Program. Tosidet variansanalyse og forsøgsplanlægning. Repetition: ensidet variansanalyse. Eksempel: data fra Collinge et al
|
|
|
- Malene Andreasen
- 9 år siden
- Visninger:
Transkript
1 Program Tosidet variansanalyse og forsøgsplanlægning Helle Sørensen I formiddag: Ensidet ANOVA: repetition og Collinge eksempel. Additiv tosidet ANOVA (blokforsøg) Tosidet ANOVA med vekselvirkning I eftermiddag: Forsøgstyper og forsøgsplanlægning Evt. BK.16 (og BK.15) StatBK (Uge 4, torsdag) Tosidet ANOVA 1 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 2 / 27 Repetition: ensidet variansanalyse Eksempel: data fra Collinge et al n observationer fra r grupper (n i obs. fra gruppe i) Interesseret i at sammenligne niveauet i grupperne. Statistisk model: y ij erne uafhængige y ij normalfordelt med middelværdi α i og spredning σ Alternative men identiske formuleringer af N-antagelsen: y ij = α i + ε ij, ε ij N(0,σ) y ij = µ + α i + ε ij, ε ij N(0,σ) Flere muligheder for analyser Sædvanlig ensidet variansanalyse med fire grupper Sammenligning af spredninger Sammenligning af (alle fire) middelværdier Konfidensintervaller for interessante forskelle To trinsanalyse: først sammenligning af de tre kontrolgrupper, dernæst sammenligning af kontroller mod gruppe 4. (Den anden analyse er gennemført i Variansanalyse i SAS 1 ) Fortolkningerne af α i er: forventede værdier vs. forventede forskelle. Test for H 0 : α 1 = = α r baseret på MSB og MSW: variation mellem grupper og indenfor grupper. StatBK (Uge 4, torsdag) Tosidet ANOVA 3 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 4 / 27
2 Eksempel: vægttab Additiv tosidet ANOVA: notation og model Data fra eksempel 12.7 side 332. Formål: Vægttab i løbet af 6 måneder for 30 kvinder Tre behandlinger/programmer: diæt, motion, diæt og motion To arbejdssteder: kontor og fabrik 15 kvinder fra hhv. kontor og fabrik inddeles tilfældigt i tre grupper svarende til programmerne. Taber kvinder sig mere på nogle programmer end på andre? Ikke specielt interesseret i forskellen mellem arbejdsstederne (men kunne være det). Blokforsøg. Bliver under alle omstændigheder nødt til at tage højde for en eventuel forskel mellem kontor og fabrik tosidet variansanalyse. Notation: y ijk : observation k i behandlingsgruppe i, blok j. Statistisk model: y ijk = µ + α i + β j + ε ijk hvor ε ijk er normalfordelt med middelværdi 0 og spredning σ (fælles). Dvs. y ijk er normalfordelt med middelværdi µ + α i + β j og spredning σ. ε ijk beskriver afvigelsen fra den forventede værdi (middelværdien). Parametre: µ beskriver niveauet af y (på passende måde) α 1,...,α r beskriver forskelle mellem behandlinger β 1,...,β c beskriver forskelle mellem blokke σ er spredningen indenfor kombination af behandling og blok StatBK (Uge 4, torsdag) Tosidet ANOVA 5 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 6 / 27 Vægttab: notation mm. Opdeling af total variation Notationen for eksempel 12.7: Hvad er r? Hvad er c? Hvad er m? Hvad er n? Hvad er middelværdien for vægttabet for en kvinde der kun er på diæt og arbejder på kontoret, udtrykt ved µ, α, β? Hvad er middelværdien for vægttabet for en kvinde både er på diæt og motion og som arbejder på fabrikken, udtrykt ved µ, α, β? Hvad er forskellen i middelværdien mellem to kvinder der begge arbejder på fabrikken men får både diæt og motion hhv. kun motion? Hvad er forskellen i middelværdien mellem to kvinder der begge arbejder på fabrikken men får både diæt og motion hhv. kun motion? Hvad er den interessante hypotese? Som i ensidet variansanalyse opdeles den totale variation efter de forskellige variationskilder: SST = SSR + SSC + SSW hvor SST: total variation (y ijk ȳ...) SSR: variation mellem behandlinger eller rows (ȳ i.. ȳ...) SSC: variation mellem blokke eller columns (ȳ. j. ȳ...) SSW: resten, variationen indenfor kombination af behandling of blok Frihedsgrader, SS, MS samles i variananalyseskema, side 335. StatBK (Uge 4, torsdag) Tosidet ANOVA 7 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 8 / 27
