Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion
|
|
|
- Egil Kirkegaard
- 8 år siden
- Visninger:
Transkript
1 Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion
2 Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,, x ki er de k forklarende/uafhængige forklarende variale for y i. Model: Y i + x i + + k x ki + ε i ε,,ε n IID ε i ~ N(,σ + k E[Y i x ] + x + + k x k j j x j (lineær middelværdi-struktur
3 Estimation Estimation pr mindste kvadraters metode: ( y Også kaldet Ordinary Least Squares (OLS. er en lineær estimator af. MKM forudsætter at søjlerne i er lineært uafhængige. Hvis fejlledene er uafhængige, med middelværdi nul og samme varians, så er et entral estimat.
4 Eksempel (Eksempel 3.3 i JD Eksempel hvor n5 oservationer med to forklarende variale: Heraf følger Y ( y 76 9 ( y
5 Stokastiske Vektorer og middelværdi Stokastisk vektor: Middelværdi: Regneregel: n j z z z M M z Stokastisk variael n z n E z E z z E E M M z z A Az + + E E
6 Stokastiske Vektorer Varians-Covarians matrix Var ( z E ( z E( z ( z E( z Cov Cov Cov ( z, z Cov( z, z L Cov( z, zn ( z, z Cov( z, z M ( z, z L L Cov( z, z Bemærk at diagonalen indeholder varianserne. M n O M n n Regneregel: Var ( Az + AVar( z A
7 Middelværdi af Skriv om: ( ' ' y ( ' ' ( + ε ( ' ' + ( ' + ( ' ' ε ' ε Middelværdien af - er: ( ' ' ε E E ' 'ε Dvs. er en entral estimator. ( ' ' E( ε Bemærk: E(ε er nok, dvs. normalford. antagelse ikke nødvendig.
8 Variansen af Varians-kovarians matrien for er: Bemærk: Hvis søjlerne i ikke indyrdes vinkelrette, så kan de enkelte i er være indyrdes korrelerede. ( σ εε εε ε ε E E E E Var
9 Eksempel fortsat Variansen af estimator a (, (, (, ( (, (, (, ( ( ( σ σ Var Cov Cov Cov Var Cov Cov Cov Var Var
10 MKM-estimatet er BLUE BLUE Best Linear Uniased Estimator Vi har set ' y og E Hvilket gør til lineær og entral estimator men er det den edste lineære og entrale estimator? Definer: μ ' Hvis (,,,,,, så er μ j. j+ te element
11 MKM-estimatet er BLUE Vælge lineær estimator m af μ: m a'y a' ( + ε E m a' + a' a' + a'ε Estimatoren m er kun entral hvis a. Vælg a så Var(m mindst mulig. Løsning: a ( - m a'y ' ' ' 'y Dvs. m er den edste entrale og lineære estimator.
12 Estimation of σ Man kan vise E ( SSE E( e' e σ ( n k Dvs. s e' e SSE n k n k MSE er en entral estimator af σ. Desuden gælder SSE σ ( n k ~ χ
13 Fordelingen af Hvis ε,, ε n er uafhængige og ε i ~N(,σ, så gælder ~ N, σ ' ( Hvilket etyder at følger en n-dimensional multivariat normalfordeling.
14 Multivariate Normalfordeling Lad Σ være den (k+* (k+ varians-kovarians matrix. Hvis ( Σ ~ N, Gælder i (, Σ ~ N i i+, i+ i+ te element i Σ s diagonal Og Og Cov ( i, i Σi+, j+ ( A AΣΣ A + ~ N +,
15 Generel Hypotesetest i MLR H : R r vs H : R r R er en q k + r er en q matrix. dimensionel vektor. Fortolkning af H : En given lineær transformation, R, af har en estemt værdi, r.
16 Generel Hypotesetest i MLR (fortsat Et estimatet af R er R. Egenskaer for R: Middelværdi: E( R R Varians: Var ( R RVar σ R R ( R
17 Fordelingen af R Under antagelse af at ε,,ε n IID og e i ~N(,σ : Det kan vises at N N (, σ ( R, σ R R, σ R R ( ~ N R ~ R ~ [ ] R ( R r ~ χ ( q (* ( R r σ R
18 F-test Fra tidligere har vi: e e σ ~ χ ( n k Da fordelingen af e e og (* er uafhængig gælder [ ] R ( R r ( R r σ R e e ( n k q ~ F ( q, n k
19 Signifikanstest af enkelt parameter H : ι vs H : ι H hypotesen kan skrives som: Konsekvens: R i k [ ] L L r i+ te element i matrix R q R R i + ' te element i diagonalen af.
20 Signifikanstest af enkelt parameter Lad R R Da har vi: i s ~ F (, n k i SE( ( n k Desuden: hvor i ~ t SE( i s Vi afviser H hvis i SE( i ( n > t k α
21 Signifikanstest af alle regressionsparametre: Er MLR esværet værd? H : k vs H : Mindst et i H hypotesen kan skrives som: Det kan vises at i dette tilfælde er R r M M M L O M M L k k [ ] σ σ SSR r R R R r R
22 Er MLR esværet værd? Under H har vi da: SSR k MSR F ~ F k, n SSE n k MSE k Hvis F > F α (k,n-k-, så afviser vi H. Bemærk følgende omskrivning: F SS SS R k ( R ( n k ( R ( n k Dvs jo mere modellen forklare (stort R jo mindre sandsynligt er det at viafviser H. R k
23 ANOVA aellen Soure of variation Sums of squares df Mean Squares F-ratio P-værdi Regression SSR k MSRSSR/k MSR/MSE? Error SSE n-k- MSESSE/(n-k- otal SS n- Store værdier af F er ufordelagtige for H. Hvis F > F α (k,n-k- afviser vi H, dvs. MLR er esværet værd
24 Signifikanstest af en gruppe parametre R r q H : 4 vs H : og/eller 4 Hypotesen kan omskrives til:
25 Signifikanstest af en gruppe parametre Lad SSE være sum of squared errors når og 4 er med i modellen. Lad SSE være sum of squared errors når og 4 ikke er med i modellen. Da gælder ( SSE SSE q SSE ( n k ( q, n F ~ F k Vi afviser H hvis F > F α (q,n-k-.
26 Multipel lineær regression (Eksempel - i ogen Eksempel: Y Export Eksport til Singapore i millioner $ M Money supply Lend Udlånsrente 3 Prie Prisindex 4 Exhange Vekselkurs ml. S pore $ og US $ Model: y i 4 + x + x + x + x + ε i i 3 3i 4 i i ε i.i.d N(, σ i
27 Model Model Summary Adjusted Std. Error of Durin- R R Square R Square the Estimate Watson,98 a,85,84,33577,583 R.85 etyder at modellen forklarer 8,5% af den totale variation i data. ANOVA Model Regression Residual otal Sum of Squares df Mean Square F Sig. 3, ,37 73,59, a 6,99 6,3 39, F-testet af hypotesen H : 3 4 har P- værdi mindre end,5, så vi afviser H, dvs. Y har en lineær sammenhæng med mindst et i, mao. kan modellen etale sig. Stemmer overens med R.
28 est for regressionsparametre Coeffiients a Model (Constant M Lend Prie Exhange Unstandardized Coeffiients Standardized Coeffiients 95% Confidene Interval for B B Std. Error Beta t Sig. Lower Bound Upper Bound -4,5,766 -,45,5-9,545,54,368,64,549 5,77,,4,496,5,49,,96,94 -,94,3,37,9,5 3,95,,8,55,68,75,4,8,8 -,8,68 Det ser ud som om Lend og Exhange ikke har nogen etydning. Vi ser derfor på en simplere model: NB: Generelt ikke en god ide at fjerne alle ikke signif. par. Simplere model: y i x x i 3 3i ε i ε i i.i.d N (, σ
29 est for at fjerne to prametre og 4 med og 4 fjernet F ( SSE SSE q SSE ( n k ( F (, p værdi. 975
30 Redueret model Parameter estimater og test: R og justeret R Bemærk R er uændret men justeret R er øget!
31 Grafisk modelkontrol Satterplots Residualplots Histogrammer Normalfordelingsplot Outliers og Indflydelsesrige oservationer
32 Modelkontrol: Residualplots e vs x i i e vs x i i3
33 Residualplot e vs ˆ i y i
34 Normalfordelingsplot Histogram og q-q plot for residualer
35 Outliers og Indflydelsesrige Oservationer Outliers Indflydelsesrig Oservation y Regressionslinie uden outlier.. y Punkt med stor værdi af x i Regressionslinie med outlier Regressionslinie når alle datapunkter er inkluderet Outlier x Ingen sammenhæng mellem x og y i denne klump x
36 Prædiktion Mål: Prædiktere y når kovariaterne er Punkt-prædiktion Egenskaer: E [ x x L x ] y ˆ + x + x + L+ x k k ( yˆ E Var k ( ( yˆ Var Var
37 Konfidensinterval for Fordelingn af med kendt varians Fordelingen af med ukendt varians (-α% konfidens interval for ŷ, ~ ˆ ˆ N x y E y Var σ ~ ˆ ˆ k n t s x y E y ˆ ± s k n t y α ŷ ŷ ŷ
38 Prædiktionsinterval Model: y + ε ε Ν(,σ Residual: Variansen af residualet Fordelingen af y (-α% prædiktions-interval + + y y e ε ε ˆ ( ( + + Var e Var σ σ ( ~ ˆ + k n t s y y ( ˆ + ± s k n t y α
39 Export Estimerede regressionplane for Eksempel - Estimerede regressionplane for Eksempel - M Prie Prædiktions-intervaller tilgængelige i SPSS for x-værdier i data. Se under Save menuen.
40 Multipel lineær regression og dikotom forklarende variale Y afhængig variael er skala forklarende variael og er dikotom forklarende variael, dvs. kan tage to værdier. Eksempel: Y er vægt, er højde og er køn. Fremgangsmåde: omkodes til inær variael: hvis Mand hvis Kvinde
41 Antag hvis mand og hvis kvinde. Model: y + x + x + ε ε ~ N(, σ For mænd har vi og x ε ε ~ N(, σ y + + For kvinder har vi og y + x + + ε ε ~ N(, σ Bemærk: o linier med forskellige skæringspunkter, hhv og +.
42 o regressions liner med forskellig skæring, men samme hældning Y Line for + Line for
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Statistik Lektion 16 Multipel Lineær Regression
Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
Statistik Lektion 4. Variansanalyse Modelkontrol
Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Økonometri Lektion 1 Simpel Lineær Regression 1/31
Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
Økonometri: Lektion 6 Emne: Heteroskedasticitet
Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske
Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater
Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi
Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression
Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende
Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model
Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H
Økonometri: Lektion 2 Multipel Lineær Regression 1/27
Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere
Økonometri: Lektion 2 Multipel Lineær Regression 1/33
Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,
Økonometri: Lektion 6 Emne: Heteroskedasticitet
Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 34 Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Antag vi har model: Vi ønsker at teste hypotesen y = β 0 + β 1 x
Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet
Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker
Simpel Lineær Regression: Model
Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]
Modul 11: Simpel lineær regression
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................
Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol
Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Modul 6: Regression og kalibrering
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
Multipel regression. Data fra opgave 3 side 453: Multipel regressionsmodel: Y = α + β 1 x 1 + β 2 x 2 + ǫ. hvor ǫ N(0, σ 2 ).
Program 1. multipel regression 2. polynomiel regression (og andre kurver) 3. kategoriske variable 4. Determinationkoefficient og justeret determinationskoefficient 5. ANOVA-tabel 1/13 Multipel regression
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning
1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge
Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2
Statistik Lektion 17 Multipel Lineær Regression
Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x
Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning
1 Multipel regressions model Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning PSE (I17) ASTA - 11. lektion
Generelle lineære modeller
Generelle lineære modeller Regressionsmodeller med én uafhængig intervalskala variabel: Y en eller flere uafhængige variable: X 1,..,X k Den betingede fordeling af Y givet X 1,..,X k antages at være normal
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol
Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle
Kvantitative metoder 2
Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen
Kapitel 11 Lineær regression
Kapitel 11 Lineær regression Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 1 Indledning Vi modellerer en afhængig variabel (responset) på baggrund af en uafhængig variabel (stimulus),
Simpel Lineær Regression
Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Lineær regression i SAS. Lineær regression i SAS p.1/20
Lineær regression i SAS Lineær regression i SAS p.1/20 Lineær regression i SAS Simpel lineær regression Grafisk modelkontrol Multipel lineær regression SAS-procedurer: PROC REG PROC GPLOT Lineær regression
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
Module 3: Statistiske modeller
Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med
Kvantitative metoder 2
Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
Kursus 02402/02323 Introducerende Statistik
Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ
Indhold 1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) 2 1.1 Variation indenfor og mellem grupper.......................... 2 1.2 F-test for ingen
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser
Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier
To samhørende variable
To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1
Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Module 9: Residualanalyse
Mathematical Statistics ST6: Linear Models Bent Jørgensen og Pia Larsen Module 9: Residualanalyse 9 Rå residualer 92 Standardiserede residualer 3 93 Ensidig variansanalyse 4 94 Studentiserede residualer
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt
enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med
Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006
Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge
Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange
! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet
Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
Eksamen Bacheloruddannelsen i Medicin med industriel specialisering
Eksamen 2016 Titel på kursus: Uddannelse: Semester: Forsøgsdesign og metoder Bacheloruddannelsen i Medicin med industriel specialisering 6. semester Eksamensdato: 17-02-2015 Tid: kl. 09.00-11.00 Bedømmelsesform
Module 12: Mere om variansanalyse
Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........
Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm
Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik [email protected] Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model
Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ
Perspektiver i Matematik-Økonomi: Linær regression
Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: [email protected] Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem
Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test
Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2
Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ
Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Per Bruun Brockhoff, DTU Compute, Claus Thorn Ekstrøm, KU Biostatistik, Ernst Hansen, KU Matematik January 17, 2017 Abstract
Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at
Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
To-sidet variansanalyse
Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til
To-sidet varians analyse
To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),
Statistik Formelsamling. HA Almen, 1. semester
Statistik Formelsamling HA Almen, 1. semester Statistik - Formelsamling Indholdsfortegnelse Hvordan kan formelsamlingen bruges?... 5 Værd at vide... 5 Oversigt Mest brugte symboler... 5 Disclaimer... 5
Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1
Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006 Økonometri 1: F9 1 Program frem til efterårsferien Om goodness-of-fit, prediktion og residualer (kap. 6.3-4) Kvalitative egenskaber i den multiple
Skriftlig eksamen Science statistik- ST501
SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1
Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere
Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration
Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: [email protected] Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion
