Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren
|
|
|
- Olaf Steensen
- 10 år siden
- Visninger:
Transkript
1 Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet ANOVA Data: antibiotika og nedbrydning af organisk materiale Statistisk model Estimation og konfidensintervaller Sammenligning af grupperne (test) Parvise sammenligninger Slide 2 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Case 3, del I: A-vitamin i leveren A-vitamin tilført på to måder: i majsolie (corn): x 1,...,y 10 i amerikansk olie (am): y 1,...,y 10 Spørgsmål: er A-vitaminkonc. i leveren den samme uanset olietypen? Statistisk model: alle x er og y er er uafhængige og der er ens spredning i de to grupper (samme σ): x 1,...,x 10 N(µ x,σ 2 ), y 1,...,y 10 N(µ y,σ 2 ) Hypotesen H 0 : µ x = µ y testes med T = ˆµ x ˆµ y SE(ˆµ x ˆµ y ) = SE() = R: t.test(x,y, var.equal=t) s 1/10 + 1/10 t 20 2 Case 3, del II: Fiskesmag i lammekød 11 lam i to grupper: 5 lam fik standardfoder (x 1,...,x 5 ), og 6 lam fik standardfoder tilsat fisk (y 1,...,y 6 ). Spørgsmål: Er der afsmag af fisk i lammekødet? Statistisk model: alle x er og y er er uafhængige, men der er er forskellig spredning i de to grupper: x 1,...,x 5 N(µ x,σ 2 x ), y 1,...,y 6 N(µ y,σ 2 y ) Hypotesen H 0 : µ x = µ y testes med T = ˆµ x ˆµ y SE(ˆµ x ˆµ y ) = SE() = sx 2 /5 + sy 2 /6 approx. t df hvor frihedsgraderne beregnes udfra s x og s y : Se afsnit 5.4, p. 127! R: t.test(x,y, var.equal=f) eller bare t.test(x,y) Slide 3 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Slide 4 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper
2 Opgave 6.3: Fertilitet af lucerne Sammenligning af to stikprøver: oversigt To klaser fra hver af 10 lucerneplanter: én klase bøjet ned (x 1,...,x 10 ), den anden klase eksponeret for sol og vind (y 1,...,y 10 ) Her er x erne og y erne ikke uafhængige de kommer parvis fra de samme planter! Vi taler om parvise observationer. Ser i stedet på differenserne, d i = x i y i. Statistisk model: d erne er uafhængige og d i N(µ,σ 2 ). Hypotesen H 0 : µ = 0 testes med et parret t-test: T = ˆµ SE(ˆµ) = d SE( d) = d s d / 10 t 10 1 R: t.test(x,y, paired=t) eller t.test(x-y) x, y uafh.? Samme sd.? R A-vitamin Ja Ja t.test(x,y, var.equal=t) Fiskesmag Ja Nej t.test(x,y) Lucerne Nej t.test(x,y, paired=t) Når vi skal sammenligne to stikprøver kan vi altså klare os med t-test i forskellige afskyninger. Hvad hvis vi vil sammenligne tre eller flere stikprøver samtidig? Ensidet ANOVA! Slide 5 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Slide 6 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Antibiotika og nedbrydning af organisk materiale Data Fem typer antibiotika og en kontrolbehandling 36 kvier inddelt i seks grupper. Foder tilsat antibiotikum Gødning gravet ned i poser og mængden af organisk materiale målt efter 8 uger For spiramycin: kun fire brugbare målinger Formål Påvirker antibiotika nedbrydningen af organisk materiale? Hvis kontrolmålingerne ligger lavere end de andre, tyder det på at antibiotika hæmmer nedbrydningen. Ligger de signifikant lavere eller skyldes det bare tilfældigheder? Gruppegennemsnit og -spredninger Type n j ȳ j s j Control α-cyperm Enrofloxacin Fenbendaz Ivermectin Spiramycin Organic material Sammenvejet (pooled) spredningsestimat: 1 ( ) s = 5 s s6 2 1 = 34 6 Con Alp Enr Fen Ive Spi n i=1 (y i ȳ g(i) ) 2 = Slide 7 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Slide 8 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper
3 Statistisk model Statistisk model Husk at g(i) angiver gruppen for observation i. For eksempel g(1) = = g(6) = control, g(31) = = g(34) = Spiramycin g(1) = = g(6) = 1, g(31) = = g(34) = 6. Altså: y i = α g(i) + e i, e 1,...,e n N(0,σ 2 ) uafhængige Statistisk model: y 1,...,y 34 er uafhængige og y i N(α g(i),σ 2 ) Parametre: α 1,...,α 6 og σ. Ækvivalent formulering: Antagelserne er: Alle y i er normalfordelte Middelværdien af y i er α g(i) en middelværdi for hver gruppe Alle y i har samme spredning Uafhængighed y i = α g(i) + e i, e 1,...,e 34 N(0,σ 2 ) uafhængige Slide 9 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Slide 10 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Estimation og konfidensintervaller Ensidet ANOVA i R Statistisk model: y i = α g(i) + e i, e 1,...,e n N(0,σ 2 ) uafhængige Fit af ensidet ANOVA model: Parametre: α 1,...,α k og σ. Især interesseret i forskelle, α j α l! Estimater og estimerede spredninger: ˆα j = ȳ j ; SE(ˆα j ) = s 1/n j = s/ n j ˆα j ˆα l = ȳ j ȳ l ; SE(ˆα j ˆα l ) = s 1/n j + 1/n l ˆσ = s Konfidensintervaller på sædvanlig vis: > model1 <- lm(org~factor(type)) > summary(model1) R vælger en referencegruppe den første efter alfabetisk rækkefølge og estimerer forskelle i forhold til denne gruppe. Vi vil hellere bruge kontrolgruppen som reference: > type <- relevel(type, ref="control") > model1 <- lm(org~factor(type)) > summary(model1) estimat ± t 0.975,n k SE(estimat) NB. s bruges også ved sammenligning af to af grupperne! Slide 11 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Slide 12 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper
4 Ensidet ANOVA i R Output fra summary(model1): Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** factor(type)alfacyp *** factor(type)enroflox factor(type)fenbenda ** factor(type)ivermect e-06 *** factor(type)spiramyc ** Residual standard error: on 28 degrees of freedom Fortolkninger: Estimat og CI for α cont, α Fenb α cont og α Fenb? Estimat for σ? Hvorfor er der forskellige SE er? Ensidet ANOVA i R Hvis vi hellere vil have gruppegennemsnit isf. forskelle til kontrolgruppen: > model2 <- lm(org~factor(type)-1) > summary(model2) Coefficients: Estimate Std. Error t value Pr(> t ) factor(type)control <2e-16 *** factor(type)alfacyp <2e-16 *** factor(type)enroflox <2e-16 *** factor(type)fenbenda <2e-16 *** factor(type)ivermect <2e-16 *** factor(type)spiramyc <2e-16 *** Residual standard error: on 28 degrees of freedom De to specifikationer er gode til hver sit formål! Slide 13 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Slide 14 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Organic material Hypotese. Variation indenfor og mellem grupper Hypotese, H 0 : α 1 = = α k. Alternativ, H A : mindst to α er er forskellige. Con Alp Enr Fen Ive Spi Variation indenfor grupper punkter vs. fuldt optrukne liniestykker ( ) SS e = n 2 i=1 yi ȳ g(i) Variation mellem grupper Fuldt optrukne linieestykker vs. stiplet linie Teststørrelse SS grp = k j=1 n j (ȳ j ȳ) 2 F = MS grp MS e = SS grp/(k 1) SS e /(n k) Sammenligning af alle grupperne Kan kun bruge model1 til dette ikke model2 med -1! > anova(model1) Df Sum Sq Mean Sq F value Pr(>F) factor(type) e-05 *** Residuals Teststørrelse F = MS grp = SS grp/(k 1) MS e SS e /(n k) Store værdier af F er kritiske passer dårligt med hypotesen, så p = P(F F obs ) = P(F 7.97) = så der er med stor sikkerhed påvist en forskel på typerne. Hvordan kom vi frem til p-værdien? Slide 15 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Slide 16 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper
5 Density F -fordelingen Hvis hypotesen er sand er F -teststørrelsen F -fordelt med (k 1,n k) frihedsgrader. F(5,28) F 0.95,5, F p = P(F 7.97) = Vi afviser H 0 hvis F obs er større end 95%-fraktilen, her F 0.95,5,28 = Sandsynligheder og fraktiler i R: > pf(7.97, df1=5, df2=28) [1] > qf(0.95, df1=5, df2=28) [1] Parvise sammenligninger Antag at vi er specielt interesseret i forskel mellem kontrolgruppen (gruppe 1) og Fenbendazolegruppen (gruppe 4): α 4 α 1. Estimat og estimeret spredning: ˆα 4 ˆα 1 = 2.833; SE(ˆα 4 ˆα 1 ) = Konfidensinterval for α 4 α 1? Test for hypotesen H 0 : α 1 = α 4? Er alle grupperne signifikant forskellige fra kontrolgruppen? Slide 17 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Slide 18 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper LSD-værdi: least significant difference Hvor stort skal estimatet for forskellen mellem to grupper være for at den bliver signifikant? Forskellen ˆα j ˆα l er signifikant hvis og kun hvis T = ˆα j ˆα l SE(ˆα j ˆα l ) > t 0.975,n k ˆα j ˆα l > t 0.975,n k SE(ˆα j ˆα l ) Altså er den mindste signifikante forskel: LSD j,l = t 0.975,n k SE(ˆα j ˆα l ) = t 0.975,n k s 1/n j + 1/n l LSD for kontrol og fenbend.: /6 + 1/6 = Hvis n obs. i alle grupper: samme LSD-værdi for alle par af grupper: Konklusion Vi har med stor sikkerhed påvist at der er forskel på antibiotikatyperne (p < ) For alle typer på nær Enrofloxacin er mængden af organisk materiale signifikant højere end for kontrolgruppen. Angiv desuden estimater og konfidensintervaller for α er og/eller for forskelle til kontrolgruppen. LSD = t 0.975,n k SE(ˆα j ˆα l ) = t 0.975,n k s 2/n Slide 19 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Slide 20 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper
6 Resumé: ensidet variansanalyse Dagens hovedpunkter Statistisk model: normalfordeling, ens spredning i gruppernem uafhængighed Estimation: gruppegennemsnit og sammenvejet stikprøvespredning Konfidensinterval: estimat ± t 0.975,n k SE(estimat) Hypotesen om ens middelværdier testes med F = MS grp /MS e. Parvise sammenligninger foretages indenfor modellen, således at alle observationer bruges til at estimere spredningen. Hvis der kun er to grupper, så kan vi klare os med t-test. Forskellige versioner : Er stikprøverne uafhængige? Kan spredningerne antages at være ens? Ensidet variansanalyse Antagelser for ensidet variansanalyse Hypoteser for ensidet variansanalyse Teststørrelse og F -fordelingen På onsdag: Modelkontrol og prædiktion Sammenhængen mellem modellere: ligheder og forskelle Eksempler og hængepartier Uge 5: Multipel regression og tosidet ANOVA. Slide 21 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Slide 22 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper Ordliste Engelsk LSD one-way ANOVA pooled variation between groups variation within groups Dansk Mindste signifikante forskel (LSD) ensidet variansanalyse sammenvejet variation mellem grupper variation indenfor grupper Slide 23 Statistisk Dataanalyse 1 (Uge ) Sammenligning af grupper
Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data
Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: [email protected] Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration
Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration
Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: [email protected] Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie
Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: [email protected] I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige
Ensidet variansanalyse
Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: [email protected] StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge
Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange
Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger
Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: [email protected] I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper
Program Forsøgsplanlægning og tosidet variansanalyse Helle Sørensen E-mail: [email protected] I formiddag: Forsøgstyper og forsøgsplanlægning Analyse af data fra fuldstændigt randomiseret blokforsøg: tosidet
To-sidet varians analyse
To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Reeksamen i Statistik for Biokemikere 6. april 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ
Indhold 1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) 2 1.1 Variation indenfor og mellem grupper.......................... 2 1.2 F-test for ingen
grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater
Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi
Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22
Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som
1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.
Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Forelæsning 11: Envejs variansanalyse, ANOVA
Kursus 02323: Introduktion til Statistik Forelæsning 11: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet
Besvarelse af vitcap -opgaven
Besvarelse af -opgaven Spørgsmål 1 Indlæs data Dette gøres fra Analyst med File/Open, som sædvanlig. Spørgsmål 2 Beskriv fordelingen af vital capacity og i de 3 grupper ved hjælp af summary statistics.
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Eksamen i Statistik for biokemikere. Blok
Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)
Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen
Kursus 02402/02323 Introducerende Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Oversigt 1 Intro: Regneeksempel og TV-data fra B&O 2 Model og hypotese Per Bruun Brockhoff DTU Compute, Statistik
Modul 11: Simpel lineær regression
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit
Faculty of Life Sciece Program Statitik ifere E ekelt tikprøve og lieær regreio Stat. modeller, etimatio og kofideitervaller Clau Ektrøm E-mail: [email protected] Fordelig af geemit Statitik ifere for
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j
Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!
Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model
Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ
Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at
Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af
Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge
Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2
Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model
Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Forsøgsplanlægning Stikprøvestørrelse
Basal statistik Esben Budtz-Jørgensen 8. november 2011 Videnskabelig hypotese Planlægning af et studie Endpoints Forsøgsplanlægning Stikprøvestørrelse 1 51 Instrumentelle/eksponerings variable Variationskilder
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og
Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)
Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol
Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price
Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12
Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt
Program. Tosidet variansanalyse og forsøgsplanlægning. Repetition: ensidet variansanalyse. Eksempel: data fra Collinge et al
Program Tosidet variansanalyse og forsøgsplanlægning Helle Sørensen E-mail: [email protected] I formiddag: Ensidet ANOVA: repetition og Collinge eksempel. Additiv tosidet ANOVA (blokforsøg) Tosidet ANOVA
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
Program. Residualanalyse Flersidet variansanalyse. Opgave BK.15. Modelkontrol: residualplot
Program Residualanalyse Flersidet variansanalyse Helle Sørensen Modelkontrol (residualanalyse) i tosidet ANOVA med vekselvirkning. Test og konklusion i tosidet ANOVA (repetition) Tresidet ANOVA: the works
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet!
Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 2. juni 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)
Økonometri: Lektion 6 Emne: Heteroskedasticitet
Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske
Epidemiologi og Biostatistik
Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Variansanalyse (ANOVA)
Faculty of Health Sciences Variansanalyse (ANOVA) Ulla B Mogensen Biostatistisk Afd., SUND, KU. Mail: [email protected] Indhold dag 3 T-test kort opsummering Ensidet variansanalyse Modelkontrol Tosidet variansanalyse
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Opgavebesvarelse, brain weight
Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) For 20 nyfødte mus er der i tabellen nedenfor anført oplysning om kuldstørrelsen (fra 3 til 12
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
Eksamen i Statistik for Biokemikere, Blok januar 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for Biokemikere, Blok 2 2008 09 19. januar 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet
Økonometri Lektion 1 Simpel Lineær Regression 1/31
Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger
Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: [email protected] Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem
