On the Fučik spectrum of non-local elliptic operators

Størrelse: px
Starte visningen fra side:

Download "On the Fučik spectrum of non-local elliptic operators"

Transkript

1 Nonlinear Differ. Equ. Appl. 21 (2014), c 2014 Springer Basel /14/ published online January 7, 2014 DOI /s Nonlinear Differential Equations and Applications NoDEA On the Fučik spectrum of non-local elliptic operators Sarika Goyal and K. Sreenadh Abstract. In this article, we study the Fučik spectrum of the fractional Laplace operator which is defined as the set of all (α, β) R 2 such that } ( Δ) s u = αu + βu in u =0 inr n \. has a non-trivial solution u, where is a bounded domain in R n with Lipschitz boundary, n>2s, s (0, 1). The existence of a first nontrivial curve C of this spectrum, some properties of this curve C, e.g. Lipschitz continuous, strictly decreasing and asymptotic behavior are studied in this article. A variational characterization of second eigenvalue of the fractional eigenvalue problem is also obtained. At the end, we study a nonresonance problem with respect to the Fučik spectrum. Mathematics Subject Classification (2010). 35R11, 35R09, 35A15. Keywords. Non-local operator Fractional Laplacian Fučik spectrum Nonresonance. 1. Introduction The Fučik spectrum of fractional Laplace operator is defined as the set of all (α, β) R 2 such that { ( Δ) s u = αu + βu in u =0 onr n \. has a non-trivial solution u, where s (0, 1) and ( Δ) s is the fractional Laplacian operator defined as ( Δ) s u(x) = 1 u(x + y)+u(x y) 2u(x) 2 R y n+2s dy for all x R n. n In general, we study the Fučik spectrum of an equation driven by the non-local operator L K which is defined as L K u(x) = 1 (u(x + y)+u(x y) 2u(x))K(y)dy for all x R n, 2 R n where K : R n \{0} (0, ) satisfies the following:

2 568 S. Goyal and K. Sreenadh NoDEA (i) mk L 1 (R n ), where m(x) = min{ x 2, 1}, (ii) There exist λ>0ands (0, 1) such that K(x) λ x (n+2s), (iii) K(x) =K( x) for any x R n \{0}. In case K(x) = x (n+2s), L K is the fractional Laplace operator ( Δ) s. The Fučik spectrum of the non-local operator L K is defined as the set K of (α, β) R2 such that } L K u = αu + βu in u =0 inr n (1.1) \. (1.1) has a nontrivial solution u. Here u ± = max(±u, 0) and R n is a bounded domain with Lipshitz boundary. For α = β, the Fučik spectrum of (1.1) becomes the usual spectrum of } L K u = λu in u =0 inr n (1.2) \. Let 0 <λ 1 <λ 2 λ k denote the distinct eigenvalues of (1.2). It is proved in [22] that the first eigenvalue λ 1 of (1.2) is simple, isolated and can be characterized as follows { } λ 1 = inf (u(x) u(y)) 2 K(x y)dxdy : u 2 =1. u X 0 The author also proved that the eigenfunctions corresponding to λ 1 are of constant sign. We observe that K clearly contains (λ k,λ k )foreachk N and two lines λ 1 R and R λ 1. K is symmetric with respect to the diagonal. In this paper we will prove that the two lines R λ 1 and λ 1 R are isolated in K and give a variational characterization of the second eigenvalue λ 2 of L K. When s = 1, the fractional Laplacian operator becomes the usual Laplace operator. The Fučik spectrum was introduced by Fučik (1976) who studied the negative Laplacian in one dimension with periodic boundary conditions, and by Dancer [6]. The Fučik spectrum in the case of Laplacian, p-laplacian equation with Dirichlet, Neumann and Robin boundary condition has been studied by many authors [2 5,8,9,12,15,16,18 20]. A nonresonance problem with respect to Fučik spectrum is also discussed in many papers [4,14,15]. To the best of our knowledge, no work has been done to find the Fučik spectrum for non-local operators. Recently a lot of attention is given to the study of fractional and non-local operator of elliptic type due to concrete real world applications in finance, thin obstacle problem, optimization, quasi-geostrophic flow etc [21,23 25]. Here we use a similar approach to find the Fučik spectrum as the one used in [4]. In [21], Servadei and Valdinoci discussed the Dirichlet boundary value problem in case of fractional Laplacian using the Variational techniques. We also use similar variational techniques to find K. Due to non-localness of

3 Vol. 21 (2014) On the Fučik spectrum of non-local ellipticoperators 569 the fractional Laplacian, the space (X 0,. X0 ) is introduced by Servadei. We introduce this space as follows: { X = u u : R n R is measurable,u L 2 () and (u(x) u(y)) } K(x y) L 2 (), where = R 2n \ (C C) and C :=R n \. The space X is endowed with the norm defined as ( ) 1 u X = u L 2 () + u(x) u(y) 2 2 K(x y)dxdy. Then we define X 0 = {u X : u = 0 a.e. in R n \ } with the norm ( ) 1 u X0 = u(x) u(y) 2 2 K(x y)dxdy is a Hilbert space. Note that the norm. X0 involves the interaction between andr n \. Remark 1.1. (i) Cc 2 () X 0, X H s () and X 0 H s (R n ),whereh s () denotes the usual fractional Sobolev space endowed with the norm ( (u(x) u(y)) 2 ) 1 2 u Hs () = u L 2 + x y n+2s dxdy. (ii) The embedding X 0 L 2 (R n )=L 2 () is continuous, where 2 = To see the details of these embeddings, one can refer [10,21]. 2n n 2s. Definition 1.2. A function u X 0 is a weak solution of (1.1), if for every v X 0, u satisfies (u(x) u(y))(v(x) v(y))k(x y)dxdy = α u + vdx β u vdx. Weak solutions of (1.1) are exactly the critical points of the functional J : X 0 R defined as J(u) = 1 u(y)) 2 (u(x) 2 K(x y)dxdy α 2 (u + ) 2 dx β (u ) 2 dx. 2 Then J is Fréchet differentiable in X 0 and J (u),φ = (u(x) u(y))(φ(x) φ(y))k(x y)dxdy α u + φdx β u φdx.

4 570 S. Goyal and K. Sreenadh NoDEA The paper is organized as follows: In Sect. 2 we construct a first nontrivial curve in K, described as (p + c(p),c(p)). In Sect. 3 we prove that the lines λ 1 R and R λ 1 are isolated in K, the curve that we obtained in Sect. 2 is the first nontrivial curve and give the variational characterization of second eigenvalue of L K. In Sect. 4 we prove some properties of the first curve. A nonresonance problem with respect to the Fučik spectrum is also studied in Sect. 5. We shall throughout use the function space X 0 with the norm. X0 and we use the standard L p () space whose norms are denoted by u L p.alsoφ 1 is the eigenfunction of L K corresponding to λ Fučik spectrum K for L K In this section we study the existence of the first nontrivial curve in the Fučik spectrum K of L K. We find that the points in K are associated with the critical value of some restricted functional. For this we fix p R and for p 0, consider the functional J p : X 0 R by J p (u) = (u(x) u(y)) 2 K(x y)dxdy p (u + ) 2 dx. Then J p C 1 (X 0, R) andforanyφ X 0 J p(u),φ =2 (u(x) u(y))(φ(x) φ(y))k(x y)dxdy 2p Also J p := J p P is C 1 (X 0, R), where P is defined as { } P = u X 0 : I(u) := u 2 dx =1. u + (x)φ(x)dx. We first note that u Pis a critical point of Jp if and only if there exists t R such that (u(x) u(y))(v(x) v(y))k(x y)dxdy p u + vdx = t uvdx, (2.1) for all v X 0. Hence u P is a nontrivial weak solution of the problem L K u =(p + t)u + tu in ; u =0 onr n \, which exactly means (p + t, t) K. Putting v = u in (2.1), we get t = J p (u). Thus we have the following result, which describes the relationship between the critical points of J p and the spectrum K. Lemma 2.1. For p 0, (p + t, t) R 2 belongs to the spectrum K if and only if there exists a critical point u P of J p such that t = J p (u), a critical value. Now we look for the minimizers of J p.

5 Vol. 21 (2014) On the Fučik spectrum of non-local ellipticoperators 571 Proposition 2.2. The first eigenfunction φ 1 is a global minimum for J p with J p (φ 1 )=λ 1 p. The corresponding point in K is (λ 1,λ 1 p) which lies on the vertical line through (λ 1,λ 1 ). Proof. It is easy to see that J p (φ 1 )=λ 1 p and J p (u) = (u(x) u(y)) 2 K(x y)dxdy p (u + ) 2 dx λ 1 u 2 dx p (u + ) 2 dx λ 1 p. Thus φ 1 is a global minimum of J p with J p (φ 1 )=λ 1 p. Now we have a second critical point of Jp at φ 1 corresponding to a strict local minimum. Proposition 2.3. The negative eigenfunction φ 1 is a strict local minimum for J p with J p ( φ 1 )=λ 1. The corresponding point in K is (λ 1 + p, λ 1 ),which lies on the horizontal line through (λ 1,λ 1 ). Proof. Let us suppose by contradiction that there exists a sequence u k P, u k φ 1 with J p (u k ) λ 1, u k φ 1 in X 0. Firstly, we show that u k changes sign for sufficiently large k. Since u k φ 1,itmustbe 0for some x X 0. If u k 0 for a.e x, then J p (u k )= (u k (x) u k (y)) 2 K(x y)dxdy > λ 1, since u k ±φ 1 and we get contradiction as J p (u k ) λ 1.Sou k changes sign for sufficiently large k. Define w k := u+ k and u + k L 2 r k := (w k (x) w k (y)) 2 K(x y)dxdy. Now we claim that r k. Let us suppose by contradiction that r k is bounded. Then there exists a subsequence of w k still denoted by w k and w X 0 such that w k wweakly in X 0 and w k w strongly in L 2 (R n ). Therefore w2 dx =1,w 0 a.e. and so for some ɛ>0, δ = {x X 0 : w(x) ɛ} > 0. As u k φ 1 in X 0 and hence in L 2 (). Therefore {x :u k (x) ɛ} 0 as k and so {x :w k (x) ɛ} 0ask which is a contradiction as δ>0. Hence the claim. Next, (u k (x) u k (y)) 2 =((u + k (x) u+ k (y)) (u k (x) u k (y)))2 =(u + k (x) u+ k (y))2 +(u k (x) u k (y))2 2(u + k (x) u+ k (y))(u k (x) u k (y)) =(u + k (x) u+ k (y))2 +(u k (x) u k (y))2 +2u + k (x)u k (y)+2u k (x)u+ k (y), wherewehaveusedu + k (x)u k (x) = 0. Using K(x) =K( x) wehave u + k (x)u k (y)k(x y)dxdy = u + k (y)u k (x)k(x y)dxdy. (2.2)

