided by Lemma 6.5. We will prove the following result. Lemma 6.8. Assume that / <. Then the following estimate X M νm5/3 CL holds true, where it is set γ = 3 CN +)γ M γ) L 3+6/q ν α 4γ l 4 d and 85) + = γ. 86) q Proof. In view of 67) we firstly get an estimate of R M t), by arguing exactly as we did to obtain the estimate 74) in the proof of Lemma 6.3, but making a different choice of the exponents; namely, by the Hölder inequality and 7) we get for each / <

31 Vol. 5) Global attractor for the Navier 84 R M t) T 3 M ) γ M ) γ D N, ϕ i t) D N, ϕ i t) D N, w dx i= i= M ) γ M ) γ D N, ϕ i t) L D N, ϕ i t) i= D N, w T 3 /q γ C D N, ϕ i t) i= γ C D N, ϕ i t) i= L L i= L γ M ) γ D N, ϕ i t) D N, w L 3/q i= M i= A / N, ϕ it) ) γ D N, w L 3/q γ = C D N, ϕ i t) M γ D N, w L 3/q, 87) i= L where the exponents γ and q are defined by means of 86). Notice that the second relation in 86) is just the needed constraint in order that the Hölder inequality applies with the exponents γ and q above. Notice also that γ = 3 is an increasing function of, hence / <γ, as long as / <. 88) Since in particular γ =, as long as =, the same observation about the estimate 75) applies to the estimate above when =. Inthiscasethe splitting of M i= D N, ϕ it) into the γ and γ)-powers becomes trivial: the L and L γ -norms of those two powers reduce to the L -norm of the whole M i= D N, ϕ it) hence M γ =)andq =. An explicit calculation gives that 3 ) q =, for arbitrary / <. Using 7) and 75) to estimate respectively the L -norm of D N, w and the L -norm of M D N, ϕ i t) in the right-hand side of 87), we obtain i= CN +)γ R M t) α γ ν Q Mt)) γ3/ ) M γ A / γ3/ ) N, w L3/q. Again, as done in the proof of Lemma 6.3 we apply to the last expression above the Young inequality ab ar r + bs s, where the conjugate exponents r = γ3/ ) = γ3 ) and s = γ3/ ) = 3γ+γ arechoseninsucha way that ar QM t) r = ; then we get

32 84 D. Catania, A. Morando and P. Trebeschi NoDEA R M t) Q Mt) + C N +)sγ L 3s/q M s γ) α sγ ν sγ3/ ) A / N, w s. 89) Now the crucial point is to observe that, with the choice of γ made in 86), we get γ3 ) =, thus s = r =. Hence, the estimate 89) becomes R M t) Q M t) + C N +)γ L 6/q M γ) α 4γ A / N, ν w. For the rest, the proof follows the same lines of Lemma 6.5. Firstly, from 67) we find T M t) =Q M t)+r M t) Q M t) R M t) Q Mt) Then we calculate T X M = lim inf T + T lim inf T + T T C N +)γ L 6/q M γ) α 4γ A / N, ν w. T M t) dt Q M t) dt C N +)γ L 6/q M γ) α 4γ ν T Q M t) = lim inf dt T + T C N +)γ L 6/q M γ) α 4γ ν lim sup T + lim sup T + T We use 69) to estimate from below lim inf T + T L )by lim inf T + T and 9) to estimate lim sup T + lim sup T + T T T T T Q M t) T A / N, T w dt T ν A / N, T w dt. 9) dt νm5/3 CL ν A/ N, w dt by ν A / N, wt) dt L3 ν 3. Q M t) dt recall that λ = We use the last two inequalities above to bound the right-hand side of 9) and to obtain X M νm5/3 CL C N +)γ L 6/q M γ) α 4γ ν L 3 ν 3 C N +)γ L 3+6/q M γ) ν α 4γ l 4, d that is just the estimate 85). l 4 d l 4 d = νm5/3 CL

33 Vol. 5) Global attractor for the Navier 843 Let us observe that in view of 88), the exponent γ) in the power of M appearing in the second term of the right-hand side of 85) is smaller than. Then, in view 85), we see that X M > holds true provided that M 5/3 γ) > which gives CN +)γ α 4γ [ N +) γ M>C α 4γ L 5+6/q l 4 d = ] 3 L +6/q [ ) γ L L = C N +) γ α where we have used the identity + 6 q =4γ. CN +)γ α 4γ 5 6 γ) L l d l d ) ] 6 6γ, ) 4 L L +6/q, l d ) 5 6 γ) Appendix: Some useful formulas and inequalities Lemma A.. Let a, b, c be sufficiently smooth vector fields such that a =. Then, b a) =a ) b; 9) a ) b, c) = a ) c, b) ; 9) b a), b) =. 93) The following estimates are particular cases of the well known Gagliardo Nirenberg inequality see [6]), where we make use of the equivalence of norms given in Remark.4. Lemma A.. Let us assume that / and define σ) by setting σ) := { + 3, if / </3,, if /3. 94) There exists a positive constant C such that for every u = ux) sufficiently smooth vector or matrix-valued function we have u L 3 C A / u a u a, 95) u L 3 C A u b A / u b, 96) A u L 3 C A u c A / u c, 97) u L p C A / u β A / u β, 98) where a =, b = 3 + p = ), c = +/ 3 +, 99) 6, β = 3σ)+σ). ) +6σ) + σ))

