Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at
|
|
|
- Kaare Dahl
- 9 år siden
- Visninger:
Transkript
1 Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af de ukendte parametre. Likelihood funktionen rangordner de forskellige mulige værdier af (µ,σ 2 ). En stor værdi af L(µ,σ 2 ) antyder, at (µ,σ 2 ) er gode bud på de sande værdier af parametrene. MLE p. 1/22 MLE - fortsat p. 2/22 Vi finder (ved at differentiere l og under forudsætning af at man kan differentiere x 1/x), at µ = x. N(µ,σ 2 /n) σ 2 = 1 (x i x.) 2 σ 2 χ 2 (n 1)/n n Bemærk at E[ σ 2 ] = n 1 n σ2 σ 2. Det middelværdirette variansskøn er s 2 = 1 n 1 (x i x. ) 2 σ 2 χ 2 (n 1)/(n 1). s 2 benyttes i nævneren af t-teststørrelsen. Konklusion : Vi benytter stadig s 2 som skøn over variansen. p. 3/22 p. 4/22
2 Hypotese: H 0 : µ = µ 0 LRT - fortsat Likelihood ratio teststørrelsen er Vi finder, at Q(x) = max under H 0 L(µ,σ 2 ) max under M L(µ,σ 2 ) = L(µ 0, n 1 n (x i µ 0 ) 2 ) 1 L( x n, n (x i x. ) 2 ) ]0, 1[ hvor Q(x) =... = ( ) n/2 1 + t2 (x) n 1 t(x) = x µ 0 s 2 /n p. 5/22 p. 6/22 LRT - fortsat Opsummering: Da afbildningen z (1 + z n 1 ) n/2 er strengt aftagende følger, at p obs (x) = P(Q(X) Q(x)) = P( t(x) t(x) ) = 2(1 F t(n 1) ( t(x) )) I en normalfordelt observationsrække er t-testet for µ = µ 0 ækvivalent med likelihood ratio testet. Dvs. om du gør det ene eller andet så fås samme testss. Tilsvarende kan man vise, at i to normalfordelte observationsrækker med samme varians er t-testet for µ 1 = µ 2 ækvivalent med LRT for denne hypotese. (Regne-regne-regne). Samme test som vi tidligere har benyttet! p. 7/22 p. 8/22
3 Opsummering - fortsat: Bemærkning til notationen Helt generelt: Alle (eksakte) t-test vi betragter er ækvivalente med LRT (se kapitel 4). Her er t-teststørrelsen for hypotesen H 0 : parameter = µ 0 beregnet som t = estimat µ 0 Std Error t(f) hvor numerisk store værdier er kritiske. f er frihedsgraderne for variansskønnet. notationen er reserveret til maksimum likelihood estimater. notationen kan benyttes til et vilkårligt estimat. I en normalfordelt observationsrække kan vi derfor skrive µ µ = x. N(µ,σ 2 /n) σ 2 σ 2 = SSD/n σ 2 χ 2 (n 1)/n σ 2 s 2 = SSD/(n 1) σ 2 χ 2 (n 1)/(n 1) Perspektiv: p. 9/22 Lineær regression-intro p. 10/22 I modeller, hvor det ikke er oplagt hvordan parametre skal estimeres, benyttes ML-estimater (dog stadig det middelværdirette variansskøn). I modeller, hvor det ikke er oplagt hvordan man skal teste, benyttes LRT. (Eksempel: Tre normalfordelte observationsrækker hvor man tester for ens middelværdi). Tager udgangspunkt i Ex. 3.4 hvor vi betragter alder og blodtryk. Betragt alder som ikke-stokastisk. Vi vil opstille en model, hvor blodtrykket stiger lineært med alderen; blodtryk α + β alder (Vi skal modellere variationen omkring linjen). I første omgang vil vi fokusere på journalister. Senere skal vi sammenligne blodtryk for journalister og universitetslærere. p. 11/22 p. 12/22
4 Lineær regression-intro Model: Vi har n = 13 observationer for journalister. x i angiver den ite journalists blodtryk, i = 1,...,n. t i angiver den ite journalists alder, i = 1,...,n. Data: Se Table 3.6. M 2 : X i N(α + βt i,σ 2 ) (Modellen M 1 omtales senere). Det vil sige: Det forventede blodtryk for en journalist, der er t år gammel er α + βt; Specielt har vi, at det forventede blodtryk stiger lineært med alderen; Variationen omkring linjen er normalfordelt; Variansen afhænger ikke af alderen. Bemærkninger p. 13/22 Vi skal nu lave flg.: p. 14/22 Vi taler om en lineær regression af x på t; t α + βt kaldes regressionslinjen; α kaldes afskæringen, positionen eller interceptet; β er hældningen på regressionslinjen; x kaldes den afhængige variabel eller responsen; t kaldes den uafhængige variabel eller den forklarende variable; Modelkontrol: diverse plots, residualer. (Side samt lidt af 3.3.5). Notation. (Side ; opsummering i Table 3.7 side 125). Finder α, β, det middelværdirette variansskøn (frihedsgrader n 2) De tilhørende fordelinger. (Side , Table 3.7 side 125). Test: t-test konstrueret efter de sædvanlige principper; 95%-ki. (Side 130). p. 15/22 Andre modeller hvor fx. α = 0 (Side ). p. 16/22
5 Plot data (scatterplot). Modelkontrol: Se efter afvigelser. Fx. ikke-lineær sammenhæng; Lad ikke-konstant varians; r i = x i ( α + βt i ) Kaldes residualer. (måler afvigelsen fra den estimerede regressionslinje). Modelkontrol - fortsat: Bemærk at x i (α + βt i ) N(0,σ 2 ). Indsættes estimaterne fås r i N(0,σ 2 (1 h i )) (se def. af h i i (3.58)). Plot (t i,r i ) og se efter systematik. p. 17/22 p. 18/22 Standardiserede residualer Notation: De standardiserede residualer er r i = r i 1 hi N(0,σ 2 ). De standardiserede residualer er ikke uafhængige. Lav fraktildiagram for de standardiserede residualer Et fraktildiagram for x 1,...,x n siger intet om M 2. S x = USS t = SSD x = SP xt = x i S t = t 2 i USS x = (x i x. ) 2 SSD t = x i t i SPD xt = t i x 2 i (t i t. ) 2 (x i x. )(t i t. ) Vigtige Beregningsformler opsummeres i Table 3.7. p. 19/22 p. 20/22