6 572 S. Goyal and K. Sreenadh NoDEA Then from above estimates, we get J p (u k )= (u k (x) u k (y)) 2 K(x y)dxdy p (u + k )2 dx = (u + k (x) u+ k (y))2 K(x y)dxdy + (u k (x) u k (y))2 K(x y)dxdy +4 u + k (x)u k (y)k(x y)dxdy p (u + k )2 dx (r k p) (u + k )2 dx + λ 1 (u k )2 dx +4 u + k (x)u k (y)k(x y)dxdy (r k p) (u + k )2 dx + λ 1 (u k )2 dx. As u k P,weget J p (u k ) λ 1 = λ 1 (u + k )2 dx + λ 1 (u k )2 dx. Combining both the inequalities we have, (r k p) (u + k )2 dx + λ 1 (u k )2 dx λ 1 (u + k )2 dx + λ 1 (u k )2 dx. This implies (r k p λ 1 ) (u+ k )2 dx 0, and hence r k p λ 1,which contradicts the fact that r k +, as required. We will now find the third critical point based on the mountain pass theorem by Ambrosetti Robinowitz. A norm of derivative of the restriction J p of J p at u P is defined as J p (u) = min{ J p(u) ti (u) X0 : t R}. Definition 2.4. We say that J p satisfies the Palais Smale [in short, (P.S)] condition on P if for any sequence u k P such that J p (u k ) is bounded and J p(u k ) 0, then there exists a subsequence that converges strongly in X 0. Now we state here the version of mountain pass theorem which will be used later: Proposition 2.5. [1] Let E be a Banach space, g, f C 1 (E,R), M = {u E g(u) =1} and u 0, u 1 M. Letɛ>0 such that u 1 u 0 >ɛand inf{f(u) :u M and u u 0 E = ɛ} > max{f(u 0 ),f(u 1 )}. Assume that f satisfies the (P.S) condition on M and that Γ={γ C([ 1, 1],M):γ( 1) = u 0 and γ(1) = u 1 } is non empty. Then c =inf γ Γ max f(u) is a critical value of f M. Lemma 2.6. J p satisfies the (P.S) condition on P.

7 Vol. 21 (2014) On the Fučik spectrum of non-local ellipticoperators 573 Proof. Let {u k } be a (P.S) sequence. i.e., there exists K>0andt k such that J p (u k ) K, (2.3) (u k (x) u k (y))(v(x) v(y))k(x y)dxdy p u + k v t k u k v = o k (1) v X0. (2.4) From (2.3), we get u k is bounded in X 0. So we may assume that up to a subsequence u k u 0 weakly in X 0,andu k u 0 strongly in L 2 (). Putting v = u k in (2.4), we get t k is bounded and up to a subsequence t k converges to t. We now claim that u k u 0 strongly in X 0.Asu k u 0 weakly in X 0,we have (u k (x) u k (y))(v(x) v(y))k(x y)dxdy (u 0 (x) u 0 (y))(v(x) v(y))k(x y)dxdy (2.5) for all v X 0.Also J p(u k )(u k u 0 )=o k (1). Therefore we get (u k (x) u k (y)) 2 K(x y)dxdy (u k (x) u k (y))(u 0 (x) u 0 (y))k(x y)dxdy o k (1) + p u + k L 2 u k u 0 L 2 + t k u k L 2 u k u 0 L 2 0 as k. Taking v = u 0 in (2.5), we get (u k (x) u k (y))(u 0 (x) u 0 (y))k(x y)dxdy (u 0 (x) u 0 (y)) 2 K(x y)dxdy. From above two equations, we have (u k (x) u k (y)) 2 K(x y)dxdy (u 0 (x) u 0 (y)) 2 K(x y)dxdy. Thus u k 2 X 0 u 0 2 X 0. Now using this and v = u 0 in (2.5), we get u k u 0 2 X 0 = u k 2 X 0 + u k 2 X 0 2 (u k (x) u k (y))(u 0 (x) u 0 (y))k(x y)dxdy 0 as k. Hence u k u 0 strongly in X 0. Lemma 2.7. Let ɛ 0 > 0 be such that J p (u) > J p ( φ 1 ) (2.6) for all u B( φ 1,ɛ 0 ) P with u φ 1, where the ball is taken in X 0.Then for any 0 <ɛ<ɛ 0, inf{ J p (u) :u Pand u ( φ 1 ) X0 = ɛ} > J p ( φ 1 ). (2.7)

8 574 S. Goyal and K. Sreenadh NoDEA Proof. Assume by contradiction that the infimum in (2.7) is equal to J p ( φ 1 )= λ 1 for some ɛ with 0 <ɛ<ɛ 0. Then there exists a sequence u k Pwith u k ( φ 1 ) X0 = ɛ such that J p (u k ) λ k 2. Consider the set C = {u P: ɛ δ u ( φ 1 ) X0 ɛ + δ}, where δ is chosen such that ɛ δ>0andɛ + δ<ɛ 0. In view of our contradiction hypothesis and (2.6), it follows that inf{ J p (u) :u C} = λ 1. Now for each k, we apply Ekeland s variational principle to the functional Jp on C to get the existence of v k C such that J p (v k ) J p (u k ), v k u k X0 1 k, J p (v k ) J p (u)+ 1 k v v k X0 v C (2.8) We claim that v k is a (P.S) sequence for J p on P i.e. Jp (v k ) is bounded and J p(v k ) 0. Once this is proved we get by Lemma 2.6, up to a subsequence v k v strongly in X 0. Clearly v Pand satisfies v ( φ 1 ) X0 ɛ + δ<ɛ 0 and J p (v) =λ 1 which contradicts the given hypotheses. Clearly J p (v k )isa bounded. So we only need to prove that J p(v k ) 0. Let k> 1 δ and take w X 0 tangent to P at v k i.e v k wdx =0, and for t R, define u t := v k + tw. v k + tw L 2 For sufficiently small t, u t Cand take v = u t in (2.8), we get J p(v k ),w 1 k w X 0. (2.9) For complete details refer to Lemma 2.9 of [4]. Since w is arbitrary in X 0, we choose α k such that v k(w α k v k )dx =0. Replacing w by w α k v k in (2.9), we have J p (v k ),w α k J p(v k ),v k 1 k w α kv k X0, since α k v k X0 C w X0,weget J p(v k ),w t k v k wdx C k w X 0 where t k = J p(v k ),v k. Hence as we required. J p(v k ) 0 as k,

9 Vol. 21 (2014) On the Fučik spectrum of non-local ellipticoperators 575 Proposition 2.8. Let ɛ>0 such that φ 1 ( φ 1 ) X0 >ɛand inf{ J p (u) :u Pand u ( φ 1 ) X0 = ɛ} > max{ J p ( φ 1 ), J p (φ 1 )}. Then Γ={γ C([ 1, 1], P) :γ( 1) = φ 1 and γ(1) = φ 1 } is non empty and is a critical value of Jp. Moreover c(p) >λ 1. c(p) = inf max J p(u) (2.10) γ Γ Proof. Let φ X 0 be such that φ Rφ 1 and consider the path γ(t) = tφ 1+(1 t )φ tφ, then γ(t) Γ. Moreover by Lemmas 2.6 and 2.7, Jp 1+(1 t )φ satisfies (P.S) condition and the geometric assumptions. Then by Proposition L 2 2.5, c(p) is a critical value of Jp. Using the definition of c(p) wehavec(p) > max{ J p ( φ 1 ), J p (φ 1 )} = λ 1. Thus we have proved the following: Theorem 2.9. For each p 0, the point (p + c(p),c(p)), wherec(p) >λ 1 is defined by the minimax formula (2.10), then the point (p + c(p),c(p)) belongs to K. It is a trivial fact that K is symmetric with respect to the diagonal. The whole curve, which we obtain using Theorem 2.9 and symmetrizing, is denoted by C := {(p + c(p),c(p)), (c(p),p+ c(p)) : p 0}. 3. First nontrivial curve We start this section by establishing that the lines R {λ 1 } and {λ 1 } R are isolated in K. Then we state some topological properties of the functional J p and finally we prove that the curve C constructed in the previous section is the first nontrivial curve in the spectrum K. Proposition 3.1. The lines R {λ 1 } and {λ 1 } R are isolated in K. In other words, there exists no sequence (α k,β k ) K with α k >λ 1 and β k >λ 1 such that (α k,β k ) (α, β) with α = λ 1 or β = λ 1. Proof. Suppose by contradiction that there exists a sequence (α k,β k ) K with α k,β k >λ 1 and (α k,β k ) (α, β) with α or β = λ 1.Letu k X 0 be a solution of L K u k = α k u + k β ku k in, u k =0 onr n \ (3.1) with u k L 2 = 1. Then we have (u k (x) u k (y)) 2 K(x y)dxdy = α k (u + k )2 dx β k (u k )2 dx α k,

10 576 S. Goyal and K. Sreenadh NoDEA which shows that u k is bounded sequence in X 0. Therefore up to a subsequence u k uweakly in X 0 and u k u strongly in L 2 (). Then the limit u satisfies (u(x) u(y)) 2 K(x y)dxdy = λ 1 (u + ) 2 dx β (u ) 2 dx, since u k uweakly in X 0 and J p(u k ),u k u 0ask. i.e u is a weak solution of L K u = αu + βu in, u =0 onr n \ (3.2) where we have considered the case α = λ 1. Multiplying by u + in (3.2), integrate, using (u(x) u(y))(u + (x) u + (y))=(u + (x) u + (y)) 2 + u + (x)u (y)+u + (y)u (x) and (2.2), we get (u + (x) u + (y)) 2 K(x y)dxdy +2 u + (x)u (y)k(x y)dxdy = λ 1 (u + ) 2 dx. Using this we have, λ 1 (u + ) 2 dx Thus (u + (x) u + (y)) 2 K(x y)dxdy λ 1 (u + (x) u + (y)) 2 K(x y)dxdy = λ 1 (u + ) 2 dx, (u + ) 2 dx so that either u + 0oru = φ 1.Ifu + 0 then u 0 and (3.2) implies that u is an eigenfunction with u 0 so that u = φ 1.Soinanycaseu k converges to either φ 1 or φ 1 in L 2 (). Thus for every ɛ>0 either {x :u k (x) ɛ} 0 or {x :u k (x) ɛ} 0. (3.3) On the other hand, taking u + k as test function in (3.1), we get (u + k (x) u+ k (y))2 K(x y)dxdy +2 u + k (x)u k (y)k(x y)dxdy = α k (u + k )2 dx. Using this, Hölders inequality and Sobolev embeddings we get (u + k (x) u+ k (y))2 K(x y)dxdy (u + k (x) u+ k (y))2 K(x y)dxdy +2 u + k (x)u k (y)k(x y)dxdy = α k (u + k )2 dx α k C {x :u k (x) > 0} 1 2 q u + k 2 X 0