3 Test af behandlingseffekt Vægttab: behandlingsforskelle Hypotesen om ingen forskel på behandlingerne, H 0 : α 1 = α 2 = = α r Som i ensidet variansanalyse måler vi hvor meget af variationen der skyldes behandlingen i forhold til restvariationen, F = MSR MSW F r 1,n r c+1 Hypotesen forkastes for store værdier af F. Eksemplet: F = 137.4/18.3 = 7.51 der skal vurderes i F 2,26. Dette giver en p-værdi på Hypotesen forkastes: vi har med stor sikkerhed påvist en forskel på behandlingerne (p = 0.003). Vi har altså påvist en forskel på behandlingerne. Men hvad består forskellen i? Interesseret i estimater og konfidensintervaller for forskelle mellem α er. Tukey-korrigerede konfidensintervaller: motion vs. diæt : ˆα 2 ˆα 1 = 4.1 ( 8.85,0.65) begge vs. diæt : ˆα 3 ˆα 1 = 3.3 ( 1.45,8.05) begge vs. motion : ˆα 3 ˆα 2 = 7.4 (2.66,12.15) Hovedkonklusion: kombination af diæt og motion virker bedre end motion alene. Kunne i princippet også teste for en forskel mellem fabrik og kontor, men knapt så interessant som testet for en behandlingseffekt. StatBK (Uge 4, torsdag) Tosidet ANOVA 9 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 10 / 27 Vægttab: SAS Eksempel: effekt at lærebog og uv-metode proc glm data=eks12_7; class program site; model weight = site program / solution; means program / tukey cldiff; run; solution giver parameterestimater SAS vælger en gruppe site=2 (fabrik) og program=1 (diæt) som referencegruppe. Estimater for site og program angiver så forskelle til referencegruppen. proc glm giver som default både Type I vs. type III test: Ens når data er balancerede dvs. lige mange obs. per kombination Kan være forskellige når data er ubalancerede mere om det senere Data fra Eksempel 12.8 side 336. Formål: Forbedring af testresultat efter fire ugers undervisning 36 studerende inddelt i 6 grupper, 6 studerende per gruppe Tre lærebøger (1, 2, 3) To undervisningsmetoder (forelæsning, diskussion) Grupper svarer til kombination af lærebog og uv-metode. giver lærebøgerne forskelligt udbytte for de studerende? giver uv-metoderne forskelligt udbytte for de studerende? Er forskellen mellem undervisningsmetoderne den samme for alle tre lærebøger? Eller egner den ene uv-metode sig bedre til ene bog? Vil undersøge effekten af flere faktorer og deres indbyrdes virkning i samme forsøg. StatBK (Uge 4, torsdag) Tosidet ANOVA 11 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 12 / 27
4 Effekt af lærebog og uv-metode: model Effekt af lærebog og uv-metode: test for vekselv. Notation: y ijk : obs. k for lærebog i og uv-metode j. r = 3 lærebøger (rows), c = 2 uv-metoder (columns), m = 6 observationer per kombination af lærebog og uv-metode. n = rcm = 36 observationer i alt Additiv model: y ijk = µ + α i + β j + ε ijk hvor ε ijk er normalfordelt med middelværdi 0 og spredning σ (fælles). Med den additive model antages det at (ækvivalente udsagn): forskellen mellem uv-metoderne er den samme for alle tre lærebøger forskel mellem lærebøger er den samme for begge uv-metoder Men dette behøver jo ikke at være tilfældet! Der kan være vekselvirkning. Se figur 12.3 side 339. Model med vekselvirkning: y ijk = µ + α i + β j + γ ij + ε ijk NB: I bogen kaldes γ ij for αβ ij (uheldig notation!?) Denne model svarer til en ensidet variansanalyse med seks grupper. Opdeler den totale variation i variation mellem lærebæger, mellem uv-metoder, mellem grupper (de seks kombinationer), og indenfor grupper. Variansanalyseskema side 338. Starter med at teste for om vekselvirkningen er signifikant, dvs. H 0 : alle γ ij = 0 F = 0.17 der skal vurderes i F 2,30 -fordelingen. Dette giver p = 0.84 altså ingen tegn på vekselvirkning. StatBK (Uge 4, torsdag) Tosidet ANOVA 13 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 14 / 27 Effekt af lærebog og uv-metode: flere test Effekt af lærebog og uv-metode: konklusion Ny model er den additive: Mulige hypoteser: y ijk = µ + α i + β j + ε ijk Ingen forskel på lærebøger, dvs. H 0 : α 1 = α 2 = α 3 Ingen forskel på uv-metoder, dvs. H 0 : β 1 = β 2. Testene giver: lærebøger: F = 1.75, F 2,32, p = Konklusion? uv-metoder: F = 9.29, F 1,32, p = Konklusion? Fitter derfor også modellen kun med effekt af uv-metode: Hvilken model er dette? y ijk = µ + β j + ε ijk Hypotese om igen effekt af uv-metoder, H 0 : β 1 = β 2. Test: F = 8.90, F 1,34, p = tæt på værdierne fra før. Altså: vi har med stor sikkerhed påvist en forskel på uv-metoderne. Den forventede forskel mellem diskussion og lecture er 10.1 med 95% konfidensinterval (3.2, 16.9). StatBK (Uge 4, torsdag) Tosidet ANOVA 15 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 16 / 27
5 Effekt af lærebog og uv-metode: konklusion Effekt af lærebog og uv-metode: SAS Startmodel: Så hvad laver vi egentlig her... proc glm data=ex12_8; class instruct text; model test = instruct text instruct*text; run; (Og hvorfor er jeg i gang med at skrive en lærebog...) Slutmodel og estimater: proc glm data=ex12_8; class instruct text; model test = instruct / solution; means instruct / tukey cldiff; run; StatBK (Uge 4, torsdag) Tosidet ANOVA 17 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 18 / 27 Effekt af lærebog og uv-metode: opsummering Forsøgstyper Fittede model med vekselvirkning, og testede for vekselvirkning Fittede additiv model (uden vekselvirkning), testede for hovedeffekter Fjernede en ikke-signifikant hovedeffekt, fittede modellen igen Testede for den anden hovedeffekt Angav estimater og konfidensintervaller i slutmodellen Brugte type III test overalt. Kunne også have benyttet type I test fra modellen med vekselvirkning fordi data er pænt balancerede. Pas på med type I test hvis data er ubalanceret. SAS kan sagtens finde ud af ubalancerede data vi skal bare bruge udskrifterne rigtigt! Den sikre metode: kun et test per modelfit fjern en ikke-signifikant effekt og kør igen. Fjern aldrig en hovedeffekt hvis der er en vekselvirkning i modellen! Skelner ofte mellem observationelle studier og designede eksperimenter. Observationelle studier (surveys): stikprøve udtages tilfældigt fra en population registrerer diverse variable fra stikprøven information om sammenhængen mellem disse variable i populationen ingen intervention Designede eksperimenter Formålet er som regel at sammenligne grupper: forskellige behandlinger, celletyper, køn, alder, osv. Behandlinger allokeres tilfældigt til forsøgsenheder Flere faktorer kan undersøges i samme eksperiment Forsøgsenhederne skal være repræsentative. Ekstrapolation. StatBK (Uge 4, torsdag) Tosidet ANOVA 19 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 20 / 27
6 Eksempel: fuldstændigt randomiseret forsøg Fuldstændigt randomiseret forsøg Data fra Sommer , opgave 2: kvælstofindhold i protein fra hønseæg fem foderblandinger observationer fra i alt 37 høns, allokeret tilfældigt til de fem grupper 7 9 høns per gruppe Formålet er at undersøge om kvælstofindholdet varierer med foderblandingerne. Hvilken type analyse ville du bruge? Engelsk: Completely randomized design. n forsøgsenheder til rådighed (personer, celleprøver, planter,...) r forskellige behandlinger Forsøgsenhederne allokeres tilfældigt til behandl. lodtrækning Evt. balanceret: lige mange forsøgsenheder per behandling Randomiseringen skal sikre imod selection bias, fx. ulige aldersfordeling i hjertestudie, kønseffekter effekter af andre variable, også ikke-observerede variable Sammenligning af populationer: Grupper svarer til delpopulationer, ikke behandlinger. Ingen intervention. StatBK (Uge 4, torsdag) Tosidet ANOVA 21 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 22 / 27 Blokforsøg Fuldstændigt randomiseret blokforsøg Forsøgsenhederne samles i blokke således at forsøgsenheder fra samme blok formodes at ligne hinanden mere end forsøgsenheder fra forskellige blokke. Typiske blokvariable: laboratorium, hospital, mark, kuld,... Afprøver de forskellige behandlinger i alle blokke. Ofte vil forsøgsenhederne i nogle blokke generelt ligge højt, i andre lavt. Skal tage hensyn til blokvariablen i analysen også selvom vi ikke er specielt interesseret i en eventuel blokeffekt. Hvis vi ikke tager højde for det i analysen vil behandlingsforskellene ofte blive sløret af eventuelle blokforskelle. Eksempel: data om vægttab. Arbejdssted kan opfattes som en blok-variabel. Engelsk: Completely randomized block design Balanceret, med m gentagelser. r forskellige behandlinger c blokke hver med plads til k r forsøgsenheder i hver blok allokeres de r behandlinger tilfældigt til forsøgsenhederne således at alle behandlinger bruges m gange per blok. m = 1: uden gentagelser, hver behandling afprøves een gang per blok. Ubalanceret: alle behandlinger optræder ikke lige mange gange i hver blok: ikke plads til alle behandlinger i hver blok, andre praktiske hensyn Manglende observationer, fx. pga. dødsfald eller tekniske fejl StatBK (Uge 4, torsdag) Tosidet ANOVA 23 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 24 / 27
7 Eksempel: flerfaktorforsøg Eksempel: flerfaktorforsøg Flere faktorer undersøges i et eksperiment (eller en dataindsamling). To faktorer undersøges i et eksperiment (eller en dataindsamling). Eksempel: effekt af bøger og uv-metoder. Interesseret i effekten af begge faktorer samt deres indbyrdes virkning. Eksempel (fra notatet Flerfaktormodeller af Julie Lyng Forman): Iltoptag for 72 krabber To arter, tre temperaturer, to køn 6 krabber for hver kombination af art, temperatur og køn Interesseret i forskel mellem arterne, forskel mellem hanner og hunner og effekten af temperatur. Kan undersøge effekten af flere faktorer og deres indbyrdes virkning i samme forsøg. StatBK (Uge 4, torsdag) Tosidet ANOVA 25 / 27 StatBK (Uge 4, torsdag) Tosidet ANOVA 26 / 27 Resumé Forsøgstyper: fuldstændigt randomiserede forsøg fuldstændigt randomiserede blokforsøg tofaktorforsøg og flerfaktorforsøg Modeller: ensidet variansanalyse tosidet variansanalyse med og uden vekselvirkning Trin i den statistiske analyse: modelkontrol residualplot. Kommer på mandag! test for vekselvirkning og hovedeffekter afrapportering af estimater og konfidensintervaller Mandag: residualanalyse, forsøg med mere end to faktorer. StatBK (Uge 4, torsdag) Tosidet ANOVA 27 / 27
Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper
Program Forsøgsplanlægning og tosidet variansanalyse Helle Sørensen E-mail: [email protected] I formiddag: Forsøgstyper og forsøgsplanlægning Analyse af data fra fuldstændigt randomiseret blokforsøg: tosidet
Program. Residualanalyse Flersidet variansanalyse. Opgave BK.15. Modelkontrol: residualplot
Program Residualanalyse Flersidet variansanalyse Helle Sørensen Modelkontrol (residualanalyse) i tosidet ANOVA med vekselvirkning. Test og konklusion i tosidet ANOVA (repetition) Tresidet ANOVA: the works
Ensidet variansanalyse
Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: [email protected] StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger
Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie
Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: [email protected] I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:
Program. Flersidet variansanalyse og hierarkiske modeller. Eksempel: iltoptag for krabber. Eksempel: iltoptag for krabber.
