Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse

Størrelse: px
Starte visningen fra side:

Download "Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse"

Transkript

1 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ hypotese, der må accepteres hvis H 0 forkastes Trin : Vælg statistisk model Test statistik og sampling fordeling fastsættes (vælges under hensyntagen til H 0 og H ) Trin 3: Vælg signifikansniveau Beslutning: H 0 er sand H 0 er ikke sand Accepter H 0 Korrekt beslutning Forkert beslutning Type II fejl Forkast H 0 Forkert beslutning Type I fejl Korrekt beslutning

2 Statistik 7. gang Beslutning: H 0 er sand H 0 er ikke sand Accepter H 0 Korrekt beslutning Forkert beslutning Type II fejl Forkast H 0 Forkert beslutning Type I fejl Korrekt beslutning Type I og II fejl er ikke uafhængige Normalt tages der mest hensyn til type I fejl! Signifikansniveau: α sandsynlighed for type I fejl β sandsynlighed for type II fejl Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.0 eller 0.05

3 Statistik 7. gang 3 Trin 4: Indsaml data og beregn test statistik Udfra en stikprøve med n udfald beregnes test statistikken Trin 5: Definer forkastelsesområdet Det område for test statistikken, der medfører at H 0 forkastes (område der er usandsynligt for test statistikken, hvis hypotesen er sand)

4 Statistik 7. gang 4 Området afhænger af: - Formuleringen af H - Fordelingsfunktionen for test statistikken - Signifikans-niveauet Trin 6: Konklusion H 0 accepteres hvis værdien af test statistikken ligger indenfor det acceptable område H 0 forkastes og derved accept af H hvis værdien af test statistikken ligger udenfor det acceptable område

5 Statistik 7. gang HYPOTESETEST AF MIDDELVÆRDIER KENDT SPREDNING Eks: Test af stål trækstyrke: kan det konkluderes at forventningsværdien af trækstyrken er mindst 35 MPa? - spredningen er kendt: σ = 6 MPa. trin: Hypotese: H 0 : μ = μ 0 = 35 MPa H : μ < μ 0 = 35 MPa (eller H : μ > μ0) (eller H : μ μ0)

6 Statistik 7. gang 6 I dette tilfælde udføres en enkeltsidet test, små styrker betragtes som kritiske : H 0 accepteres hvis Z > Zα Hvis H 0 accepteres kan det ikke afvises, at middeltrækstyrken er 35 MPa eller større.. trin: statistisk model Fordeling af X : σ N( μ, ) n Test statistik: X μ Z = σ / n : N(0, )

7 Statistik 7. gang 7 3. trin: Signifikansniveau α = 0.0 ( % sandsynlighed for type I fejl, dvs. at H 0 forkastes selvom den er sand) 4. trin: n Udfra n = 00 og X = x i = 39 : n i= Z X μ = = σ / n / 00 = 3.75

8 Statistik 7. gang 8 5. trin: Der benyttes en enkeltsidet test, idet kun små værdier af Z er kritiske! Z = 3.75 Z = Φ ( α) = Φ (0.99) =.36 Z =. 36 α α 6. trin: H 0 forkastes, dvs. styrken er ikke acceptabel

9 Statistik 7. gang 9 EKSEMPEL Er forventningsværdien af indholdet i en flaske = ¾ liter?. trin: H 0 : μ = μ 0 = 3/ 4 liter H : μ μ 0 = 3/ 4 liter. trin: Hvis σ antages kendt fås: (husk sidste gang) σ X : N( μ, ) n Derved introduceres test statistikken: X μ Z = : N(0, ) σ / n

10 Statistik 7. gang 0 3. trin: Signifikansniveau α = 0.0 ( % sandsynlighed for type I fejl, dvs. at H 0 forkastes selvom den er sand) 4. trin: Forsøgsresultater: n = 30 n X = x i n = Med μ = og σ = fås: i= Z X μ = = σ / n / 30 = 0.5

11 Statistik 7. gang 5. trin: Der vælges en dobbeltsidet test, idet både små og store værdier af Z er kritiske! Z = 0.5 Z α / = Φ ( α / ) = Φ (0.995) = trin: H 0 accepteres, idet: Z α /.58 < < Z < 0.5 Z α / <.58

12 Statistik 7. gang 9.3. HYPOTESETEST AF MIDDELVÆRDIER UKENDT SPREDNING. trin: Hypotese: H 0 og H : formuleres som før. trin: statistisk model Middelværdi X og spredning S : stokastiske variabler Test statistik: X μ t = : tn S / n (t-fordeling med n- frihedsgrader) 3. trin: Signifikansniveau: som før, typisk α = trin: Indsaml data og beregn test statistik t