11 Vol. 21 (2014) On the Fučik spectrum of non-local ellipticoperators 577 with a constant C>0, 2 <q 2 = {x :u k (x) > 0} 1 2 q Similarly, one can show that 2n n 2s. Then we have α 1 k C 1. {x :u k (x) < 0} 1 2 q β 1 k C 1. Since (α k,β k ) does not belong to the trivial lines λ 1 R and R λ 1 of K,by using (3.1) wehavethatu k changes sign. Hence, from the above inequalities, we get a contradiction with (3.3). Hence the trivial lines λ 1 R and R λ 1 are isolated in K. Lemma 3.2. [4] Let P = {u X 0 : u2 =1} then 1. P is locally arcwise connected. 2. Any open connected subset O of P is arcwise connected. 3. If O is any connected component of an open set O P, then O O =. Lemma 3.3. Let O = {u P: Jp (u) <r}, then any connected component of O contains a critical point of Jp. Proof. Proof follows in the same lines as Lemma 3.6 of [4] by replacing. 1,p by. X0. Theorem 3.4. Let p 0 then the point (p + c(p),c(p)) is the first nontrivial point in the intersection between K and the line (p, 0) + t(1, 1). Proof. Assume by contradiction that there exists μ such that λ 1 <μ<c(p) and (p+μ, μ) K. Using the fact that {λ 1} R and R {λ 1 } are isolated in K and K is closed we can choose such a point with μ minimum. In other words J p has a critical value μ with λ 1 <μ<c(p), but there is no critical value in the open interval (λ 1,μ). If we construct a path connecting from φ 1 to φ 1 such that J p μ, then we get a contradiction with the definition of c(p), which completes the proof. Let u P be a critical point of J p at level μ. Then u satisfies, (u(x) u(y))(v(x) v(y))k(x y)dxdy =(p + μ) u + vdx μ u vdx. for all v X 0. Replacing v by u + and u,wehave (u + (x) u + (y)) 2 K(x y)dxdy +2 u + (x)u (y)k(x y)dxdy =(p + μ) (u + ) 2 dx, and (u (x) u (y)) 2 K(x y)dxdy +2 = μ (u ) 2 dx. u + (x)u (y)k(x y)dxdy

12 578 S. Goyal and K. Sreenadh NoDEA Thus we obtain, ( ) u + J p (u) =μ, Jp u + = μ 2 u+ (x)u (y)k(x y)dxdy L 2 u + 2, L 2 ( ) u J p u = μ p 2 u+ (x)u (y)k(x y)dxdy L 2 u 2, L 2 and ( ) J p u u = μ 2 u+ (x)u (y)k(x y)dxdy L 2 u 2. L 2 Since u changes sign, the following paths are well-defined on P: u 1 (t) = (1 t)u + tu+ (1 t)u + tu +, u 2 (t) = tu +(1 t)u + L 2 tu +(1 t)u +, L 2 tu +(1 t)u u 3 (t) = tu. +(1 t)u L 2 Then by using the above calculation one can easily get that for all t [0, 1], J p (u 1 (t)) = [(u+ (x) u + (y)) 2 +(1 t) 2 (u (x) u (y)) 2 ]K(x y)dxdy u + (1 t)u 2 L 2 + 4(1 t) u (x)u (y)k(x y)dxdy p (u+ ) 2 dx u + (1 t)u 2 L 2 = μ 2t2 u+ (x)u (y)k(x y)dxdy u + (1 t)u 2 L 2. J p (u 2 (t)) = [(1 t)2 (u + (x) u + (y)) 2 + t 2 (u (x) u (y)) 2 ]K(x y)dxdy (1 t)u + + tu 2 L 2 J p (u 3 (t)) = 4t(1 t) u+ (x)u (y)k(x y)dxdy + p(1 t) 2 (u+ ) 2 + pt 2 (u ) 2 (1 t)u + + tu 2 L 2 = μ 2 u+ (x)u (y)k(x y)dxdy (1 t)u + + tu 2 L 2 pt 2 (u ) 2 dx (1 t)u + + tu 2 L 2. [(1 t)2 (u + (x) u + (y)) 2 +(u (x) u (y)) 2 ]K(x y)dxdy (1 t)u + u 2 L 2 + 4(1 t) u+ (x)u (y)k(x y)dxdy p(1 t) 2 (u+ ) 2 dx (1 t)u + u 2 L 2 = μ 2t2 u+ (x)u (y)k(x y)dxdy (1 t)u + u 2 L 2. Let O = {v P: Jp (v) <μ p}. Then clearly φ 1 O, while φ 1 Oif μ p>λ 1. Moreover φ 1 and φ 1 are the only possible critical points of J p in O because of the choice of μ.

13 Vol. 21 (2014) On the Fučik spectrum of non-local ellipticoperators 579 We note that J ( ) u u p u μ p, L 2 u does not change sign and L 2 vanishes on a set of positive measure, it is not a critical point of J p. Therefore there exists a C 1 path η :[ ɛ, ɛ] Pwith η(0) = and d J dt p (η(t)) t=0 u u L 2 0. Using this path we can move from u u to a point v with J L 2 p (v) <μ p. Taking a connected component of O containing v and applying Lemma 3.3 we have that either φ 1 or φ 1 is in this component. Let us assume that it is φ 1. ( So we continue by a path u 4 (t) from ( μ. Then the path u 4 (t) connects u u L 2 u u L 2 ) to φ 1 which is at level less than ) to φ 1. We observe that J p (u) J p ( u) p. Then it follows that J p ( u 4 (t)) J p (u 4 (t)) + p μ p + p = μ t. Connecting u 1 (t), u 2 (t) andu 4 (t), we get a path from u to φ 1 and joining u 3 (t) and u 4 (t) wegetapathfromu to φ 1. These yields a path γ(t) onp joining from φ 1 to φ 1 such that J p (γ(t)) μ for all t, which concludes the proof. Corollary 3.5. The second eigenvalue λ 2 of (1.2) has the variational characterization given as λ 2 =inf max (u(x) u(y)) 2 K(x y)dxdy, γ Γ where Γ is as in Proposition 2.8. Proof. Take p = 0 in Theorem 3.4. Then we have c(0) = λ 2 and (2.10) concludes the proof. 4. Properties of the curve In this section we prove that the curve C is Lipschitz continuous, has a certain asymptotic behavior and is strictly decreasing. Proposition 4.1. The curve p (p+c(p),c(p)), p R + is Lipschitz continuous. Proof. Proof follows as in Proposition 4.1 of [4]. For completeness we give details. Let p 1 <p 2 then J p1 (u) > J p2 (u) for all u P.Sowehavec(p 1 ) c(p 2 ). Now for every ɛ>0 there exists γ Γ such that max J p2 (u) c(p 2 )+ɛ, and so 0 c(p 1 ) c(p 2 ) max J p1 (u) max J p2 (u)+ɛ. Let u 0 γ[ 1, 1] such that max J p1 (u) = J p1 (u 0 )

14 580 S. Goyal and K. Sreenadh NoDEA then 0 c(p 1 ) c(p 2 ) J p1 (u 0 ) J p2 (u 0 )+ɛ p 2 p 1 + ɛ, as ɛ>0isarbitrary so the curve C is Lipschitz continuous with constant 1. Lemma 4.2. Let A, B be two bounded open sets in R n,witha B and B is connected then λ 1 (A) >λ 1 (B). Proof. From the Proposition 4 of [25] and Theorem 2 of [24], we see that φ 1 is continuous and is a solution of (1.2) in viscosity sense. Then from Lemma 12 of [13], φ 1 > 0. Now from the variational characterization, we see that for A B, λ 1 (A) λ 1 (B). Since φ 1 (B) > 0inB, we get the strict inequality as claimed. Lemma 4.3. Let (α, β) C,andletα(x), β(x) L () satisfying λ 1 α(x) α, λ 1 β(x) β. (4.1) Assume that λ 1 <α(x) and λ 1 <β(x) on subsets of positive measure. (4.2) Then any non-trivial solution u of L K u = α(x)u + β(x)u in, u =0 in R n \. (4.3) changes sign in and α(x) =α a.e. on {x :u(x) > 0}, β(x) =β a.e. on {x :u(x) < 0}. Proof. Let u be a nontrivial solution of (4.3). Replacing u by u if necessary. we can assume that the point (α, β) inc is such that α β. We first claim that u changes sign in. Suppose by contradiction that this is not true, we first consider the case u 0 (the case u 0 can be prove similarly). Then u solves L k u = α(x)u in u =0 onr n \. This implies that the first eigenvalue of L K on X 0 with respect to weight α(x) is equal to 1. i.e { inf (v(x) v(y))2 K(x y)dxdy α(x)v2 dx } : v X 0,v 0 =1. (4.4) We deduce from (4.1), (4.2) and (4.4) that 1= (φ1(x) φ1(y))2 K(x y)dxdy > (φ1(x) φ1(y))2 K(x y)dxdy 1, λ 1 α(x)φ2 1dx a contradiction and hence the claim. Again we assume by contradiction that either {x X 0 : α(x) <αand u(x) > 0} > 0 (4.5) or {x X 0 : β(x) <βand u(x) < 0} > 0. (4.6)

15 Vol. 21 (2014) On the Fučik spectrum of non-local ellipticoperators 581 Suppose that (4.5) holds [a similar argument will hold for (4.6)]. Put α β = p 0. Then β = c(p), where c(p) is given by (2.10). We show that there exists a path γ Γ such that max J p (u) <β, (4.7) which yields a contradiction with the definition of c(p). In order to construct γ we show that there exists a function v X 0 such that it changes sign and satisfies (v+ (x) v + (y)) 2 K(x y)dxdy (v+ ) 2 <α and dx (v (x) v (y)) 2 K(x y)dxdy (v ) 2 <β. dx (4.8) ForthisletO 1 be a component of {x :u(x) > 0} satisfying x O 1 : α(x) <α > 0, which is possible by (4.5). Let O 2 be a component of {x :u(x) < 0} satisfying x O 1 : β(x) <β > 0, which is possible by (4.6). Then we claim that λ 1 (O 1 ) <α and λ 1 (O 2 ) β, (4.9) where λ 1 (O i ) denotes the first eigenvalue of L k on X 0 Oi = {u X Oi : u = 0onR n \O i }. Clearly u Oi X 0 Oi then we have O1 (u(x) u(y)) 2 K(x y)dxdy O1 (u(x) u(y)) 2 K(x y)dxdy <α = α O 1 u 2 dx O 1 α(x)u 2 dx which implies that λ 1 (O 1 ) <α. The other inequality in (4.9) is proved similarly. Now with some modification on the sets O 1 and O 2, we construct the sets Õ1 and Õ2 such that Õ1 Õ2 = and λ 1 (Õ1) <αand λ 1 (Õ2) <β.for this, we consider for ν 0, O 1 (ν) ={x O 1 : dist(x, O c 1) >ν}. Then clearly λ 1 (O 1 (ν)) λ 1 (O 1 ) and moreover λ 1 (O 1 (ν)) λ 1 (O 1 )asν 0. Then there exists ν 0 > 0 such that λ 1 (O 1 (ν)) <α for all 0 ν ν 0. (4.10) Let x 0 O 2 (is not empty as O 1 O 2 = ) and choose 0 < ν < min{ν 0,dist(x 0, c )} and Õ1 = O 1 (ν)andõ2 = O 2 B(x 0, ν 2 ). Then Õ1 Õ2 = and by (4.10), λ 1 (Õ1) <α. Since Õ2 is connected then by (4.9) and Lemma 4.2, wegetλ 1 (Õ2) <β. Now we define v = v 1 v 2, where v i are the extension by zero outside Õi of the eigenfunctions associated to λ i (Õi). Then v satisfies

16 582 S. Goyal and K. Sreenadh NoDEA (4.8). Thus there exist v X 0 which changes sign and satisfies condition (4.8), and moreover we have ( ) J v p = (v+ (x) v + (y)) 2 K(x y)dxdy + (v (x) v (y)) 2 K(x y)dxdy v L 2 v 2 L v 2 2 L 2 2 v+ (x)v (y)k(x y)dxdy p (v+ ) 2 dx v 2 L v 2 2 L 2 < (α p) (v+ ) 2 dx + β (v ) 2 dx 2 v+ (x)v (y)k(x y)dxdy <β. v 2 L v 2 2 L v 2 2 L 2 ( ) ( ) v + v J p v + <α p = β, Jp L 2 v <β p. L 2 Using Lemma 3.3, we have that there exists a critical point in the connected component of the set O = {u P: Jp (u) <β p}. As the point (α, β) C, the only possible critical point is φ 1, then we can construct a path from φ 1 to φ 1 exactly in the same manner as in Theorem 3.4 only by taking v in place of u. Thus we have constructed a path satisfying (4.7), and hence the result follows. Corollary 4.4. Let (α, β) Cand let α(x),β(x) L () satisfying λ 1 α(x) α a.e, λ 1 β(x) β a.e. Assume that λ 1 <α(x) and λ 1 <β(x) on subsets of positive measure. If either α(x) <αa.e in or β(x) <βa.e. in, then (4.3) has only the trivial solution. Lemma 4.5. The curve p (p + c(p),c(p)) is strictly decreasing, (in the sense that p 1 <p 2 implies p 1 + c(p 1 ) <p 2 + c(p 2 ) and c(p 1 ) >c(p 2 )). Proof. Let p 1 <p 2 and suppose by contradiction that either (i) p 1 + c(p 1 ) p 2 + c(p 2 )or(ii) c(p 1 ) c(p 2 ). In case (i) we deduce from p 1 + c(p 1 ) p 2 +c(p 2 ) >p 1 +c(p 2 ) that c(p 1 ) c(p 2 ). If we take (α, β) =(p 1 +c(p 1 ),c(p 1 )) and (α(x),β(x)) = (p 2 + c(p 2 ),c(p 2 )), then by Corollary 4.4, the only solution of (4.3) with (α(x),β(x)) is the trivial solution which contradicts the fact that (p 2 +c(p 2 ),c(p 2 )) K.If(ii) holds then p 1 +c(p 1 ) p 1 +c(p 2 ) <p 2 +c(p 2 ), if we take (α, β) =(p 2 +c(p 2 ),c(p 2 )) and (α(x),β(x)) = (p 1 +c(p 1 ),c(p 1 )), then the only solution of (4.3) with (α(x),β(x)) is the trivial one which contradicts the fact that (p 1 + c(p 1 ),c(p 1 )) K and hence the result follows. As c(p) is decreasing and positive so the limit of c(p) existsasp. In the next Theorem we find the asymptotic behavior of the first nontrivial curve. Theorem 4.6. If n 2s then the limit of c(p) as p is λ 1. Proof. For n 2s, we can choose a function φ X 0 such that there does not exist r R such that φ(x) rφ 1 (x) a.e. in. For this it suffices to take φ X 0 such that it is unbounded from above in a neighborhood of some point x X 0. Then by contradiction argument, one can similarly show c(p) λ 1 as p as in Proposition 4.4 of [4].

17 Vol. 21 (2014) On the Fučik spectrum of non-local ellipticoperators Nonresonance between (λ 1,λ 1 ) and C In this section we study the following problem { LK u = f(x, u) in u =0 onr n (5.1) \, where f(x, u)/u lies asymptotically between (λ 1,λ 1 ) and (α, β) C.Letf : R R be a function satisfying L () Caratheodory conditions. Given a point (α, β) C, we assume following: f(x, s) f(x, s) γ ± (x) lim inf lim sup Γ ± (x) (5.2) s ± s s ± s hold uniformly with respect to x, where γ ± (x) and Γ ± (x) arel functions which satisfy { λ1 γ + (x) Γ + (x) α a.e. in (5.3) λ 1 γ (x) Γ (x) β a.e. in. Write F (x, s) = s f(x, t)dt, we also assume the following inequalities: 0 2F (x, s) 2F (x, s) δ ± (x) lim inf s ± s 2 lim sup s ± s 2 Δ ± (x) (5.4) hold uniformly with respect to x, where δ ± (x) and Δ ± (x) arel functions which satisfy λ 1 δ + (x) Δ + (x) α a.e. in λ 1 δ (x) Δ (x) β a.e. in (5.5) δ + (x) >λ 1 and δ (x) >λ 1 on subsets of positive measure, either Δ + (x) <αa.e. in or Δ (x) <βa.e. in. Theorem 5.1. Let (5.2), (5.3), (5.4), (5.5) hold and (α, β) C. Then problem (5.1) admits at least one solution u in X 0. Define the energy functional Ψ : X 0 R as Ψ(u) = 1 (u(x) u(y)) 2 K(x y)dxdy F (x, u)dx 2 Then Ψ is a C 1 functional on X 0 and v X 0 Ψ (u),v = (u(x) u(y))(v(x) v(y))k(x y)dxdy f(x, u)vdx and critical points of Ψ are exactly the weak solutions of (5.1). Lemma 5.2. Ψ satisfies the (P.S) condition on X 0. Proof. Let u k be a (P.S) sequence in X 0, i.e Ψ(u k ) c, Ψ (5.6) (u k ),v ɛ k v X0, v X 0, where c is a constant and ɛ k 0ask. It suffices to show that u k is a bounded sequence in X 0. Assume by contradiction that u k is not a bounded sequence. Then define v k = which is a bounded sequence. Therefore u k u k X0

18 584 S. Goyal and K. Sreenadh NoDEA there exists a subsequence v k of v k and v 0 X 0 such that v k v 0 weakly in X 0, v k v 0 strongly in L 2 () and v k (x) v 0 (x) a.e. in R n.alsoby using (5.2) and (5.3), we have f(x, u k )/ u k X0 f 0 (x) weakly in L 2 (). Take v = v k v 0 in (5.6) and divide by u k X0 we get v k v 0. In particular v 0 X0 = 1. One can easily see from (5.6) that (v 0 (x) v 0 (y))(v(x) v(y))k(x y)dxdy f 0 (x)vdx =0 v X 0. Now by a standard argument based on assumption (5.2), f 0 (x) =α(x)v 0 + β(x)v0 for some L functions α(x), β(x) satisfying (4.1). In the expression of f 0 (x), the value of α(x) (resp.β(x)) on {x : v 0 (x) 0} (resp. {x : v 0 (x) 0}) are irrelevant, and consequently we can assume that α(x) >λ 1 on {x : v 0 (x) 0} and β(x) >λ 1 on {x : v 0 (x) 0}. (5.7) So v 0 is a nontrivial solution of Eq. (4.3). It then follows from Lemma 4.3 that either (i) α(x) =λ 1 a.e in or (ii) β(x) =λ 1 a.e in, or (iii) v 0 is an eigenfunction associated to the point (α, β) C. We show that in each case we get a contradiction. If (i) holds then by (5.7), v 0 > 0 a.e. in and (4.3) gives (v 0(x) v 0 (y)) 2 K(x y)dxdy = λ 1 v2 0, which implies that v 0 is a multiple of φ 1. Dividing (5.6) by u k 2 X 0 and taking limit we get, λ 1 v0 2 = (v 0 (x) v 0 (y)) 2 K(x y)dxdy = lim k 2F (x, u k ) u k 2 X 0 δ + (x)v 2 0dx. This contradicts assumption (5.5). The case (ii) is treated similarly. Now if (iii) holds, we deduce from (5.4) that α(v 0 + )2 + β(v0 )2 = (v 0 (x) v 0 (y)) 2 2F (x, u k ) K(x y)dxdy = lim k u k 2 X 0 Δ + (x)(v 0 + )2 +Δ (x)(v0 )2. This contradicts assumption (5.5), since v 0 changes sign. Hence u k is a bounded sequence in X 0. Now we study the geometry of Ψ. Lemma 5.3. There exists R>0 such that max{ψ(rφ 1 ), Ψ( Rφ 1 )} < max Ψ(u) (5.8) for any γ Γ 1 := {γ C([ 1, 1],X 0 ):γ(±1) = ±Rφ 1 }. Proof. From (5.4), we have for any ɛ>0 there exists a ɛ (x) L 2 () such that for a.e x, { (δ + (x) ɛ) s2 2 a ɛ(x) F (x, s) (Δ + (x)+ɛ) s2 2 + a ɛ(x) s>0 (δ (x) ɛ) s2 2 a ɛ(x) F (x, s) (Δ (x)+ɛ) s2 2 + a (5.9) ɛ(x) s<0.

19 Vol. 21 (2014) On the Fučik spectrum of non-local ellipticoperators 585 Now consider the following functional associated to the functions Δ ± (x) as Φ(u) = (u(x) u(y)) 2 K(x y)dxdy Δ + (x)(u + ) 2 dx Δ (x)(u ) 2 dx. Then we claim that d =inf max γ Γ Ψ(u) > 0 (5.10) where Γ is the set of all continuous paths from φ 1 to φ 1 in P. Write p = α β 0. we can choose (α, β) Csuch that α β (by replacing u by u if necessary), we have for any γ Γ i.e. max which implies max J p (u) c(p) =β. ( (u(x) u(y)) 2 K(x y)dxdy max Φ(u) 0, by (5.5). So d 0. On the other hand, since δ ± (x) Δ ± (x), Φ(±φ 1 ) (λ 1 δ ± (x))φ 2 1dx < 0 ) α(u + ) 2 dx β(u ) 2 dx 0 by (5.5). Thus we have a mountain pass geometry for the restriction Φ ofφ to P, max{ Φ(φ 1 ), Φ( φ 1 )} < 0 max Φ(u) for any path γ Γ and moreover one can verify exactly as in Lemma 2.6 that Φ satisfies the (P.S.) condition on X 0. Then d is a critical value of Φ i.e there exists u P and μ R such that { Φ(u) =d Φ (u),v = μ I (u),v v X 0. Assume by contradiction that d = 0. Taking v = u in above, we get μ =0so u is a nontrivial solution of L K u =Δ + (x)u + Δ (x)u in, u =0 inr n \. Using (5.5), we get a contradiction with Lemma 4.3. This completes the proof of the claim. Next we show that (5.8) holds. From the left hand side of inequality (5.9), we have for R>0andη>0, Ψ(±Rφ 1 ) R2 2 (λ 1 δ ± (x))φ ηr2 2 + a η L 1,

20 586 S. Goyal and K. Sreenadh NoDEA Then, Ψ(±Rφ 1 ) as R +, by(5.5) and letting η to be sufficiently small. Fix ɛ with 0 <ɛ<d.wecanchooser = R(ɛ) sothat Ψ(±Rφ 1 ) < a ɛ L 1, (5.11) where a ɛ is associated to ɛ using (5.9). Consider a path γ Γ 1. Then if 0 γ[ 1, 1], then by (5.11), Ψ(±Rφ 1 ) < a ɛ L 1 0 = Ψ(0) max Ψ(u), so the Lemma is proved in this case. If 0 γ[ 1, 1], then we take the normalized path γ(t) = belonging to Γ. Since by (5.9) wehave γ(t) γ(t) L 2 Then we obtain Ψ(u) Φ(u) ɛ u 2 L 2 2 a ɛ L 1. 2Ψ(u)+ɛ u 2 L +2 a max 2 ɛ L 1 γ [ 1,1] u 2 max Φ(v) d, L 2 γ [ 1,1] and consequently, by the choice of ɛ, wehave 2Ψ(u)+2 a ɛ max L 1 γ [ 1,1] u 2 d ɛ>0. L 2 This implies that max Ψ(u) > a ɛ L 1 > Ψ(±Rφ 1 ), by (5.11) and hence the Lemma. ProofofTheorem5.1: Lemmas 5.2 and 5.3 complete the proof. References [1] Ambrosetti, A., Robinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, (1973) [2] Alif, M.: Fučik spectrum for the Neumann problem with indefinite weights, partial differential equations. In: Lecture notes, vol Pure Appl. Math. Dekker, New York, pp (2002) [3] Arias, M., Campos, J.: Radial Fučik spectrum of the Laplace operator. J. Math. Anal. Appl. 190, (1995) [4] Cuesta, M., de Figueiredo, D., Gossez, J.-P.: The beginning of the Fučik spectrum for the p-laplacian. J. Differ. Equ. 159, (1999) [5] Cuesta, M., Gossez, J.-P.: A variational approach to nonresonance with respect to the Fučik spectrum. Nonlinear Anal. 19, (1992) [6] Dancer, E.N.: On the Dirichlet problem for weakly non-linear elliptic partial differential equations. Proc. R. Soc. Edinburgh Sect. A. 76(4): (1976/77)

21 Vol. 21 (2014) On the Fučik spectrum of non-local ellipticoperators 587 [7] Dancer, N., Perera, K.: Some Remarks on the Fučik Spectrum of the p-laplacian and critical groups. J. Math. Anal. Appl. 254, (2001) [8] de Figueiredo, D., Gossez, J.-P.: On the first curve of the Fučik spectrum of an elliptic operator. Differ. Integral Equ. 7, (1994) [9] Motreanu, D., Winkert, P.: On the Fučik spectrum of p-laplacian with Robin boundary condition. Nonlinear Anal. 74, (2011) [10] Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker s guide to the fractional Sobolev spaces. Bull. Sci. Math 136, (2012) [11] Fučik, S.: Solvability of nonlinear equations and boundary value problems. In: Mathematics and its applications, vol. 4. D. Reidel Publishing Co., Dordrecht (1980) [12] Gallouët, T., Kavian, O.: Existence and nonexistence results for certain semilinear problems at infinity. Ann. Fac. Sci. Toulouse Math. 3(4), (1982) [13] Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. (2013) (to appear) [14] Micheletti, A.M., Pistoia, A.: A note on the resonance set for a semilinear elliptic equation and an application to jumping nonlinearities. Topol. Methods Nonlinear Anal. 6, (1995) [15] Micheletti, A.M., Pistoia, A.: On the Fučik spectrum for the p-laplacian. Differ. Integral Equ. 14, (2001) [16] Martinez, S.R., Rossi, J.D.: On the Fucik spectrum and a resonance problem for the p-laplacian with a nonlinear boundary condition. Nonlinear Anal. Theory Methods Appl. 59(6), (2004) [17] Perera, K.: Resonance problems with respect to the Fučik spectrum of the p-laplacian. Electron. J. Differ. Equ. 36, 10 (electronic) (2002) [18] Perera, K.: On the Fučik spectrum of the p-laplacian. NoDEA 11(2), (2004) [19] Ruf, B.: On nonlinear elliptic problems with jumping nonlinearities. Ann. Mat. Pura Appl. 4(128), (2004) [20] Schechter, M.: The Fučik spectrum. Indiana Univ. Math. J 43, (1994) [21] Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl 389, (2012) [22] Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Continuous Dyn. Syst. 33(5), (2013) [23] Servadei, R., Valdinoci, E.: Lewy Stampacchia type estimates for variational inequalities driven by non-local operators. Rev. Mat. Iberoam 29, (2013) [24] Servadei, R., Valdinoci, E.: Weak and viscosity of the fractional Laplace equation. Publ. Mat. 58(1), (2014)

22 588 S. Goyal and K. Sreenadh NoDEA [25] Servadei, R.: A Brezis Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Math. 12, (2013) Sarika Goyal and K. Sreenadh Department of Mathematics Indian Institute of Technology Delhi Hauz Khaz New Delhi-16 India sreenadh@gmail.com Sarika Goyal sarika1.iitd@gmail.com Received: 17 June Accepted: 3 December 2013.

Exercise 6.14 Linearly independent vectors are also affinely independent.

Exercise 6.14 Linearly independent vectors are also affinely independent. Affine sets Linear Inequality Systems Definition 6.12 The vectors v 1, v 2,..., v k are affinely independent if v 2 v 1,..., v k v 1 is linearly independent; affinely dependent, otherwise. We first check

Læs mere

Combined concave convex effects in anisotropic elliptic equations with variable exponent

Combined concave convex effects in anisotropic elliptic equations with variable exponent Nonlinear Differ. Equ. Appl. 22 (205), 39 40 c 204 Springer Basel 02-9722/5/03039-20 published online October 4, 204 DOI 0.007/s00030-04-0288-8 Nonlinear Differential Equations and Applications NoDEA Combined

Læs mere

Critical exponent for semilinear wave equation with critical potential

Critical exponent for semilinear wave equation with critical potential Nonlinear Differ. Equ. Appl. (13), 1379 1391 c 1 Springer Basel 11-97/13/31379-13 published online December 16, 1 DOI 1.17/s3-1-14-x Nonlinear Differential Equations and Applications NoDEA Critical exponent

Læs mere

Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium

Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet Kurver og Flader 2013 Lisbeth Fajstrup (AAU)

Læs mere

p-laplacian problems with nonlinearities interacting with the spectrum

p-laplacian problems with nonlinearities interacting with the spectrum Nonlinear Differ. Equ. Appl. 20 (2013), 1701 1721 c 2013 Springer Basel 1021-9722/13/051701-21 published online March 24, 2013 DOI 10.1007/s00030-013-0226-1 Nonlinear Differential Equations and Applications

Læs mere

Some results for the weighted Drazin inverse of a modified matrix

Some results for the weighted Drazin inverse of a modified matrix International Journal of Applied Mathematics Computation Journal homepage: www.darbose.in/ijamc ISSN: 0974-4665 (Print) 0974-4673 (Online) Volume 6(1) 2014 1 9 Some results for the weighted Drazin inverse

Læs mere

Computing the constant in Friedrichs inequality

Computing the constant in Friedrichs inequality Computing the constant in Friedrichs inequality Tomáš Vejchodský vejchod@math.cas.cz Institute of Mathematics, Žitná 25, 115 67 Praha 1 February 8, 212, SIGA 212, Prague Motivation Classical formulation:

Læs mere

Nonlinear Nonhomogeneous Dirichlet Equations Involving a Superlinear Nonlinearity

Nonlinear Nonhomogeneous Dirichlet Equations Involving a Superlinear Nonlinearity Results. Math. 70 2016, 31 79 c 2015 Springer Basel 1422-6383/16/010031-49 published online May 19, 2015 DOI 10.1007/s00025-015-0461-3 Results in Mathematics Nonlinear Nonhomogeneous Dirichlet Equations

Læs mere

MONOTONE POSITIVE SOLUTIONS FOR p-laplacian EQUATIONS WITH SIGN CHANGING COEFFICIENTS AND MULTI-POINT BOUNDARY CONDITIONS

MONOTONE POSITIVE SOLUTIONS FOR p-laplacian EQUATIONS WITH SIGN CHANGING COEFFICIENTS AND MULTI-POINT BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 22, No. 22, pp. 2. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MONOTONE POSITIVE SOLUTIONS FOR

Læs mere

Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent

Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent Nonlinear Differ. Equ. Appl. 1 (014, 885 914 c 014 Springer Basel 101-97/14/060885-30 published online April 18, 014 DOI 10.1007/s00030-014-071-4 Nonlinear Differential Equations and Applications NoDEA

Læs mere

Sign variation, the Grassmannian, and total positivity

Sign variation, the Grassmannian, and total positivity Sign variation, the Grassmannian, and total positivity arxiv:1503.05622 Slides available at math.berkeley.edu/~skarp Steven N. Karp, UC Berkeley FPSAC 2015 KAIST, Daejeon Steven N. Karp (UC Berkeley) Sign

Læs mere

Basic statistics for experimental medical researchers

Basic statistics for experimental medical researchers Basic statistics for experimental medical researchers Sample size calculations September 15th 2016 Christian Pipper Department of public health (IFSV) Faculty of Health and Medicinal Science (SUND) E-mail:

Læs mere

Besvarelser til Lineær Algebra Reeksamen Februar 2017

Besvarelser til Lineær Algebra Reeksamen Februar 2017 Besvarelser til Lineær Algebra Reeksamen - 7. Februar 207 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Partial symmetry and existence of least energy solutions to some nonlinear elliptic equations on Riemannian models

Partial symmetry and existence of least energy solutions to some nonlinear elliptic equations on Riemannian models Nonlinear Differ. Equ. Appl. 22 (2015), 1167 1193 c 2015 Springer Basel 1021-9722/15/051167-27 published online arch 12, 2015 DOI 10.1007/s00030-015-0318-1 Nonlinear Differential Equations and Applications

Læs mere

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528) Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM58) Institut for Matematik og Datalogi Syddansk Universitet, Odense Torsdag den 1. januar 01 kl. 9 13 Alle sædvanlige hjælpemidler

Læs mere

Linear Programming ١ C H A P T E R 2

Linear Programming ١ C H A P T E R 2 Linear Programming ١ C H A P T E R 2 Problem Formulation Problem formulation or modeling is the process of translating a verbal statement of a problem into a mathematical statement. The Guidelines of formulation

Læs mere

19.3. Second Order ODEs. Introduction. Prerequisites. Learning Outcomes

19.3. Second Order ODEs. Introduction. Prerequisites. Learning Outcomes Second Order ODEs 19.3 Introduction In this Section we start to learn how to solve second-order differential equations of a particular type: those that are linear and that have constant coefficients. Such

Læs mere

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3 University of Copenhagen Faculty of Science Written Exam - 3. April 2009 Algebra 3 This exam contains 5 exercises which are to be solved in 3 hours. The exercises are posed in an English and in a Danish

Læs mere

Nodal set of strongly competition systems with fractional Laplacian

Nodal set of strongly competition systems with fractional Laplacian Nonlinear Differ. Equ. Appl. 22 (2015), 1483 1513 c 2015 Springer Basel 1021-9722/15/051483-31 published online June 2, 2015 DOI 10.1007/s00030-015-0332-3 Nonlinear Differential Equations and Applications

Læs mere

Satisability of Boolean Formulas

Satisability of Boolean Formulas SAT exercises 1 March, 2016 slide 1 Satisability of Boolean Formulas Combinatorics and Algorithms Prof. Emo Welzl Assistant: (CAB G36.1, cannamalai@inf.ethz.ch) URL: http://www.ti.inf.ethz.ch/ew/courses/sat16/

Læs mere

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 19. juni 2003 kl Alle hjælpemidler er tilladt

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 19. juni 2003 kl Alle hjælpemidler er tilladt SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 9. juni 23 kl. 9.-3. Alle hjælpemidler er tilladt OPGAVE f(x) x Givet funktionen f(x) x, x [, ] Spørgsmål (%)

Læs mere

Curve Modeling B-Spline Curves. Dr. S.M. Malaek. Assistant: M. Younesi

Curve Modeling B-Spline Curves. Dr. S.M. Malaek. Assistant: M. Younesi Curve Modeling B-Spline Curves Dr. S.M. Malaek Assistant: M. Younesi Motivation B-Spline Basis: Motivation Consider designing the profile of a vase. The left figure below is a Bézier curve of degree 11;

Læs mere

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US Generalized Probit Model in Design of Dose Finding Experiments Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US Outline Motivation Generalized probit model Utility function Locally optimal designs

Læs mere

On the complexity of drawing trees nicely: corrigendum

On the complexity of drawing trees nicely: corrigendum Acta Informatica 40, 603 607 (2004) Digital Object Identifier (DOI) 10.1007/s00236-004-0138-y On the complexity of drawing trees nicely: corrigendum Thorsten Akkerman, Christoph Buchheim, Michael Jünger,

Læs mere

Chapter 6. Hydrogen Atom. 6.1 Schrödinger Equation. The Hamiltonian for a hydrogen atom is. Recall that. 1 r 2 sin 2 θ + 1. and.

Chapter 6. Hydrogen Atom. 6.1 Schrödinger Equation. The Hamiltonian for a hydrogen atom is. Recall that. 1 r 2 sin 2 θ + 1. and. Chapter 6 Hydrogen Atom 6. Schrödinger Equation The Hamiltonian for a hydrogen atom is Recall that Ĥ = h e m e 4πɛ o r = r ) + r r r r sin θ sin θ ) + θ θ r sin θ φ and [ ˆL = h sin θ ) + )] sin θ θ θ

Læs mere

University of Copenhagen Faculty of Science Written Exam April Algebra 3

University of Copenhagen Faculty of Science Written Exam April Algebra 3 University of Copenhagen Faculty of Science Written Exam - 16. April 2010 Algebra This exam contains 5 exercises which are to be solved in hours. The exercises are posed in an English and in a Danish version.

Læs mere

PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU

PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU OUTLINE INEFFICIENCY OF ATTILA WAYS TO PARALLELIZE LOW COMPATIBILITY IN THE COMPILATION A SOLUTION

Læs mere

Pontryagin Approximations for Optimal Design of Elastic Structures

Pontryagin Approximations for Optimal Design of Elastic Structures Pontryagin Approximations for Optimal Design of Elastic Structures Jesper Carlsson NADA, KTH jesperc@nada.kth.se Collaborators: Anders Szepessy, Mattias Sandberg October 5, 2005 A typical optimal design

Læs mere

Global attractor for the Navier Stokes equations with fractional deconvolution

Global attractor for the Navier Stokes equations with fractional deconvolution Nonlinear Differ. Equ. Appl. 5), 8 848 c 4 Springer Basel -97/5/48-38 published online December 5, 4 DOI.7/s3-4-35-y Nonlinear Differential Equations and Applications NoDEA Global attractor for the Navier

Læs mere

Multivariate Extremes and Dependence in Elliptical Distributions

Multivariate Extremes and Dependence in Elliptical Distributions Multivariate Extremes and Dependence in Elliptical Distributions Filip Lindskog, RiskLab, ETH Zürich joint work with Henrik Hult, KTH Stockholm I II III IV V Motivation Elliptical distributions A class

Læs mere

Additive Property of Drazin Invertibility of Elements in a Ring

Additive Property of Drazin Invertibility of Elements in a Ring Filomat 30:5 (2016), 1185 1193 DOI 10.2298/FIL1605185W Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Additive Property of Drazin

Læs mere

On the Relations Between Fuzzy Topologies and α Cut Topologies

On the Relations Between Fuzzy Topologies and α Cut Topologies S Ü Fen Ed Fak Fen Derg Sayı 23 (2004) 21-27, KONYA On the Relations Between Fuzzy Topologies and α Cut Topologies Zekeriya GÜNEY 1 Abstract: In this study, some relations have been generated between fuzzy

Læs mere

Statistik for MPH: 7

Statistik for MPH: 7 Statistik for MPH: 7 3. november 2011 www.biostat.ku.dk/~pka/mph11 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Probabilistic properties of modular addition. Victoria Vysotskaya

Probabilistic properties of modular addition. Victoria Vysotskaya Probabilistic properties of modular addition Victoria Vysotskaya JSC InfoTeCS, NPK Kryptonite CTCrypt 19 / June 4, 2019 vysotskaya.victory@gmail.com Victoria Vysotskaya (Infotecs, Kryptonite) Probabilistic

Læs mere

Multiple solutions for a class of Kirchhoff type problems with concave nonlinearity

Multiple solutions for a class of Kirchhoff type problems with concave nonlinearity Nonlinear Differ. Equ. Al. 9 (202), 52 537 c 20 Sringer Basel AG 02-9722/2/05052-7 ublished online November 8, 20 DOI 0.007/s00030-0-04-2 Nonlinear Differential Equations and Alications NoDEA Multile solutions

Læs mere

Skriftlig Eksamen Diskret matematik med anvendelser (DM72)

Skriftlig Eksamen Diskret matematik med anvendelser (DM72) Skriftlig Eksamen Diskret matematik med anvendelser (DM72) Institut for Matematik & Datalogi Syddansk Universitet, Odense Onsdag den 18. januar 2006 Alle sædvanlige hjælpemidler (lærebøger, notater etc.),

Læs mere

On the stability of travelling waves with vorticity obtained by minimization

On the stability of travelling waves with vorticity obtained by minimization Nonlinear Differ. Equ. Appl. 2 213), 1597 1629 c 213 Springer Basel 121-9722/13/51597-33 published online March 19, 213 DOI 1.17/s3-13-223-4 Nonlinear Differential Equations Applications NoDEA On the stability

Læs mere

Morse theory for a fourth order elliptic equation with exponential nonlinearity

Morse theory for a fourth order elliptic equation with exponential nonlinearity Nonlinear Differ. Equ. Appl. 8 (20), 27 43 c 200 Springer Basel AG 02-9722//00027-7 published online July 9, 200 DOI 0.007/s00030-00-0082- Nonlinear Differential Equations and Applications NoDEA Morse

Læs mere

The Size of the Selberg Zeta-Function at Places Symmetric with Respect to the Line Re(s)= 1/2

The Size of the Selberg Zeta-Function at Places Symmetric with Respect to the Line Re(s)= 1/2 Results Math 7 16, 71 81 c 15 Springer Basel 14-6383/16/171-11 published online July, 15 DOI 117/s5-15-486-7 Results in Mathematics The Size of the Selberg Zeta-Function at Places Symmetric with Respect

Læs mere

Resource types R 1 1, R 2 2,..., R m CPU cycles, memory space, files, I/O devices Each resource type R i has W i instances.

Resource types R 1 1, R 2 2,..., R m CPU cycles, memory space, files, I/O devices Each resource type R i has W i instances. System Model Resource types R 1 1, R 2 2,..., R m CPU cycles, memory space, files, I/O devices Each resource type R i has W i instances. Each process utilizes a resource as follows: request use e.g., request

Læs mere

Eric Nordenstam 1 Benjamin Young 2. FPSAC 12, Nagoya, Japan

Eric Nordenstam 1 Benjamin Young 2. FPSAC 12, Nagoya, Japan Eric 1 Benjamin 2 1 Fakultät für Matematik Universität Wien 2 Institutionen för Matematik Royal Institute of Technology (KTH) Stockholm FPSAC 12, Nagoya, Japan The Aztec Diamond Aztec diamonds of orders

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 31 Oktober 2011, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af lommeregner

Læs mere

Privat-, statslig- eller regional institution m.v. Andet Added Bekaempelsesudfoerende: string No Label: Bekæmpelsesudførende

Privat-, statslig- eller regional institution m.v. Andet Added Bekaempelsesudfoerende: string No Label: Bekæmpelsesudførende Changes for Rottedatabasen Web Service The coming version of Rottedatabasen Web Service will have several changes some of them breaking for the exposed methods. These changes and the business logic behind

Læs mere

University of Copenhagen Faculty of Science Written Exam - 8. April 2008. Algebra 3

University of Copenhagen Faculty of Science Written Exam - 8. April 2008. Algebra 3 University of Copenhagen Faculty of Science Written Exam - 8. April 2008 Algebra 3 This exam contains 5 exercises which are to be solved in 3 hours. The exercises are posed in an English and in a Danish

Læs mere

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A +

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A + Strings and Sets: A string over Σ is any nite-length sequence of elements of Σ The set of all strings over alphabet Σ is denoted as Σ Operators over set: set complement, union, intersection, etc. set concatenation

Læs mere

Vina Nguyen HSSP July 13, 2008

Vina Nguyen HSSP July 13, 2008 Vina Nguyen HSSP July 13, 2008 1 What does it mean if sets A, B, C are a partition of set D? 2 How do you calculate P(A B) using the formula for conditional probability? 3 What is the difference between

Læs mere

Project Step 7. Behavioral modeling of a dual ported register set. 1/8/ L11 Project Step 5 Copyright Joanne DeGroat, ECE, OSU 1

Project Step 7. Behavioral modeling of a dual ported register set. 1/8/ L11 Project Step 5 Copyright Joanne DeGroat, ECE, OSU 1 Project Step 7 Behavioral modeling of a dual ported register set. Copyright 2006 - Joanne DeGroat, ECE, OSU 1 The register set Register set specifications 16 dual ported registers each with 16- bit words

Læs mere

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , ) Statistik for MPH: 7 29. oktober 2015 www.biostat.ku.dk/~pka/mph15 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Aktivering af Survey funktionalitet

Aktivering af Survey funktionalitet Surveys i REDCap REDCap gør det muligt at eksponere ét eller flere instrumenter som et survey (spørgeskema) som derefter kan udfyldes direkte af patienten eller forsøgspersonen over internettet. Dette

Læs mere

Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints

Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints Particle-based T-Spline Level Set for 3D Object Reconstruction with Range and Volume Constraints Robert Feichtinger (joint work with Huaiping Yang, Bert Jüttler) Institute of Applied Geometry, JKU Linz

Læs mere

Adaptive Algorithms for Blind Separation of Dependent Sources. George V. Moustakides INRIA, Sigma 2

Adaptive Algorithms for Blind Separation of Dependent Sources. George V. Moustakides INRIA, Sigma 2 Adaptive Algorithms for Blind Separation of Dependent Sources George V. Moustakides INRIA, Sigma 2 Problem definition-motivation Existing adaptive scheme-independence General adaptive scheme-dependence

Læs mere

Singular limits in higher order Liouville-type equations

Singular limits in higher order Liouville-type equations Nonlinear Differ. Equ. Appl. 22 (2015), 1545 1571 c 2015 Springer Basel 1021-9722/15/061545-27 published online July 14, 2015 DOI 10.1007/s00030-015-0335-0 Nonlinear Differential Equations and Applications

Læs mere

INTERVAL VALUED FUZZY IDEALS OF GAMMA NEAR-RINGS

INTERVAL VALUED FUZZY IDEALS OF GAMMA NEAR-RINGS BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 8(2018), 301-314 DOI: 10.7251/BIMVI1802301C Former BULLETIN

Læs mere

Pattern formation Turing instability

Pattern formation Turing instability Pattern formation Turing instability Tomáš Vejchodský Centre for Mathematical Biology Mathematical Institute Summer school, Prague, 6 8 August, 213 Outline Motivation Turing instability general conditions

Læs mere

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen.  og 052431_EngelskD 08/09/05 13:29 Side 1 De Merkantile Erhvervsuddannelser September 2005 Side 1 af 4 sider Casebaseret eksamen Engelsk Niveau D www.jysk.dk og www.jysk.com Indhold: Opgave 1 Presentation

Læs mere

X M Y. What is mediation? Mediation analysis an introduction. Definition

X M Y. What is mediation? Mediation analysis an introduction. Definition What is mediation? an introduction Ulla Hvidtfeldt Section of Social Medicine - Investigate underlying mechanisms of an association Opening the black box - Strengthen/support the main effect hypothesis

Læs mere

User Manual for LTC IGNOU

User Manual for LTC IGNOU User Manual for LTC IGNOU 1 LTC (Leave Travel Concession) Navigation: Portal Launch HCM Application Self Service LTC Self Service 1. LTC Advance/Intimation Navigation: Launch HCM Application Self Service

Læs mere

Help / Hjælp

Help / Hjælp Home page Lisa & Petur www.lisapetur.dk Help / Hjælp Help / Hjælp General The purpose of our Homepage is to allow external access to pictures and videos taken/made by the Gunnarsson family. The Association

Læs mere

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen The X Factor Målgruppe 7-10 klasse & ungdomsuddannelser Engelskundervisningen Læringsmål Eleven kan give sammenhængende fremstillinger på basis af indhentede informationer Eleven har viden om at søge og

Læs mere

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov.

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov. På dansk/in Danish: Aarhus d. 10. januar 2013/ the 10 th of January 2013 Kære alle Chefer i MUS-regi! Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov. Og

Læs mere

Portal Registration. Check Junk Mail for activation . 1 Click the hyperlink to take you back to the portal to confirm your registration

Portal Registration. Check Junk Mail for activation  . 1 Click the hyperlink to take you back to the portal to confirm your registration Portal Registration Step 1 Provide the necessary information to create your user. Note: First Name, Last Name and Email have to match exactly to your profile in the Membership system. Step 2 Click on the

Læs mere

IBM Network Station Manager. esuite 1.5 / NSM Integration. IBM Network Computer Division. tdc - 02/08/99 lotusnsm.prz Page 1

IBM Network Station Manager. esuite 1.5 / NSM Integration. IBM Network Computer Division. tdc - 02/08/99 lotusnsm.prz Page 1 IBM Network Station Manager esuite 1.5 / NSM Integration IBM Network Computer Division tdc - 02/08/99 lotusnsm.prz Page 1 New esuite Settings in NSM The Lotus esuite Workplace administration option is

Læs mere

Richter 2013 Presentation Mentor: Professor Evans Philosophy Department Taylor Henderson May 31, 2013

Richter 2013 Presentation Mentor: Professor Evans Philosophy Department Taylor Henderson May 31, 2013 Richter 2013 Presentation Mentor: Professor Evans Philosophy Department Taylor Henderson May 31, 2013 OVERVIEW I m working with Professor Evans in the Philosophy Department on his own edition of W.E.B.

Læs mere

Distance-regular graphs with complete multipartite μ-graphs and AT4 family

Distance-regular graphs with complete multipartite μ-graphs and AT4 family J Algebr Comb (2007) 25:459 471 DOI 10.1007/s10801-006-0046-z Distance-regular graphs with complete multipartite μ-graphs and AT4 family Aleksandar Jurišić Jack Koolen Received: 28 December 2005 / Accepted:

Læs mere

Spectrum of Non-planar Traveling Waves

Spectrum of Non-planar Traveling Waves Integr. Equ. Oper. Theory 2018) 90:30 https://doi.org/10.1007/s00020-018-2447-5 Published online April 30, 2018 c Springer International Publishing AG, part of Springer Nature 2018 Integral Equations and

Læs mere

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September 2005. Casebaseret eksamen. www.jysk.dk og www.jysk.com.

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September 2005. Casebaseret eksamen. www.jysk.dk og www.jysk.com. 052430_EngelskC 08/09/05 13:29 Side 1 De Merkantile Erhvervsuddannelser September 2005 Side 1 af 4 sider Casebaseret eksamen Engelsk Niveau C www.jysk.dk og www.jysk.com Indhold: Opgave 1 Presentation

Læs mere

ECE 551: Digital System * Design & Synthesis Lecture Set 5

ECE 551: Digital System * Design & Synthesis Lecture Set 5 ECE 551: Digital System * Design & Synthesis Lecture Set 5 5.1: Verilog Behavioral Model for Finite State Machines (FSMs) 5.2: Verilog Simulation I/O and 2001 Standard (In Separate File) 3/4/2003 1 ECE

Læs mere

Noter til kursusgang 9, IMAT og IMATØ

Noter til kursusgang 9, IMAT og IMATØ Noter til kursusgang 9, IMAT og IMATØ matematik og matematik-økonomi studierne 1. basissemester Esben Høg 4. november 013 Institut for Matematiske Fag Aalborg Universitet Esben Høg Noter til kursusgang

Læs mere

The GAssist Pittsburgh Learning Classifier System. Dr. J. Bacardit, N. Krasnogor G53BIO - Bioinformatics

The GAssist Pittsburgh Learning Classifier System. Dr. J. Bacardit, N. Krasnogor G53BIO - Bioinformatics The GAssist Pittsburgh Learning Classifier System Dr. J. Bacardit, N. Krasnogor G53BIO - Outline bioinformatics Summary and future directions Objectives of GAssist GAssist [Bacardit, 04] is a Pittsburgh

Læs mere

Fejlbeskeder i SMDB. Business Rules Fejlbesked Kommentar. Validate Business Rules. Request- ValidateRequestRegist ration (Rules :1)

Fejlbeskeder i SMDB. Business Rules Fejlbesked Kommentar. Validate Business Rules. Request- ValidateRequestRegist ration (Rules :1) Fejlbeskeder i SMDB Validate Business Rules Request- ValidateRequestRegist ration (Rules :1) Business Rules Fejlbesked Kommentar the municipality must have no more than one Kontaktforløb at a time Fejl

Læs mere

Constant Terminal Voltage. Industry Workshop 1 st November 2013

Constant Terminal Voltage. Industry Workshop 1 st November 2013 Constant Terminal Voltage Industry Workshop 1 st November 2013 Covering; Reactive Power & Voltage Requirements for Synchronous Generators and how the requirements are delivered Other countries - A different

Læs mere

Existence and multiplicity results for nonlinear critical Neumann problem on compact Riemannian manifolds

Existence and multiplicity results for nonlinear critical Neumann problem on compact Riemannian manifolds Nonlinear Differ. Equ. Al. 20 203, 22 c 20 Sringer Basel AG 02-9722/2/0000-22 ublished online January, 202 DOI 0.007/s00030-0-05-0 Nonlinear Differential Equations and Alications NoDEA Existence and multilicity

Læs mere

Business Rules Fejlbesked Kommentar

Business Rules Fejlbesked Kommentar Fejlbeskeder i SMDB Validate Business Request- ValidateRequestRegi stration ( :1) Business Fejlbesked Kommentar the municipality must have no more than one Kontaktforløb at a time Fejl 1: Anmodning En

Læs mere

Unitel EDI MT940 June 2010. Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004)

Unitel EDI MT940 June 2010. Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004) Unitel EDI MT940 June 2010 Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004) Contents 1. Introduction...3 2. General...3 3. Description of the MT940 message...3 3.1.

Læs mere

DoodleBUGS (Hands-on)

DoodleBUGS (Hands-on) DoodleBUGS (Hands-on) Simple example: Program: bino_ave_sim_doodle.odc A simulation example Generate a sample from F=(r1+r2)/2 where r1~bin(0.5,200) and r2~bin(0.25,100) Note that E(F)=(100+25)/2=62.5

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 7 Januar 2008, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af lommeregner

Læs mere

Calculus II Project. Calculus II Projekt. (26.3.2012 12.00 to 30.3.2012 12.00) (26.3.2012 12.00 til 30.3.2012 12.00)

Calculus II Project. Calculus II Projekt. (26.3.2012 12.00 to 30.3.2012 12.00) (26.3.2012 12.00 til 30.3.2012 12.00) Calculus II Project Calculus II Projekt (26.3.212 12. to 3.3.212 12.) (26.3.212 12. til 3.3.212 12.) You have to solve the project questions on your own, i. e. you are not allowed to do it together in

Læs mere

Skriftlig Eksamen Automatteori og Beregnelighed (DM17)

Skriftlig Eksamen Automatteori og Beregnelighed (DM17) Skriftlig Eksamen Automatteori og Beregnelighed (DM17) Institut for Matematik & Datalogi Syddansk Universitet Odense Campus Lørdag, den 15. Januar 2005 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Extended quasi-homogeneous polynomial system in R 3

Extended quasi-homogeneous polynomial system in R 3 Nonlinear Differ. Equ. Appl. 2 213, 1771 1794 c 213 Springer Basel 121-9722/13/61771-24 published online May 1, 213 DOI 1.17/s3-13-23-5 Nonlinear Differential Equations and Applications NoDEA Extended

Læs mere

Fejlbeskeder i Stofmisbrugsdatabasen (SMDB)

Fejlbeskeder i Stofmisbrugsdatabasen (SMDB) Fejlbeskeder i Stofmisbrugsdatabasen (SMDB) Oversigt over fejlbeskeder (efter fejlnummer) ved indberetning til SMDB via webløsning og via webservices (hvor der dog kan være yderligere typer fejlbeskeder).

Læs mere

Frequency Dispersion: Dielectrics, Conductors, and Plasmas

Frequency Dispersion: Dielectrics, Conductors, and Plasmas 1/23 Frequency Dispersion: Dielectrics, Conductors, and Plasmas Carlos Felipe Espinoza Hernández Professor: Jorge Alfaro Instituto de Física Pontificia Universidad Católica de Chile 2/23 Contents 1 Simple

Læs mere

Differential Evolution (DE) "Biologically-inspired computing", T. Krink, EVALife Group, Univ. of Aarhus, Denmark

Differential Evolution (DE) Biologically-inspired computing, T. Krink, EVALife Group, Univ. of Aarhus, Denmark Differential Evolution (DE) Differential Evolution (DE) (Storn and Price, 199) Step 1 - Initialize and evaluate Generate a random start population and evaluate the individuals x 2 search space x 1 Differential

Læs mere

A C 1,α partial regularity result for non-autonomous convex integrals with discontinuous coefficients

A C 1,α partial regularity result for non-autonomous convex integrals with discontinuous coefficients Nonlinear Differ. Equ. Appl. (015), 1319 1343 c 015 Springer Basel 101-97/15/051319-5 published online April 9, 015 DOI 10.1007/s00030-015-034-3 Nonlinear Differential Equations and Applications NoDEA

Læs mere

Angle Ini/al side Terminal side Vertex Standard posi/on Posi/ve angles Nega/ve angles. Quadrantal angle

Angle Ini/al side Terminal side Vertex Standard posi/on Posi/ve angles Nega/ve angles. Quadrantal angle Mrs. Valentine AFM Objective: I will be able to identify angle types, convert between degrees and radians for angle measures, identify coterminal angles, find the length of an intercepted arc, and find

Læs mere

CHAPTER 8: USING OBJECTS

CHAPTER 8: USING OBJECTS Ruby: Philosophy & Implementation CHAPTER 8: USING OBJECTS Introduction to Computer Science Using Ruby Ruby is the latest in the family of Object Oriented Programming Languages As such, its designer studied

Læs mere

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 30. juni 2005, kl Alle hjælpemidler er tilladt

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 30. juni 2005, kl Alle hjælpemidler er tilladt SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 3. juni 5, kl. 8.3-.3 Alle hjælpemidler er tilladt OPGAVE u = y B u = u C A x c u = D u = Figuren viser en homogen

Læs mere

Fully nonlinear curvature flow of axially symmetric hypersurfaces

Fully nonlinear curvature flow of axially symmetric hypersurfaces Nonlinear Differ. Equ. Appl. 015), 35 343 c 014 Springer Basel 101-97/15/0035-19 published online October 4, 014 DOI 10.1007/s00030-014-087-9 Nonlinear Differential Equations and Applications NoDEA Fully

Læs mere

Den nye Eurocode EC Geotenikerdagen Morten S. Rasmussen

Den nye Eurocode EC Geotenikerdagen Morten S. Rasmussen Den nye Eurocode EC1997-1 Geotenikerdagen Morten S. Rasmussen UDFORDRINGER VED EC 1997-1 HVAD SKAL VI RUNDE - OPBYGNINGEN AF DE NYE EUROCODES - DE STØRSTE UDFORDRINGER - ER DER NOGET POSITIVT? 2 OPBYGNING

Læs mere

One-dimensional chemotaxis kinetic model

One-dimensional chemotaxis kinetic model Nonlinear Differ. Equ. Appl. 18 (211), 139 172 c 21 Springer Basel AG 121-9722/11/2139-34 published online November 11, 21 DOI 1.17/s3-1-88-8 Nonlinear Differential Equations and Applications NoDEA One-dimensional

Læs mere

Titel: Barry s Bespoke Bakery

Titel: Barry s Bespoke Bakery Titel: Tema: Kærlighed, kager, relationer Fag: Engelsk Målgruppe: 8.-10.kl. Data om læremidlet: Tv-udsendelse: SVT2, 03-08-2014, 10 min. Denne pædagogiske vejledning indeholder ideer til arbejdet med tema

Læs mere

Trolling Master Bornholm 2014

Trolling Master Bornholm 2014 Trolling Master Bornholm 2014 (English version further down) Den ny havn i Tejn Havn Bornholms Regionskommune er gået i gang med at udvide Tejn Havn, og det er med til at gøre det muligt, at vi kan være

Læs mere

Trolling Master Bornholm 2012

Trolling Master Bornholm 2012 Trolling Master Bornholm 1 (English version further down) Tak for denne gang Det var en fornøjelse især jo også fordi vejret var med os. Så heldig har vi aldrig været før. Vi skal evaluere 1, og I må meget

Læs mere

HARMONIC BOUNDARY VALUE PROBLEMS IN HALF DISC AND HALF RING Heinrich Begehr, Tatyana Vaitekhovich. 1. Introduction

HARMONIC BOUNDARY VALUE PROBLEMS IN HALF DISC AND HALF RING Heinrich Begehr, Tatyana Vaitekhovich. 1. Introduction Functiones et Approximatio 40.2 (2009), 25 282 HARMONIC BOUNDARY VALUE PROBLEMS IN HALF DISC AND HALF RING Heinrich Begehr, Tatyana Vaitekhovich Dedicated to Professor Bogdan Bojarski on the occasion of

Læs mere

Mappings of finite distortion: The zero set of the Jacobian

Mappings of finite distortion: The zero set of the Jacobian J. Eur. Math. Soc. 5, 95 105 (2003) Digital Object Identifier (DOI) 10.1007/s10097-002-0046-9 Pekka Koskela Jan Malý Mappings of finite distortion: The zero set of the Jacobian Received November 20, 2001

Læs mere

Effect of hyperviscosity on the geometry of the vorticity

Effect of hyperviscosity on the geometry of the vorticity Nonlinear Differ. Equ. Appl. 0 (03), 673 685 c 0 Springer Basel AG 0-97/3/030673-3 published online May 7, 0 DOI 0.007/s00030-0-073- Nonlinear Differential Equations and Applications NoDEA Effect of hyperviscosity

Læs mere

DM549. Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1. Svar 2.h: x Z: y Z: x + y = 5. Svar 1.e: x Z: y Z: x + y < x y

DM549. Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1. Svar 2.h: x Z: y Z: x + y = 5. Svar 1.e: x Z: y Z: x + y < x y DM549 Spørgsmål 1 (8%) Hvilke udsagn er sande? Which propositions are true? Svar 1.a: x Z: x > x 1 Svar 1.b: x Z: y Z: x + y = 5 Svar 1.c: x Z: y Z: x + y = 5 Svar 1.d: x Z: y Z: x 2 + 2y = 0 Svar 1.e:

Læs mere

Lax Hopf formula and Max-Plus properties of solutions to Hamilton Jacobi equations

Lax Hopf formula and Max-Plus properties of solutions to Hamilton Jacobi equations Nonlinear Differ. Equ. Appl. 20 (2013), 187 211 c 2012 Springer Basel AG 1021-9722/13/020187-25 published online August 21, 2012 DOI 10.1007/s00030-012-0188-8 Nonlinear Differential Equations and Applications

Læs mere

Black Jack --- Review. Spring 2012

Black Jack --- Review. Spring 2012 Black Jack --- Review Spring 2012 Simulation Simulation can solve real-world problems by modeling realworld processes to provide otherwise unobtainable information. Computer simulation is used to predict

Læs mere

Remember the Ship, Additional Work

Remember the Ship, Additional Work 51 (104) Remember the Ship, Additional Work Remember the Ship Crosswords Across 3 A prejudiced person who is intolerant of any opinions differing from his own (5) 4 Another word for language (6) 6 The

Læs mere

Luigi C. Berselli and Stefano Spirito. 1. Introduction. Nonlinear Differential Equations and Applications NoDEA

Luigi C. Berselli and Stefano Spirito. 1. Introduction. Nonlinear Differential Equations and Applications NoDEA Nonlinear Differ. Equ. Appl. 1 (14), 149 166 c 13 Springer Basel 11-97/14/149-18 published online July 3, 13 DOI 1.17/s3-13-4-1 Nonlinear Differential Equations and Applications NoDEA An elementary approach

Læs mere