34 844 D. Catania, A. Morando and P. Trebeschi NoDEA Note that the exponents a, b, c involved in the estimates 95) 97) and computed above satisfy the constraints required by the Gagliardo Nirenberg inequality, in particular / a, + b, + c for every /. Moreover, we have /4 b /3, /3 c 3/4. ) As regards to the last inequality 98), due to the formula 94), it is worth considering separately the two cases below: st case: for / </3 the expressions in ) become p =, β =. ) nd case: for /3 the expressions in ) become p = 6, β =. 3) 7 6 Notice that p defined in 3) is an increasing function of and we have p 6, as /3. Notice also that in both the previous cases the exponents p and β in ) 3) satisfy the constraints required by the Gagliardo Nirenberg inequality, in particular β for every /. The fractional version of Agmon s inequality can be found in [] p. 37, Lemma 4.9; the proof is for R n, but can be easily adapted to the periodic case by resorting to the Fourier series instead of the Fourier transform). Lemma A.3. Fractional Agmon s inequality) Let us assume that <s <n/ <s, where n is the space dimension of the periodic box domain D, and let t, ) such that n/ = t)s + ts. Then there exists a constant C = Cn, s,s ) such that u L C u t H s u t H s, where the norms refer to the space D. In particular, if D = T 3 and / <, we have u L C α A/ u / A / u 3/. 4) The final estimate can be easily obtained observing that u, α A/ u, u +, α A/ u, as it is easily seen using Fourier expansions. The following inequality generalizes Lemma 5, Estimate 8), in Foias Holm Titi [] and is used in Sect. 6.

Exercise 6.14 Linearly independent vectors are also affinely independent.

Exercise 6.14 Linearly independent vectors are also affinely independent. Affine sets Linear Inequality Systems Definition 6.12 The vectors v 1, v 2,..., v k are affinely independent if v 2 v 1,..., v k v 1 is linearly independent; affinely dependent, otherwise. We first check

Læs mere

Besvarelser til Lineær Algebra Reeksamen Februar 2017

Besvarelser til Lineær Algebra Reeksamen Februar 2017 Besvarelser til Lineær Algebra Reeksamen - 7. Februar 207 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 19. juni 2003 kl Alle hjælpemidler er tilladt

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 19. juni 2003 kl Alle hjælpemidler er tilladt SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 9. juni 23 kl. 9.-3. Alle hjælpemidler er tilladt OPGAVE f(x) x Givet funktionen f(x) x, x [, ] Spørgsmål (%)

Læs mere

Basic statistics for experimental medical researchers

Basic statistics for experimental medical researchers Basic statistics for experimental medical researchers Sample size calculations September 15th 2016 Christian Pipper Department of public health (IFSV) Faculty of Health and Medicinal Science (SUND) E-mail:

Læs mere

Multivariate Extremes and Dependence in Elliptical Distributions

Multivariate Extremes and Dependence in Elliptical Distributions Multivariate Extremes and Dependence in Elliptical Distributions Filip Lindskog, RiskLab, ETH Zürich joint work with Henrik Hult, KTH Stockholm I II III IV V Motivation Elliptical distributions A class

Læs mere

Computing the constant in Friedrichs inequality

Computing the constant in Friedrichs inequality Computing the constant in Friedrichs inequality Tomáš Vejchodský vejchod@math.cas.cz Institute of Mathematics, Žitná 25, 115 67 Praha 1 February 8, 212, SIGA 212, Prague Motivation Classical formulation:

Læs mere

Linear Programming ١ C H A P T E R 2

Linear Programming ١ C H A P T E R 2 Linear Programming ١ C H A P T E R 2 Problem Formulation Problem formulation or modeling is the process of translating a verbal statement of a problem into a mathematical statement. The Guidelines of formulation

Læs mere

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US Generalized Probit Model in Design of Dose Finding Experiments Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US Outline Motivation Generalized probit model Utility function Locally optimal designs

Læs mere

Probabilistic properties of modular addition. Victoria Vysotskaya

Probabilistic properties of modular addition. Victoria Vysotskaya Probabilistic properties of modular addition Victoria Vysotskaya JSC InfoTeCS, NPK Kryptonite CTCrypt 19 / June 4, 2019 vysotskaya.victory@gmail.com Victoria Vysotskaya (Infotecs, Kryptonite) Probabilistic

Læs mere

Sign variation, the Grassmannian, and total positivity

Sign variation, the Grassmannian, and total positivity Sign variation, the Grassmannian, and total positivity arxiv:1503.05622 Slides available at math.berkeley.edu/~skarp Steven N. Karp, UC Berkeley FPSAC 2015 KAIST, Daejeon Steven N. Karp (UC Berkeley) Sign

Læs mere

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A +

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A + Strings and Sets: A string over Σ is any nite-length sequence of elements of Σ The set of all strings over alphabet Σ is denoted as Σ Operators over set: set complement, union, intersection, etc. set concatenation

Læs mere

Some results for the weighted Drazin inverse of a modified matrix

Some results for the weighted Drazin inverse of a modified matrix International Journal of Applied Mathematics Computation Journal homepage: www.darbose.in/ijamc ISSN: 0974-4665 (Print) 0974-4673 (Online) Volume 6(1) 2014 1 9 Some results for the weighted Drazin inverse