13 Statistik 7. gang 3 5. trin: Definer forkastelsesområdet Det område for test statistikken, der medfører at H 0 forkastes (område der er usandsynligt for test statistikken, hvis hypotesen er sand) 6. trin: Konklusion accept område: H : μ < μ0 forkast hvis t < tα,( n ) H : μ > μ0 forkast hvis t > tα,( n ) H : μ μ0 forkast hvis t < tα /,( n ) eller t > tα /,( n )

14 Statistik 7. gang 4

15 Statistik 7. gang 5 EKSEMPEL 9.3 Koncentration af ilt: Er forventningsværdien af koncentrationen af ilt over grænseværdien på 3 per million?. trin: Hypotese: H 0 : μ = μ 0 = 3 per million H : μ < μ 0 = 3 per million. trin: Test statistik: X μ t = : tn S / n (t-fordeling med n- frihedsgrader) 3. trin: Signifikansniveau: typisk α = trin: Givet: n = 5 X =.8 S =0.3 t = X μ = S / n / 5 =.398

16 Statistik 7. gang 6 5. trin: Enkeltsidet test t =.398 t =.3 (tabel A-) α,(5 ) 6. trin: H 0 accepteres, idet: > -.3

17 Statistik 7. gang HYPOTESETEST AF MIDDELVÆRDIER UKENDT SPREDNING Population : X : N( μ, σ ): n samples med middelværdi X og spredning S Population : X : N( μ, σ ): n samples med middelværdi X og spredning S. trin: Hypotese: H 0 : middelværdier af de populationer er ens: μ = μ H : μ < μ eller H : μ > μ eller H : μ μ. trin: Test statistik: X X t = (t-fordeling med n + n - frihedsgrader) ( n ) S + ( n ) S + n + n n n 3. trin: Signifikansniveau: som før, typisk α = 0.0

18 Statistik 7. gang 8 4. trin: Indsaml data og beregn test statistik t 5. trin: Definer forkastelsesområdet Det område for test statistikken, der medfører at H 0 forkastes 6. trin: Konklusion accept område: H : μ < μ forkast hvis t < tα H : μ > μ forkast hvis t > tα H : μ μ forkast hvis t < t α / eller t > t α /

19 Statistik 7. gang 9 EKSEMPEL 9-4 Udvikling af kvælstofindhold i én bæk - indhold før byudvikling: μ f - indhold efter byudvikling: μ e Er der sket en ændring?. trin: Hypotese: H 0 : middelværdier af de populationer er ens: μ f = μ e H : μ f < μ e. trin: Test statistik: X X t = (t-fordeling med n + n - frihedsgrader) ( n ) S + ( n ) S + n + n n n 3. trin: Signifikansniveau: α = 0.05

20 Statistik 7. gang 0 4. trin: Data: Før: n = X =0.78 S =0.36 Efter: n = 4 X =.37 S = t = = -.04 ( ) (4 ) trin: Definer forkastelsesområdet Enkeltsidet test t =.04 t =. 74 (tabel A-) 6. trin: Konklusion Da -.04 < -.74 forkastes H 0 H accepteres α,(+ 4 ) Dvs. kvælstodindholdet forøges efter byudvikling

21 Statistik 7. gang Alternativt: 3. trin: Signifikansniveau: α = 0.0 t =.04 t α,(+ 4 ) =-.500 (tabel A-) H 0 accepteres Dvs. kvælstodindholdet forøges ikke efter byudvikling med et signifikansniveau på % OBS: α = P( H 0 selvom H er sand) forkast 0 dvs. α større sværere at få hypotese accepteret (lettere at få hypotese forkastet)

22 Statistik 7. gang 9.4 HYPOTESETEST AF VARIANSER. trin: Hypotese: H 0 : ingen signifikant forskel mellem populationens varians og en forud valgt værdi af variansen σ : σ = σ 0 0 σ H : eller H : eller H : σ < σ 0 σ > σ 0 σ σ 0. trin: Test statistik: samplevarians: S : χ (chi-fordelt tabel A-3) ( n ) S test statistik: χ = σ 0 χ -fordelt med (n-) frihedsgrader 3. trin: Signifikansniveau: som før, typisk α = 0.0

23 Statistik 7. gang 3 4. trin: Indsaml data og beregn test statistik 5. trin: Definer forkastelsesområdet Det område for test statistikken, der medfører at H 0 forkastes χ

24 Statistik 7. gang 4 6. trin: Konklusion accept område: H : σ < σ 0 forkast hvis χ < χ α,( n ) H : σ > σ 0 forkast hvis χ > χ α,( n ) H : σ σ 0 forkast hvis χ < χ α /,( n ) eller χ > χ α /,( n )

25 Statistik 7. gang 5

26 Statistik 7. gang 6 EKSEMPEL 9-5 Variansen af betons trykstyrke bør ikke være for stor. trin: Hypotese: H 0 : varians = H : σ > σ 0 σ = 0 3. trin: Signifikansniveau: α = trin: Data: n= 5 S =.38 ( n ) S (5 ).38 χ = = = σ trin: Definer forkastelsesområdet H : σ > σ 0 forkast hvis χ χ α,( n ) =9.49 (tabel A-3) 6. trin: Konklusion Da χ forkastes hypotesen > χ α,( n ) > χ α,( n )

27 Statistik 7. gang HYPOTESETEST AF POPULATIONERS VARIANSER Varians af de populationer: S og S ( S > S ). trin: Hypotese: H 0 : ingen signifikant forskel mellem populationernes varianser σ = σ H : σ σ. trin: test statistik: S F = S F - fordelt med ( n -) frihedsgrader i tæller ( n -) frihedsgrader i nævner 3. trin: Signifikansniveau: typisk α = trin: Indsaml data og beregn test statistik F 5. trin: Definer forkastelsesområdet H 0 accepteres på signifikansniveau α hvis F < F α, n, n 6. trin: Konklusion /

28 Statistik 7. gang 8

29 Statistik 7. gang 9 EKSEMPEL 9-6. trin: Hypotese: H 0 : σ = σ H : σ σ. trin: S test statistik: F = S 3. trin: Signifikansniveau: typisk α = trin: Indsaml data og beregn test statistik F n =5 S =3.807 n =5 S 6.43 test statistik: F = = =.687 S S = trin: Definer forkastelsesområdet F α =6.39 (tabel A-4) /, n, n 6. trin: Konklusion Da F < F α, n, n accepteres H 0 på signifikansniveau α =5% /

30 Statistik 7. gang 30

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Rettevejledning til eksamen i Kvantitative metoder 1, 2. årsprøve 2. januar 2007

Rettevejledning til eksamen i Kvantitative metoder 1, 2. årsprøve 2. januar 2007 Rettevejledning til eksamen i Kvantitative metoder 1,. årsprøve. januar 007 I rettevejledningen henvises der til Berry and Lindgren "Statistics Theory and methods"(b&l) hvis ikke andet er nævnt. Opgave

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18

Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Løsning til eksaminen d. 29. maj 2009

Løsning til eksaminen d. 29. maj 2009 DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Løsninger til kapitel 9

Løsninger til kapitel 9 Opgave 9.1 a) test for spredning, ensidet b) test for middelværdi, ensidet c) test for andel, ensidet d) test for to andele, ensidet e) test for spredning, tosidet f) test for middelværdi, ensidet g) test

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Vejledende løsninger kapitel 8 opgaver

Vejledende løsninger kapitel 8 opgaver KAPITEL 8 OPGAVE 1 Nej den kan også være over 1 OPGAVE 2 Stikprøvestørrelse 10 Stikprøvegennemsnit 1,18 Stikprøvespredning 0,388158 Konfidensniveau 0,95 Nedre grænse 0,902328 Øvre grænse 1,457672 Stikprøvestørrelse

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau...

1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau... Indhold 1 Statistisk inferens: Hypotese og test 2 1.1 Nulhypotese - alternativ.................................. 2 1.2 Teststatistik........................................ 3 1.3 P-værdi..........................................

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Opgaver til kapitel 3

Opgaver til kapitel 3 Opgaver til kapitel 3 3.1 En løber er interesseret i at undersøge om hendes løbeur er kalibreret korrekt. Hun udmåler derfor en strækning på præcis 1000 m og løber den 16 gange. For hver løbetur noterer

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff

Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala 3 5% 5% 5% 0 3 4 5 6 7 8 9 0 Statistik for biologer 005-6, modul 5: Normalfordelingen opstår når mange forskellige faktorer uafhængigt af hinanden bidrager med additiv variation til. F.eks. Højde af rekrutter

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Forsøgsplanlægning Stikprøvestørrelse

Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 8. november 2011 Videnskabelig hypotese Planlægning af et studie Endpoints Forsøgsplanlægning Stikprøvestørrelse 1 51 Instrumentelle/eksponerings variable Variationskilder

Læs mere

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok Opgave 1 Vejledende besvarelse af eksamen i Statistik for biokemikere, blok 2 2006 Inge Henningsen og Niels Richard Hansen Analysevariablen i denne opgave er variablen forskel, der for hver af 10 kvinder

Læs mere

Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher

Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher Kursus 02323: Introducerende Statistik Forelæsning 12: Forsøgsplanlægning Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Indledende om Signifikanstest Boldøvelser 1 Påstand: Et nyt præparat M virker mod migræne. Inden præparatet kan markedsføres, skal denne påstand

Læs mere

Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter

Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere