PASSIV KLIMATISERING

Relaterede dokumenter
FORSKNINGSMÆSSIGE FOKUSOMÅDER MOD VENTILATION I NÆSTEN ENERGINEUTRALT BYGGERI PER HEISELBERG INSTITUT FOR BYGGERI OG ANLÆG

OVEROPHEDNING, BRUG AF KØLING OG AKTIV SOLAFSKÆRMNING -

The effects of occupant behaviour on energy consumption in buildings

Hvad skal nye materialer og løsninger kunne i fremtiden?

Intelligent Glazed Facades

Lavere U-værdier fører til øget energiforbrug! Intelligente glasfacader et eksperimentelt studium

TILFREDSHED: BLIVER BEBOERNE MERE TILFREDSE MED INDEKLIMAET I ENERGIEFFEKTIVE BOLIGER? H E N R I K N. K N U D S EN

Statistical information form the Danish EPC database - use for the building stock model in Denmark

Energy-saving potential A case study of the Danish building stock. Kim B. Wittchen Danish Building Research Institute, SBi AALBORG UNIVERSITY

Udfordringer med indeklima ved energirenovering

Mekanisk Ventilation en nødvendig n. Per Heiselberg Institut for Byggeri og Anlæg Aalborg Universitet

Nye fjernvarmesystemer. Svend Svendsen DTU BYG

VENTILATION I EKSISTERENDE SKOLER HVORFOR OG HVORDAN?

Slot diffusers. Slot diffusers LD-17, LD-18

Intelligente Glasfacader - et eksperimentelt studium

Indeklima i danske skoler og kontorer. Jørn Toftum

netværk: : Integrerede lavenergiløsninger til nye bygninger

USERTEC USER PRACTICES, TECHNOLOGIES AND RESIDENTIAL ENERGY CONSUMPTION

Buildings & Energy Paradoxes & Paradigms

Buildings Energy Climate Change

RADIANCE WORKSHOP, October ROHIT MANUDHANE CHRISTOPH REINHART Harvard Graduate School of Design

BRUGERADFÆRD EN OVERSET FAKTOR. Per Heiselberg Institut for Byggeri og Anlæg

Ventilation. Du skal selv være med til at holde din lejlighed sund You are responsible too: keep your apartment healthy

Integreres design af byggeri v. Birthe Møller Andersen

Diffus ventilation. Jürgen Nickel. Rambøll. Danvak Temadag

Hvordan kan vi bedre forudsige, hvilke problemer. påvirkninger beboerne i en given bolig vil blive udsat for. Geo Clausen

Supermarkeder og Smart Grid muligheder for fleksibelt elforbrug

Small Autonomous Devices in civil Engineering. Uses and requirements. By Peter H. Møller Rambøll

FIRE DTU BYG. Performance -Based Design Fully-Developed Fires DTU

Dynamiske ruder. Persienner Jesper S. Hansen Scanglas A/S

Udvikling af mekanisk ventilation med lavt elforbrug

Fremtidens brugerinstallationer for fjernvarmen. Jan Eric Thorsen, Director DHS Application Centre and HEX research, Danfoss Heating

Temperatur stabilisering ved brug af faseskiftende materiale - PCM. Carsten Rode & Amalie Gunner

GNSS/INS Product Design Cycle. Taking into account MEMS-based IMU sensors

Basic statistics for experimental medical researchers

Overvejelser ved valg af energitekniske installationer

Prognose og karakterisering af bygningers energiforbrug

Remote Sensing til estimering af nedbør og fordampning

Constant Terminal Voltage. Industry Workshop 1 st November 2013

Family of R744 control valves and suggestions for efficient testing

PEMS RDE Workshop. AVL M.O.V.E Integrative Mobile Vehicle Evaluation

GREEN KEY GREEN DREAMS

Challenges for the Future Greater Helsinki - North-European Metropolis

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

University Medical Center of Princeton David Bodnar Construction Management Senior Thesis

Local Heating Concepts for Power Balancing

Hudevad P200. Technical datasheet

BALANCERING AF FJERNVARME FOR ØGET OPTAG AF LAVTEMPERATUR OVERSKUDSVARME

Energirenovering af boliger og indeklima

Luftskifte Hvad ved vi og hvad kan vi?

Results of LArGe cryostat cooling tests

Designguide til valg af vinduesløsninger i boliger. Slutrapport til BOLIGFONDENKUBEN BYG DTU D A N M A R KS T E K N I S K E UNIVERSITET

ME6212. High Speed LDO Regulators, High PSRR, Low noise, ME6212 Series. General Description. Typical Application. Package

CASE - Energy renovation of buildings and 4.th Generation of District Heating

Procuring sustainable refurbishment

Hvordan spiller facaden solafskærmningen sammen med installationerne? Kjeld Johnsen, SBi, AAU-København

VEDLIGEHOLDELSE AF SENGE

User Manual for LTC IGNOU

Bygningers energiforbrug

Special VFR. - ved flyvning til mindre flyveplads uden tårnkontrol som ligger indenfor en kontrolzone

Vina Nguyen HSSP July 13, 2008

hansen facadeentreprenøren HSHansen Projekt: Novozymes - Bagsværd, København

GAMPIX: a new generation of gamma camera for hot spot localisation

Perspektiver for anvendelse af data i fjernvarmesystemer

Brugerdreven innovation

SOLENERGIDAGEN 2005 Integration of Architectural Values in the Solar Cells of Tomorrow

Lovkrav vs. udvikling af sundhedsapps

1. Potentialet for varmebesparelser ved anvendelse af varmlagring i konstruktion

ENERGIEFFEKTIVE LØSNINGER: HVORDAN DESIGNER VI FREMTIDENS ENERGIEFFEKTIVE BYGNINGER?

TMC - Klima

LEADit & USEit 2018 CampusHuset - Campus Bindslevs Plads i Silkeborg 25. Oktober 2018

USERTEC BRUGERPRAKSIS, TEKNOLOGI OG BOLIGERS ENERGIFORBRUG

EFFEKTIVT OG MODERNE KONTORHUS Thurahs Alle 2, 2630 Taastrup Sag (AW)

Sikkerhedsvejledning

Active House. Fremtidens helhedsorienterede byggeri. Active House visionen - nye muligheder Bolig for livet fra vision til virkelighed

SiteCover Supplying fair weather for the construct ionindust ry

Dagslys, dagslyskvaliteter og dagslysets betydning for brugere af bygninger og boliger

Global carbon cycle studies with LPJ-GUESS

Integrated Engine, Vehicle, and Underhood Model of a Light Duty Truck for VTM Analysis

Tork Aftørringspapir Standard, M1. Fordel. Produktspecifikation. Beskrivelse. Farve: Hvid Type: Mini Centerfeed Rulle

TERMISKE ENERGILAGRE ATV - NATIONALT CENTER FOR ENERGILAGRING

LED STAR PIN G4 BASIC INFORMATION: Series circuit. Parallel circuit HOW CAN I UNDERSTAND THE FOLLOWING SHEETS?

Energirigtig bygningsautomation. 13 Appendiksrapport. P:\68369A\3_Pdoc\4_Report\Energirigtig bygningsautomation rapport.doc

Måling af bruttoenergiforbrug i nybyggeri svarende til BR2005 energikrav Projektresumé

TEMADAG OM VINDUER, GLAS OG FACADER

Sport for the elderly

Methods to increase qualifications for energy savings in buildings

GEOENERGI EN EFFEKTIV ENERGIRESSOURCE. Præsentation af Lars Hjortshøj Jacobsen ATES A/S ÈN KONCERN MED TRE FAGLIGE SPOR

ALLROUND 360 ONE 360 ONE SOFT SQUARY BLOCKY OWI TUBO EASY B75 EASY B100

QUICK START Updated:

Autodesk Simulation. Torben Christensen Niels Riis Christensen NTI CADCenter A/S

Bookingmuligheder for professionelle brugere i Dansehallerne

RAVE. The New Radar Motion Sensor Rated IP67: Optimized for Harsh Outdoor Applications

DK - Quick Text Translation. HEYYER Net Promoter System Magento extension

I hvilke tilfælde kan det betale sig at energirenovere parcelhuse? Ove Mørck

Internationalt uddannelsestilbud

Hvad er kilderne til forurening i vores boliger?

Signe Kongebro. fokus på evidens og metodefrihed

LivingLab by DOVISTA

Skidding System. Challenge Us

Transkript:

PASSIV KLIMATISERING NATURLIG/HYBRID ELLER MEKANISK VENTILATION JA TAKK, BEGGE DELE! PER HEISELBERG

NATURLIG KLIMATISERING? REDUKTION AF ENERGIFORBRUG TIL OPVARMNING Høste og udnytte solstråling Tilstrækkelig isolering og lufttæthed Varmeakkumulering og frigivelse (solvarme, overskudsvarme) REDUKTION AF ENERGIFORBRUG TIL VENTILATION Vinduesudluftning Naturlig ventilation (evt. med varmegenvinding/forvarmning) REDUKTION AF ENERGIFORBRUG TIL KØLING (OVERTEMPERATUR) Solafskærmning Vinduesudluftning og naturlig ventilation ( frikøling med udeluft) Nattekøling med udnyttelse af termisk masse REDUKTION AF ENERGIFORBRUG TIL BELYSNING Forbedret indtrængning og udnyttelse af dagslys Integration af solafskærmnings/dagslyssystemer

KLIMATISERING AF BYGNINGER BALANCE OG INTEGRATION MELLEM PASSIVE OG MEKANISKE SYSTEMER Mikroklima Internel belast. Termisk komfort Brug af Bygning Design Bygning Dagslys Passiv varme/køl Naturlig ventilation Ude klima IAQ Kunstig belysning Varme/køl systemer Mek. ventilation

Building Facades

BYGNINGS (GLAS) FACADERS FUNKTIONER KONTROLLERER OG OPTIMERER ENERGITRANSPORTEN MELLEM BYGNING OG OMGIVELSER KONTROLLERER OG OPTIMERER UDVEKSLING AF LUFT MELLEM BYGNING OG OMGIVELSER KONTROLLERER OG OPTIMERER DAGSLYS OG SOLINDFALD KONTROLLERER OG OPTIMERER ENERGILAGRING OG/ELLER UDJÆVNER VARMEBELASTNINGER I FACADE OG BYGNING 5

BYGNINGS (GLAS) FACADERS FUNKTIONER INKLUDERER I FORHOLD TIL INDEKLIMA OG ENERGIFORHOLD: Begrænse varmetabet fra bygningen til det fri Begrænse infiltration og exfiltration mod det fri Udnytte solvarme, passivt og aktivt Beskytte mod solindfald, som vil resultere i kølebehov i bygningen Udnytte dagslys og regulere til aktuelt behov Tillade udsyn til omgivelserne Beskytte mod blænding, store kontraster og refleksioner i blanke overflader Bidrage til (naturlig) ventilation, manuelt eller automatisk reguleret Beskytte mod støj udefra

FACADENS FUNKTIONER ER MODSÆTNINGSFYLDTE Dagslys solafskærmning udsyn Vinduesåbning lydisolation Glasareal varmebehov/kølebehov MEDFØRER AT FACADEN IKKE KAN DIMENSIONERES MEN MÅ DESIGNES UD FRA EN OPTIMERINGSSTRATEGI Definition af vigtigste funktioner og funktionskrav Vægtning af funktionskrav efter aktuelle prioriteringer Vurdering af samspil med bygningens øvrige systemer (installationer og anlæg).

GLASFADADENS VARMEBALANCE, E REF E ref = 196,4 g g f f - 90,36 U W [kwh/m²] 2015: -17 kwh/m² 2020: 0 kwh/m² www.eref.dk/ www.sophienberg.com 8

VINDUETS ENERGIBALANCE E REF Eref KWh/m2 ventilation KWh 78,59394 79,970163 102,91797 105,6561 91,214653 94,138566 94,091365 97,091445 99,926949 103,80711 Parameters of windows 10 0-10 -20-30 -40-50 -60-70 2 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 120 2020 2015 2010 Energy demand KWh/m2 100 80 60 40 20 0 sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9 sample 10 heating KWh cooling KWh light KWh ventilation KWh gg ff Uw Eref INSTITUT FOR BYGGERI OG ANLÆG AALBORG UNIVERSITET

DYNAMIC FACADE CONTROL STRATEGY- OCCUPIED HOURS Natural ventilation/co2, T o >12 C Blind cutoff/glare Natural ventilation/>23 C Blind closed/>24 C Heating/<20 C Cooling/>25 C Source::Liu, Wittchen & Heiselberg Applied Energy 2015 10

DYNAMIC FACADE CONTROL STRATEGY- OUTSIDE OCCUPIED HOURS Night Shutter/<20 C Blind Closed/>25 C Night Cooling Open/T o >18 C (12-17) Night Coolingclosed/<17 C Heating/<20 C Cooling/>25 C Source::Liu, Wittchen & Heiselberg Applied Energy 2015 11

SAMMENLIGNING AF ENERGIFORBRUG FOR STATISK OG DYNAMISK FAÇADE VED FORSKELLIGE GLASPROCENTER Source::Liu, Wittchen & Heiselberg Applied Energy 2015

BRUGERAFPRØVNING AF STYRINGSSTRATEGI FOR BLÆNDING Source:: Karlsen, Heiselberg & Bryn Solar Energy 2015 DE P ARTME NT O F CI V I L E NG I NE E RI NG A A L B O RG UNI V E RS I TY

STYRINGS- STRATEGI Source::Karlsen, Heiselberg & Bryn SolarEnergy 2015

OCCUPANT SATISFACTION WITH TWO BLIND CONTROL STRATEGIES: SLATS CLOSED AND SLATS IN CUT-OFF POSITION a) Prefered solar shading strategy c) Is the view important to you? 8 % 30 % 0 % 32 % 68 % 62 % Simple Detailed No preference Not at all Moderately Very much Source::Karlsen, Heiselberg & Bryn SolarEnergy 2015

OCCUPANT SATISFACTION WITH TWO BLIND CONTROL STRATEGIES: SLATS CLOSED AND SLATS IN CUT-OFF POSITION a) If uncomfortable; I would change the blinds because I would like to have (simple) b) If uncomfortable; I would change the blinds because I would like to have (detailed) 25 25 Number of responses 20 15 10 5 0 Number of responses 20 15 10 5 0 Yes To a certain degree Yes To a certain degree Source::Karlsen, Heiselberg & Bryn SolarEnergy 2015

SUMMARY IN NZEB OFFICES WITH HIGH INSULATION AND AIR TIGHTNESS LEVELS: The need for cooling is increasing and more efficient systems have to be developed to fulfill future energy requirements There will always be a cooling need during occupied hours even in the winter season Application of the free cooling potential of outdoor air is widely used in mechanical ventilation systems, but high air flow rates are needed also in winter because of draught risk leading to relatively high energy use for Air transport POTENTIAL SOLUTIONS Increased use of natural/hybrid ventilation for cooling Distribution of cold air to rooms without creating discomfort Effective decentralized ventilation solutions

Energy use for ventilation

COMPARISON OF ENERGY USE FOR DIFFERENT VENTILATION SYSTEM SOLUTIONS Case 1 Case 2 Case 3 Case 4 Case 5 Source:: Yu, Heiselberg, Lei, Pomianowski & Zhang. Energy & Buildings, 2015 AAU

COMPARISON OF ENERGY USE FOR DIFFERENT VENTILATION SYSTEM SOLUTIONS Without diffuse ceiling Room geometry Source:: Yu, Heiselberg, Lei, Pomianowski & Zhang. Energy & Buildings, 2015 With diffuse ceiling

COMPARISON OF ENERGY USE FOR DIFFERENT VENTILATION SYSTEM SOLUTIONS PAREMETERS Building location: Copenhagen Orientation: South Occupied time: 9-17 Ventilation system: Minimum ACH-1.1 h -1, Heat recovery-0.75 Infiltration rate : 0.15 h -1 Internal heat load: 30 W/m2, including occupants, lighting, and equipment Shutter: Un-occupied time,when T op <20, R=5 W/m2 K Shading control: different controls in winter and summer Source:: Yu, Heiselberg, Lei, Pomianowski & Zhang. Energy & Buildings, 2015 AAU

COMPARISON OF ENERGY USE FOR DIFFERENT VENTILATION SYSTEM SOLUTIONS PRIMARY ENERGY CONVERSION FACTORS System conversion factor Primary energy conversion factor Air-based heating 0.8 1.0 Air-based cooling 3.0 2.5 Radiant heating 0.8 1.0 Radiant cooling 3.5 2.5 Mechanical ventilation 1.0 2.5 Source:: Yu, Heiselberg, Lei, Pomianowski & Zhang. Energy & Buildings, 2015 AAU

COMPARISON OF ENERGY USE FOR DIFFERENT VENTILATION SYSTEM SOLUTIONS Maximum energy saving, 50% Source:: Yu, Heiselberg, Lei, Pomianowski & Zhang. Energy & Buildings, 2015 23 AAU

COMPARISON OF ENERGY USE FOR DIFFERENT VENTILATION SYSTEM SOLUTIONS Source:: Yu, Heiselberg, Lei, Pomianowski & Zhang. Energy & Buildings, 2015

SUMMARY THE CHOICE OF THE MOST ENERGY EFFICIENT VENTILATION SYSTEM DEPENDS ON THE BUILDING HEAT LOAD Mechanical ventilation with heat recovery is most energy efficient for small heat loads and during winter Natural ventilation without heat recovery is most energy efficient at high heat loads and during summer. FURTHER OPTIMIZATION CAN BE ACHIEVED USING A HYBRID SYSTEM. TYPICALLY OPERATION STRATEGY: Mechanical ventilation with heat recovery in the winter period (heating season) in occupied periods with cloudy conditions as well as outside occupied periods Natural ventilation in the winter period in occupied periods with sunny conditions as well as outside the heating season Night time ventilation and cooling during the summer period

Cold Air Supply through Diffuse Ceilings

WHAT IS DIFFUSE CEILING VENTILATION THE SPACE ABOVE A SUSPENDED CEILING IS USED AS A PLENUM AND FRESH AIR IS SUPPLIED TO THE OCCUPIED ZONE THROUGH PERFORATED SUSPENDED CEILING.

THE PRINCIPLE Rockfon / Troldtekt ceiling Ecophon ceiling Fully diffuse ceiling

VENTILATIVE COOLING OFFICES IN COLD CLIMATE DE P ARTME NT O F CI V I L E NG I NE E RI NG A A L B O RG UNI V E RS I TY

WIDEX/WESSBERG A/S

SOLBJERGSKOLEN SOUTHWEST OF ÅRHUS

SYSTEM PRINCIPLE

DRIFT PÅ EN NORMAL SKOLEDAG BEHOVSTYRET MEKANISK VENTILATION, DER SLUKKES NÅR VINDUET ÅBNES

TEMPERATURE DISTRIBUTION ON TYPICAL DAY (OUTDOOR: 5-8 O C, N= 2-3H -1 )

ROOM AIR VELOCITIES (OUTDOOR: 5-8 O C, N= 2-3H -1 )

MÅLT CO 2 KONCENTRATION I KLASSEN

EXPERIMENTAL SET-UP IN THE LAB DE P ARTME NT O F CI V I L E NG I NE E RI NG A A L B O RG UNI V E RS I TY

MEASUREMENT POINTS IN THE TEST ROOM 12 positions with 3 movable columns (Temperature and velocity) Operative temperature Source:: Zhang, Heiselberg, Pomianowski, Yu & Jensen. Energy & Buildings, 2015

DESIGNED CASES Heat load 30 W/m2 (only internal heat gain) Air change rate (h -1 ) Natural ventilation ( - means heat loss, + means heat gain) TABS ( - means heat loss, + means heat gain) Outdoor temperature ( o C) Indoor temperature ( o C) Solar heat gain (W/m 2 ) With diffuse ceiling Without diffuse ceiling 2-200% +100% -8 24 0 2-100% 0% 9 24 0 2-50% -50% 15 24 0 2 0% -100% 24 24 0 2 50% -150% 32 24 0 4-200% +100% -8 24 30 60 W/m2 4-100% 0% 9 24 30 (internal 4-50% -50% 15 24 30 and solar - means cooling, 4 and + 0% means -100% heating 24 24 30 heat gain) 4 50% -150% 32 24 30 Source:: Zhang, Heiselberg, Pomianowski, Yu & Jensen. Energy & Buildings, 2015

VERTICAL TEMPERATURE GRADIENT < 3 o C Not enough cooling capacity 3 2,5 Case 1 Case 2 3 2,5 Case 11 Case 12 2 Case 3 2 Case 13 Height [m] 1,5 1 Case 4 Case 5 Case 6 Height [m] 1,5 1 Case 14 Case 15 Case 16 0,5 Case 7 Case 8 0,5 Case 17 Case 18 0 20 22 24 26 28 30 Temperature [ o C] Case 9 Case 10 0 20 22 24 26 28 30 Temperature [ o C] Case 19 Case 20 Without diffuse ceiling With diffuse ceiling Source:: Zhang, Heiselberg, Pomianowski, Yu & Jensen. Energy & Buildings, 2015

DRAUGHT RISK Winter condition: Supply air temperature -8 o C, ACH =4 DR <20% ISO 7730 Source:: Zhang, Heiselberg, Pomianowski, Yu & Jensen. Energy & Buildings, 2015

DESIGN CHART FOR DIFFERENT DIFFUSE CEILING OPENING AREAS Source:: Zhang, Kristensen, Jensen, Heiselberg, Jensen & Pomianowski, Energy & Buildings, 2016

SUMMARY Low draught risk in the occupied zone, even when supplying air at temperatures below 0C o Air distribution and draught risk dependent on heat load location, ceiling height, area and location of supply. Very low vertical temperature gradient in the room with diffuse celling supply Low radiant temperature asymmetry and no clear radiation cooling potential of diffuse ceiling, due to low conductivity Very low pressure drop across diffuse ceiling (less than 5 Pa)

Thanks for your attention Per Heiselberg Aalborg University E-mail: ph@civil.aau.dk www.aau.dk www.zeb.aau.dk