Læs mere

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528) Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM58) Institut for Matematik og Datalogi Syddansk Universitet, Odense Torsdag den 1. januar 01 kl. 9 13 Alle sædvanlige hjælpemidler

Læs mere

On the complexity of drawing trees nicely: corrigendum

On the complexity of drawing trees nicely: corrigendum Acta Informatica 40, 603 607 (2004) Digital Object Identifier (DOI) 10.1007/s00236-004-0138-y On the complexity of drawing trees nicely: corrigendum Thorsten Akkerman, Christoph Buchheim, Michael Jünger,

Læs mere

Black Jack --- Review. Spring 2012

Black Jack --- Review. Spring 2012 Black Jack --- Review Spring 2012 Simulation Simulation can solve real-world problems by modeling realworld processes to provide otherwise unobtainable information. Computer simulation is used to predict

Læs mere

The GAssist Pittsburgh Learning Classifier System. Dr. J. Bacardit, N. Krasnogor G53BIO - Bioinformatics

The GAssist Pittsburgh Learning Classifier System. Dr. J. Bacardit, N. Krasnogor G53BIO - Bioinformatics The GAssist Pittsburgh Learning Classifier System Dr. J. Bacardit, N. Krasnogor G53BIO - Outline bioinformatics Summary and future directions Objectives of GAssist GAssist [Bacardit, 04] is a Pittsburgh

Læs mere

Vina Nguyen HSSP July 13, 2008

Vina Nguyen HSSP July 13, 2008 Vina Nguyen HSSP July 13, 2008 1 What does it mean if sets A, B, C are a partition of set D? 2 How do you calculate P(A B) using the formula for conditional probability? 3 What is the difference between

Læs mere

Critical exponent for semilinear wave equation with critical potential

Critical exponent for semilinear wave equation with critical potential Nonlinear Differ. Equ. Appl. (13), 1379 1391 c 1 Springer Basel 11-97/13/31379-13 published online December 16, 1 DOI 1.17/s3-1-14-x Nonlinear Differential Equations and Applications NoDEA Critical exponent

Læs mere

Skriftlig Eksamen Diskret matematik med anvendelser (DM72)

Skriftlig Eksamen Diskret matematik med anvendelser (DM72) Skriftlig Eksamen Diskret matematik med anvendelser (DM72) Institut for Matematik & Datalogi Syddansk Universitet, Odense Onsdag den 18. januar 2006 Alle sædvanlige hjælpemidler (lærebøger, notater etc.),

Læs mere

Curve Modeling B-Spline Curves. Dr. S.M. Malaek. Assistant: M. Younesi

Curve Modeling B-Spline Curves. Dr. S.M. Malaek. Assistant: M. Younesi Curve Modeling B-Spline Curves Dr. S.M. Malaek Assistant: M. Younesi Motivation B-Spline Basis: Motivation Consider designing the profile of a vase. The left figure below is a Bézier curve of degree 11;

Læs mere

Adaptive Algorithms for Blind Separation of Dependent Sources. George V. Moustakides INRIA, Sigma 2

Adaptive Algorithms for Blind Separation of Dependent Sources. George V. Moustakides INRIA, Sigma 2 Adaptive Algorithms for Blind Separation of Dependent Sources George V. Moustakides INRIA, Sigma 2 Problem definition-motivation Existing adaptive scheme-independence General adaptive scheme-dependence

Læs mere

Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium

Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet Kurver og Flader 2013 Lisbeth Fajstrup (AAU)

Læs mere

Privat-, statslig- eller regional institution m.v. Andet Added Bekaempelsesudfoerende: string No Label: Bekæmpelsesudførende

Privat-, statslig- eller regional institution m.v. Andet Added Bekaempelsesudfoerende: string No Label: Bekæmpelsesudførende Changes for Rottedatabasen Web Service The coming version of Rottedatabasen Web Service will have several changes some of them breaking for the exposed methods. These changes and the business logic behind

Læs mere

19.3. Second Order ODEs. Introduction. Prerequisites. Learning Outcomes

19.3. Second Order ODEs. Introduction. Prerequisites. Learning Outcomes Second Order ODEs 19.3 Introduction In this Section we start to learn how to solve second-order differential equations of a particular type: those that are linear and that have constant coefficients. Such

Læs mere

DoodleBUGS (Hands-on)

DoodleBUGS (Hands-on) DoodleBUGS (Hands-on) Simple example: Program: bino_ave_sim_doodle.odc A simulation example Generate a sample from F=(r1+r2)/2 where r1~bin(0.5,200) and r2~bin(0.25,100) Note that E(F)=(100+25)/2=62.5

Læs mere

Angle Ini/al side Terminal side Vertex Standard posi/on Posi/ve angles Nega/ve angles. Quadrantal angle

Angle Ini/al side Terminal side Vertex Standard posi/on Posi/ve angles Nega/ve angles. Quadrantal angle Mrs. Valentine AFM Objective: I will be able to identify angle types, convert between degrees and radians for angle measures, identify coterminal angles, find the length of an intercepted arc, and find

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 31 Oktober 2011, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af lommeregner

Læs mere

Pontryagin Approximations for Optimal Design of Elastic Structures

Pontryagin Approximations for Optimal Design of Elastic Structures Pontryagin Approximations for Optimal Design of Elastic Structures Jesper Carlsson NADA, KTH jesperc@nada.kth.se Collaborators: Anders Szepessy, Mattias Sandberg October 5, 2005 A typical optimal design