6 Likelihood-funktionen MLE = L(α,β,σ 2 ) n 1 2πσ 2 e 1 2σ 2 (x i (α+βt i)) 2 Vi viser, at β = SPD xt SSD t α = x. β t. = ( 2πσ 2 ) n/2 e 1 2σ 2 P n (xi (α+βti))2 σ 2 = 1 n (x i ( α + βt i )) 2 og finder det middelværdirette variansskøn (erstat n med n 2 i nævneren. Frihedsgraderne er n 2). p. 21/22 p. 22/22
Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22
Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og
Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 6
Institut for Matematiske Fag Matematisk Modellering 1 Aarhus Universitet Eva B. Vedel Jensen 25. februar 2008 UGESEDDEL 6 Forelæsningerne torsdag den 21. februar og tirsdag den 26. februar. Jeg har gennemgået
Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??
Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge
Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange
Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge
Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved
Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)
Matematisk Modellering 1 Cheat Sheet
By a team of brave computer scientists: Mads P. Buch, Tobias Brixen, Troels Thorsen, Peder Detlefsen, Mark Gottenborg, Peter Krogshede - 1 Contents 1 Basalt 3 1.1 Varianser...............................
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser
Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
Nanostatistik: Lineær regression
Nanostatistik: Lineær regression JLJ Nanostatistik: Lineær regression p. 1/41 Sammenhænge Funktionssammenhæng: y er en funktion af x. Ex: Hvis jeg kender afstanden mellem to galakser så kender jeg også
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større
Perspektiver i Matematik-Økonomi: Linær regression
Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: [email protected] Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem
Eksamen i Statistik for biokemikere. Blok
Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data
Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: [email protected] Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration
To samhørende variable
To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen
Kvantitative metoder 2
Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test
Økonometri Lektion 1 Simpel Lineær Regression 1/31
Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen
Uge 10 Teoretisk Statistik 1. marts 2004
1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt
Statistik 1 og Statistiske Modeller 2: Todimensionale normalfordelte data Flerdimensionale normalfordelte data. Jørgen Granfeldt
Statistik 1 og Statistiske Modeller : Todimensionale normalfordelte data Flerdimensionale normalfordelte data Jørgen Granfeldt Institut for Matematiske Fag Det Naturvidenskabelige Fakultet Aarhus Universitet
Statistik Lektion 4. Variansanalyse Modelkontrol
Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
Modul 11: Simpel lineær regression
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................
Module 9: Residualanalyse
Mathematical Statistics ST6: Linear Models Bent Jørgensen og Pia Larsen Module 9: Residualanalyse 9 Rå residualer 92 Standardiserede residualer 3 93 Ensidig variansanalyse 4 94 Studentiserede residualer
Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet
Module 12: Mere om variansanalyse
Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........
Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning
1 Multipel regressions model Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning PSE (I17) ASTA - 11. lektion
Økonometri: Lektion 6 Emne: Heteroskedasticitet
Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2005 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,
Simpel Lineær Regression
Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Modul 6: Regression og kalibrering
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet
Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning
1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12
Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt
Statistik Lektion 16 Multipel Lineær Regression
Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ
Indhold 1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) 2 1.1 Variation indenfor og mellem grupper.......................... 2 1.2 F-test for ingen
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
Løsning til eksamen d.27 Maj 2010
DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1
Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm
Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik [email protected] Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