Læs mere

Statistik for MPH: 7

Statistik for MPH: 7 Statistik for MPH: 7 3. november 2011 www.biostat.ku.dk/~pka/mph11 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3 University of Copenhagen Faculty of Science Written Exam - 3. April 2009 Algebra 3 This exam contains 5 exercises which are to be solved in 3 hours. The exercises are posed in an English and in a Danish

Læs mere

Skriftlig Eksamen Automatteori og Beregnelighed (DM17)

Skriftlig Eksamen Automatteori og Beregnelighed (DM17) Skriftlig Eksamen Automatteori og Beregnelighed (DM17) Institut for Matematik & Datalogi Syddansk Universitet Odense Campus Lørdag, den 15. Januar 2005 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 30. juni 2005, kl Alle hjælpemidler er tilladt

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 30. juni 2005, kl Alle hjælpemidler er tilladt SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 3. juni 5, kl. 8.3-.3 Alle hjælpemidler er tilladt OPGAVE u = y B u = u C A x c u = D u = Figuren viser en homogen

Læs mere

Project Step 7. Behavioral modeling of a dual ported register set. 1/8/ L11 Project Step 5 Copyright Joanne DeGroat, ECE, OSU 1

Project Step 7. Behavioral modeling of a dual ported register set. 1/8/ L11 Project Step 5 Copyright Joanne DeGroat, ECE, OSU 1 Project Step 7 Behavioral modeling of a dual ported register set. Copyright 2006 - Joanne DeGroat, ECE, OSU 1 The register set Register set specifications 16 dual ported registers each with 16- bit words

Læs mere

The complete construction for copying a segment, AB, is shown above. Describe each stage of the process.

The complete construction for copying a segment, AB, is shown above. Describe each stage of the process. A a compass, a straightedge, a ruler, patty paper B C A Stage 1 Stage 2 B C D Stage 3 The complete construction for copying a segment, AB, is shown above. Describe each stage of the process. Use a ruler

Læs mere

Constant Terminal Voltage. Industry Workshop 1 st November 2013

Constant Terminal Voltage. Industry Workshop 1 st November 2013 Constant Terminal Voltage Industry Workshop 1 st November 2013 Covering; Reactive Power & Voltage Requirements for Synchronous Generators and how the requirements are delivered Other countries - A different

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 7 Januar 2008, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af lommeregner

Læs mere

Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints

Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints Particle-based T-Spline Level Set for 3D Object Reconstruction with Range and Volume Constraints Robert Feichtinger (joint work with Huaiping Yang, Bert Jüttler) Institute of Applied Geometry, JKU Linz

Læs mere

On the Relations Between Fuzzy Topologies and α Cut Topologies

On the Relations Between Fuzzy Topologies and α Cut Topologies S Ü Fen Ed Fak Fen Derg Sayı 23 (2004) 21-27, KONYA On the Relations Between Fuzzy Topologies and α Cut Topologies Zekeriya GÜNEY 1 Abstract: In this study, some relations have been generated between fuzzy

Læs mere

what is this all about? Introduction three-phase diode bridge rectifier input voltages input voltages, waveforms normalization of voltages voltages?

what is this all about? Introduction three-phase diode bridge rectifier input voltages input voltages, waveforms normalization of voltages voltages? what is this all about? v A Introduction three-phase diode bridge rectifier D1 D D D4 D5 D6 i OUT + v OUT v B i 1 i i + + + v 1 v v input voltages input voltages, waveforms v 1 = V m cos ω 0 t v = V m

Læs mere

Flow Equivalence between Substitutional Dynamical Systems

Flow Equivalence between Substitutional Dynamical Systems Flow Equivalence between Substitutional Dynamical Systems Master s thesis presentation, Jacob Thamsborg August 24th 2006 Abstract We concern ourselves with the what and when of flow equivalence between

Læs mere

Effect of hyperviscosity on the geometry of the vorticity

Effect of hyperviscosity on the geometry of the vorticity Nonlinear Differ. Equ. Appl. 0 (03), 673 685 c 0 Springer Basel AG 0-97/3/030673-3 published online May 7, 0 DOI 0.007/s00030-0-073- Nonlinear Differential Equations and Applications NoDEA Effect of hyperviscosity

Læs mere

On Magnus integrators for time-dependent Schrödinger equations

On Magnus integrators for time-dependent Schrödinger equations On Magnus integrators for time-dependent Schrödinger equations Marlis Hochbruck, University of Düsseldorf, Germany Christian Lubich, University of Tübingen, Germany FoCM conference, August 22 Outline Time

Læs mere

Aktivering af Survey funktionalitet

Aktivering af Survey funktionalitet Surveys i REDCap REDCap gør det muligt at eksponere ét eller flere instrumenter som et survey (spørgeskema) som derefter kan udfyldes direkte af patienten eller forsøgspersonen over internettet. Dette

Læs mere

University of Copenhagen Faculty of Science Written Exam April Algebra 3

University of Copenhagen Faculty of Science Written Exam April Algebra 3 University of Copenhagen Faculty of Science Written Exam - 16. April 2010 Algebra This exam contains 5 exercises which are to be solved in hours. The exercises are posed in an English and in a Danish version.

Læs mere

Resource types R 1 1, R 2 2,..., R m CPU cycles, memory space, files, I/O devices Each resource type R i has W i instances.

Resource types R 1 1, R 2 2,..., R m CPU cycles, memory space, files, I/O devices Each resource type R i has W i instances. System Model Resource types R 1 1, R 2 2,..., R m CPU cycles, memory space, files, I/O devices Each resource type R i has W i instances. Each process utilizes a resource as follows: request use e.g., request

Læs mere

Unitel EDI MT940 June 2010. Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004)

Unitel EDI MT940 June 2010. Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004) Unitel EDI MT940 June 2010 Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004) Contents 1. Introduction...3 2. General...3 3. Description of the MT940 message...3 3.1.

Læs mere

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , ) Statistik for MPH: 7 29. oktober 2015 www.biostat.ku.dk/~pka/mph15 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Additive Property of Drazin Invertibility of Elements in a Ring

Additive Property of Drazin Invertibility of Elements in a Ring Filomat 30:5 (2016), 1185 1193 DOI 10.2298/FIL1605185W Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Additive Property of Drazin

Læs mere

Chapter 6. Hydrogen Atom. 6.1 Schrödinger Equation. The Hamiltonian for a hydrogen atom is. Recall that. 1 r 2 sin 2 θ + 1. and.

Chapter 6. Hydrogen Atom. 6.1 Schrödinger Equation. The Hamiltonian for a hydrogen atom is. Recall that. 1 r 2 sin 2 θ + 1. and. Chapter 6 Hydrogen Atom 6. Schrödinger Equation The Hamiltonian for a hydrogen atom is Recall that Ĥ = h e m e 4πɛ o r = r ) + r r r r sin θ sin θ ) + θ θ r sin θ φ and [ ˆL = h sin θ ) + )] sin θ θ θ

Læs mere

Combined concave convex effects in anisotropic elliptic equations with variable exponent

Combined concave convex effects in anisotropic elliptic equations with variable exponent Nonlinear Differ. Equ. Appl. 22 (205), 39 40 c 204 Springer Basel 02-9722/5/03039-20 published online October 4, 204 DOI 0.007/s00030-04-0288-8 Nonlinear Differential Equations and Applications NoDEA Combined

Læs mere

CHAPTER 8: USING OBJECTS

CHAPTER 8: USING OBJECTS Ruby: Philosophy & Implementation CHAPTER 8: USING OBJECTS Introduction to Computer Science Using Ruby Ruby is the latest in the family of Object Oriented Programming Languages As such, its designer studied

Læs mere

IBM Network Station Manager. esuite 1.5 / NSM Integration. IBM Network Computer Division. tdc - 02/08/99 lotusnsm.prz Page 1

IBM Network Station Manager. esuite 1.5 / NSM Integration. IBM Network Computer Division. tdc - 02/08/99 lotusnsm.prz Page 1 IBM Network Station Manager esuite 1.5 / NSM Integration IBM Network Computer Division tdc - 02/08/99 lotusnsm.prz Page 1 New esuite Settings in NSM The Lotus esuite Workplace administration option is

Læs mere

PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU

PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU OUTLINE INEFFICIENCY OF ATTILA WAYS TO PARALLELIZE LOW COMPATIBILITY IN THE COMPILATION A SOLUTION

Læs mere

Frequency Dispersion: Dielectrics, Conductors, and Plasmas

Frequency Dispersion: Dielectrics, Conductors, and Plasmas 1/23 Frequency Dispersion: Dielectrics, Conductors, and Plasmas Carlos Felipe Espinoza Hernández Professor: Jorge Alfaro Instituto de Física Pontificia Universidad Católica de Chile 2/23 Contents 1 Simple

Læs mere

Satisability of Boolean Formulas

Satisability of Boolean Formulas SAT exercises 1 March, 2016 slide 1 Satisability of Boolean Formulas Combinatorics and Algorithms Prof. Emo Welzl Assistant: (CAB G36.1, cannamalai@inf.ethz.ch) URL: http://www.ti.inf.ethz.ch/ew/courses/sat16/

Læs mere

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov.

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov. På dansk/in Danish: Aarhus d. 10. januar 2013/ the 10 th of January 2013 Kære alle Chefer i MUS-regi! Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov. Og

Læs mere

University of Copenhagen Faculty of Science Written Exam - 8. April 2008. Algebra 3

University of Copenhagen Faculty of Science Written Exam - 8. April 2008. Algebra 3 University of Copenhagen Faculty of Science Written Exam - 8. April 2008 Algebra 3 This exam contains 5 exercises which are to be solved in 3 hours. The exercises are posed in an English and in a Danish

Læs mere

DM549 Diskrete Metoder til Datalogi

DM549 Diskrete Metoder til Datalogi DM549 Diskrete Metoder til Datalogi Spørgsmål 1 (8%) Hvilke udsagn er sande? Husk, at symbolet betyder går op i. Which propositions are true? Recall that the symbol means divides. Svar 1.a: n Z: 2n > n

Læs mere

Large Scale Sequencing By Hybridization. Tel Aviv University

Large Scale Sequencing By Hybridization. Tel Aviv University Large Scale Sequencing By Hybridization Ron Shamir Dekel Tsur Tel Aviv University Outline Background: SBH Shotgun SBH Analysis of the errorless case Analysis of error-prone Sequencing By Hybridization

Læs mere

Trolling Master Bornholm 2014

Trolling Master Bornholm 2014 Trolling Master Bornholm 2014 (English version further down) Ny præmie Trolling Master Bornholm fylder 10 år næste gang. Det betyder, at vi har fundet på en ny og ganske anderledes præmie. Den fisker,

Læs mere

User Manual for LTC IGNOU

User Manual for LTC IGNOU User Manual for LTC IGNOU 1 LTC (Leave Travel Concession) Navigation: Portal Launch HCM Application Self Service LTC Self Service 1. LTC Advance/Intimation Navigation: Launch HCM Application Self Service

Læs mere

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen The X Factor Målgruppe 7-10 klasse & ungdomsuddannelser Engelskundervisningen Læringsmål Eleven kan give sammenhængende fremstillinger på basis af indhentede informationer Eleven har viden om at søge og

Læs mere

Rotational Properties of Bose - Einstein Condensates

Rotational Properties of Bose - Einstein Condensates Rotational Properties of Bose - Einstein Condensates Stefan Baumgärtner April 30, 2013 1 / 27 Stefan Baumgärtner Rotational Properties of Bose - Einstein Condensates Outline 2 / 27 Stefan Baumgärtner Rotational

Læs mere

Singular limits in higher order Liouville-type equations

Singular limits in higher order Liouville-type equations Nonlinear Differ. Equ. Appl. 22 (2015), 1545 1571 c 2015 Springer Basel 1021-9722/15/061545-27 published online July 14, 2015 DOI 10.1007/s00030-015-0335-0 Nonlinear Differential Equations and Applications

Læs mere

MONOTONE POSITIVE SOLUTIONS FOR p-laplacian EQUATIONS WITH SIGN CHANGING COEFFICIENTS AND MULTI-POINT BOUNDARY CONDITIONS

MONOTONE POSITIVE SOLUTIONS FOR p-laplacian EQUATIONS WITH SIGN CHANGING COEFFICIENTS AND MULTI-POINT BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 22, No. 22, pp. 2. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MONOTONE POSITIVE SOLUTIONS FOR

Læs mere

ECE 551: Digital System * Design & Synthesis Lecture Set 5

ECE 551: Digital System * Design & Synthesis Lecture Set 5 ECE 551: Digital System * Design & Synthesis Lecture Set 5 5.1: Verilog Behavioral Model for Finite State Machines (FSMs) 5.2: Verilog Simulation I/O and 2001 Standard (In Separate File) 3/4/2003 1 ECE

Læs mere

Help / Hjælp

Help / Hjælp Home page Lisa & Petur www.lisapetur.dk Help / Hjælp Help / Hjælp General The purpose of our Homepage is to allow external access to pictures and videos taken/made by the Gunnarsson family. The Association

Læs mere

UNISONIC TECHNOLOGIES CO.,

UNISONIC TECHNOLOGIES CO., UNISONIC TECHNOLOGIES CO., 3 TERMINAL 1A NEGATIVE VOLTAGE REGULATOR DESCRIPTION 1 TO-263 The UTC series of three-terminal negative regulators are available in TO-263 package and with several fixed output

Læs mere

Portal Registration. Check Junk Mail for activation . 1 Click the hyperlink to take you back to the portal to confirm your registration

Portal Registration. Check Junk Mail for activation  . 1 Click the hyperlink to take you back to the portal to confirm your registration Portal Registration Step 1 Provide the necessary information to create your user. Note: First Name, Last Name and Email have to match exactly to your profile in the Membership system. Step 2 Click on the

Læs mere

Spørgsmål 1 (5%) Forklar med relevant argumentation, at den stationære temperaturfordeling i områdets indre er bestemt ved følgende randværdiproblem

Spørgsmål 1 (5%) Forklar med relevant argumentation, at den stationære temperaturfordeling i områdets indre er bestemt ved følgende randværdiproblem SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 9. juni 006, kl. 09.00-3.00 Alle hjælpemidler er tilladt OPGAVE y u = 0 isoleret rand r u = u 0 θ 0 θ c c u = 0

Læs mere

DM559/DM545 Linear and integer programming

DM559/DM545 Linear and integer programming Department of Mathematics and Computer Science University of Southern Denmark, Odense June 10, 2017 Marco Chiarandini DM559/DM545 Linear and integer programming Sheet 12, Spring 2017 [pdf format] The following

Læs mere

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September 2005. Casebaseret eksamen. www.jysk.dk og www.jysk.com.

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September 2005. Casebaseret eksamen. www.jysk.dk og www.jysk.com. 052430_EngelskC 08/09/05 13:29 Side 1 De Merkantile Erhvervsuddannelser September 2005 Side 1 af 4 sider Casebaseret eksamen Engelsk Niveau C www.jysk.dk og www.jysk.com Indhold: Opgave 1 Presentation

Læs mere

Richter 2013 Presentation Mentor: Professor Evans Philosophy Department Taylor Henderson May 31, 2013

Richter 2013 Presentation Mentor: Professor Evans Philosophy Department Taylor Henderson May 31, 2013 Richter 2013 Presentation Mentor: Professor Evans Philosophy Department Taylor Henderson May 31, 2013 OVERVIEW I m working with Professor Evans in the Philosophy Department on his own edition of W.E.B.

Læs mere

X M Y. What is mediation? Mediation analysis an introduction. Definition

X M Y. What is mediation? Mediation analysis an introduction. Definition What is mediation? an introduction Ulla Hvidtfeldt Section of Social Medicine - Investigate underlying mechanisms of an association Opening the black box - Strengthen/support the main effect hypothesis

Læs mere

ATEX direktivet. Vedligeholdelse af ATEX certifikater mv. Steen Christensen stec@teknologisk.dk www.atexdirektivet.

ATEX direktivet. Vedligeholdelse af ATEX certifikater mv. Steen Christensen stec@teknologisk.dk www.atexdirektivet. ATEX direktivet Vedligeholdelse af ATEX certifikater mv. Steen Christensen stec@teknologisk.dk www.atexdirektivet.dk tlf: 7220 2693 Vedligeholdelse af Certifikater / tekniske dossier / overensstemmelseserklæringen.

Læs mere

Bilag. Resume. Side 1 af 12

Bilag. Resume. Side 1 af 12 Bilag Resume I denne opgave, lægges der fokus på unge og ensomhed gennem sociale medier. Vi har i denne opgave valgt at benytte Facebook som det sociale medie vi ligger fokus på, da det er det største

Læs mere

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen.  og 052431_EngelskD 08/09/05 13:29 Side 1 De Merkantile Erhvervsuddannelser September 2005 Side 1 af 4 sider Casebaseret eksamen Engelsk Niveau D www.jysk.dk og www.jysk.com Indhold: Opgave 1 Presentation

Læs mere

Trolling Master Bornholm 2014

Trolling Master Bornholm 2014 Trolling Master Bornholm 2014 (English version further down) Populært med tidlig færgebooking Booking af færgebilletter til TMB 2014 er populært. Vi har fået en stribe mails fra teams, som har booket,

Læs mere

DM549. Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1. Svar 2.h: x Z: y Z: x + y = 5. Svar 1.e: x Z: y Z: x + y < x y

DM549. Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1. Svar 2.h: x Z: y Z: x + y = 5. Svar 1.e: x Z: y Z: x + y < x y DM549 Spørgsmål 1 (8%) Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1 Svar 1.b: x Z: y Z: x + y = 5 Svar 1.c: x Z: y Z: x + y = 5 Svar 1.d: x Z: y Z: x 2 + 2y = 0 Svar 1.e:

Læs mere

On the stability of travelling waves with vorticity obtained by minimization

On the stability of travelling waves with vorticity obtained by minimization Nonlinear Differ. Equ. Appl. 2 213), 1597 1629 c 213 Springer Basel 121-9722/13/51597-33 published online March 19, 213 DOI 1.17/s3-13-223-4 Nonlinear Differential Equations Applications NoDEA On the stability

Læs mere

CS 4390/5387 SOFTWARE V&V LECTURE 5 BLACK-BOX TESTING - 2

CS 4390/5387 SOFTWARE V&V LECTURE 5 BLACK-BOX TESTING - 2 1 CS 4390/5387 SOFTWARE V&V LECTURE 5 BLACK-BOX TESTING - 2 Outline 2 HW Solution Exercise (Equivalence Class Testing) Exercise (Decision Table Testing) Pairwise Testing Exercise (Pairwise Testing) 1 Homework

Læs mere

Observation Processes:

Observation Processes: Observation Processes: Preparing for lesson observations, Observing lessons Providing formative feedback Gerry Davies Faculty of Education Preparing for Observation: Task 1 How can we help student-teachers

Læs mere

Nodal set of strongly competition systems with fractional Laplacian

Nodal set of strongly competition systems with fractional Laplacian Nonlinear Differ. Equ. Appl. 22 (2015), 1483 1513 c 2015 Springer Basel 1021-9722/15/051483-31 published online June 2, 2015 DOI 10.1007/s00030-015-0332-3 Nonlinear Differential Equations and Applications

Læs mere

Luigi C. Berselli and Stefano Spirito. 1. Introduction. Nonlinear Differential Equations and Applications NoDEA

Luigi C. Berselli and Stefano Spirito. 1. Introduction. Nonlinear Differential Equations and Applications NoDEA Nonlinear Differ. Equ. Appl. 1 (14), 149 166 c 13 Springer Basel 11-97/14/149-18 published online July 3, 13 DOI 1.17/s3-13-4-1 Nonlinear Differential Equations and Applications NoDEA An elementary approach

Læs mere

Morse theory for a fourth order elliptic equation with exponential nonlinearity

Morse theory for a fourth order elliptic equation with exponential nonlinearity Nonlinear Differ. Equ. Appl. 8 (20), 27 43 c 200 Springer Basel AG 02-9722//00027-7 published online July 9, 200 DOI 0.007/s00030-00-0082- Nonlinear Differential Equations and Applications NoDEA Morse

Læs mere

F o r t o l k n i n g e r a f m a n d a l a e r i G I M - t e r a p i

F o r t o l k n i n g e r a f m a n d a l a e r i G I M - t e r a p i F o r t o l k n i n g e r a f m a n d a l a e r i G I M - t e r a p i - To fortolkningsmodeller undersøgt og sammenlignet ifm. et casestudium S i g r i d H a l l b e r g Institut for kommunikation Aalborg

Læs mere

Eric Nordenstam 1 Benjamin Young 2. FPSAC 12, Nagoya, Japan

Eric Nordenstam 1 Benjamin Young 2. FPSAC 12, Nagoya, Japan Eric 1 Benjamin 2 1 Fakultät für Matematik Universität Wien 2 Institutionen för Matematik Royal Institute of Technology (KTH) Stockholm FPSAC 12, Nagoya, Japan The Aztec Diamond Aztec diamonds of orders

Læs mere

DM547 Diskret Matematik

DM547 Diskret Matematik DM547 Diskret Matematik Spørgsmål 1 (11%) Hvilke udsagn er sande? Husk, at symbolet betyder går op i. Which propositions are true? Recall that the symbol means divides. Svar 1.a: n Z: 2n > n + 2 Svar 1.b:

Læs mere

Partial symmetry and existence of least energy solutions to some nonlinear elliptic equations on Riemannian models

Partial symmetry and existence of least energy solutions to some nonlinear elliptic equations on Riemannian models Nonlinear Differ. Equ. Appl. 22 (2015), 1167 1193 c 2015 Springer Basel 1021-9722/15/051167-27 published online arch 12, 2015 DOI 10.1007/s00030-015-0318-1 Nonlinear Differential Equations and Applications

Læs mere

Extended quasi-homogeneous polynomial system in R 3

Extended quasi-homogeneous polynomial system in R 3 Nonlinear Differ. Equ. Appl. 2 213, 1771 1794 c 213 Springer Basel 121-9722/13/61771-24 published online May 1, 213 DOI 1.17/s3-13-23-5 Nonlinear Differential Equations and Applications NoDEA Extended

Læs mere

applies equally to HRT and tibolone this should be made clear by replacing HRT with HRT or tibolone in the tibolone SmPC.

applies equally to HRT and tibolone this should be made clear by replacing HRT with HRT or tibolone in the tibolone SmPC. Annex I English wording to be implemented SmPC The texts of the 3 rd revision of the Core SPC for HRT products, as published on the CMD(h) website, should be included in the SmPC. Where a statement in

Læs mere

Avancerede bjælkeelementer med tværsnitsdeformation

Avancerede bjælkeelementer med tværsnitsdeformation Avancerede bjælkeelementer med tværsnitsdeformation Advanced beam element with distorting cross sections Kandidatprojekt Michael Teilmann Nielsen, s062508 Foråret 2012 Under vejledning af Jeppe Jönsson,

Læs mere

Den nye Eurocode EC Geotenikerdagen Morten S. Rasmussen

Den nye Eurocode EC Geotenikerdagen Morten S. Rasmussen Den nye Eurocode EC1997-1 Geotenikerdagen Morten S. Rasmussen UDFORDRINGER VED EC 1997-1 HVAD SKAL VI RUNDE - OPBYGNINGEN AF DE NYE EUROCODES - DE STØRSTE UDFORDRINGER - ER DER NOGET POSITIVT? 2 OPBYGNING

Læs mere

United Nations Secretariat Procurement Division

United Nations Secretariat Procurement Division United Nations Secretariat Procurement Division Vendor Registration Overview Higher Standards, Better Solutions The United Nations Global Marketplace (UNGM) Why Register? On-line registration Free of charge

Læs mere

Semi-smooth Newton method for Solving Unilateral Problems in Fictitious Domain Formulations

Semi-smooth Newton method for Solving Unilateral Problems in Fictitious Domain Formulations Semi-smooth Newton method for Solving Unilateral Problems in Fictitious Domain Formulations Jaroslav Haslinger, Charles University, Prague Tomáš Kozubek, VŠB TU Ostrava Radek Kučera, VŠB TU Ostrava SNA

Læs mere

DM559/DM545 Linear and integer programming

DM559/DM545 Linear and integer programming Department of Mathematics and Computer Science University of Southern Denmark, Odense June 10, 2017 Marco Chiarandini DM559/DM545 Linear and integer programming Sheet 12, Spring 2017 [pdf format] The following

Læs mere

Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent

Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent Nonlinear Differ. Equ. Appl. 1 (014, 885 914 c 014 Springer Basel 101-97/14/060885-30 published online April 18, 014 DOI 10.1007/s00030-014-071-4 Nonlinear Differential Equations and Applications NoDEA

Læs mere

p-laplacian problems with nonlinearities interacting with the spectrum

p-laplacian problems with nonlinearities interacting with the spectrum Nonlinear Differ. Equ. Appl. 20 (2013), 1701 1721 c 2013 Springer Basel 1021-9722/13/051701-21 published online March 24, 2013 DOI 10.1007/s00030-013-0226-1 Nonlinear Differential Equations and Applications

Læs mere

Wander TDEV Measurements for Inexpensive Oscillator

Wander TDEV Measurements for Inexpensive Oscillator Wander TDEV Measurements for Inexpensive Oscillator Lee Cosart Symmetricom Lcosart@symmetricom.com Geoffrey M. Garner SAMSUNG Electronics (Consultant) gmgarner@comcast.net IEEE 802.1 AVB TG 2009.11.02

Læs mere

Pattern formation Turing instability

Pattern formation Turing instability Pattern formation Turing instability Tomáš Vejchodský Centre for Mathematical Biology Mathematical Institute Summer school, Prague, 6 8 August, 213 Outline Motivation Turing instability general conditions

Læs mere