Program Flersidet variansanalyse og hierarkiske modeller Helle Sørensen E-mail: [email protected] StatBK (Uge 50, mandag) Flersidet ANOVA 1 / 19 StatBK (Uge 50, mandag) Flersidet ANOVA 2 / 19 Eksempel:
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger
Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: [email protected] I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt
To-sidet varians analyse
To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Module 12: Mere om variansanalyse
Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........
Eksamen i Statistik for biokemikere. Blok
Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større
Modelkontrol i Faktor Modeller
Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk
Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration
Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: [email protected] Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion
Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren
Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: [email protected] Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
Modul 11: Simpel lineær regression
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................
Reeksamen i Statistik for Biokemikere 6. april 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Vejledende besvarelse af eksamen i Statistik for biokemikere, blok
Opgave 1 Vejledende besvarelse af eksamen i Statistik for biokemikere, blok 2 2006 Inge Henningsen og Niels Richard Hansen Analysevariablen i denne opgave er variablen forskel, der for hver af 10 kvinder
Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
To-sidet variansanalyse
Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Sidste gang: One-way(ensidet)/one-factor ANOVA I dag: Two-factor ANOVA (Analysis of variance) Two-factor ANOVA med interaktion
VARIANSANALYSE 2 Sidste gang: One-way(ensidet)/one-factor ANOVA I dag: (Analysis of variance) med interaktion Problem: Hvordan håndterer vi forsøg, hvor effekten er forårsaget af to faktorer og en evt.
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ
Indhold 1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) 2 1.1 Variation indenfor og mellem grupper.......................... 2 1.2 F-test for ingen
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 6
Institut for Matematiske Fag Matematisk Modellering 1 Aarhus Universitet Eva B. Vedel Jensen 25. februar 2008 UGESEDDEL 6 Forelæsningerne torsdag den 21. februar og tirsdag den 26. februar. Jeg har gennemgået
Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af
Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12
Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt
Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)
Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser
Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier
Statistik Lektion 4. Variansanalyse Modelkontrol
Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.
Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder
Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner
Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én
Module 12: Mere om variansanalyse
Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................
Forelæsning 11: Envejs variansanalyse, ANOVA
Kursus 02323: Introduktion til Statistik Forelæsning 11: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Multipel regression. Data fra opgave 3 side 453: Multipel regressionsmodel: Y = α + β 1 x 1 + β 2 x 2 + ǫ. hvor ǫ N(0, σ 2 ).
Program 1. multipel regression 2. polynomiel regression (og andre kurver) 3. kategoriske variable 4. Determinationkoefficient og justeret determinationskoefficient 5. ANOVA-tabel 1/13 Multipel regression
Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og
Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)
Statistik for Biokemikere Projekt
Statistik for Biokemikere Projekt Institut for Matematiske Fag Inge Henningsen og Helle Sørensen Københavns Universitet November 2008 Formalia Dette projekt udgør en del af evalueringen i kurset Statistik
Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at
Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af
Module 3: Statistiske modeller
Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,
1 Multipel lineær regression
Indhold 1 Multipel lineær regression 2 1.1 Regression med 2 eksponeringsvariable......................... 2 1.2 Fortolkning og estimation................................ 3 1.3 AnovaTabel og multipel R
Forsøgsplanlægning Stikprøvestørrelse
Basal statistik Esben Budtz-Jørgensen 8. november 2011 Videnskabelig hypotese Planlægning af et studie Endpoints Forsøgsplanlægning Stikprøvestørrelse 1 51 Instrumentelle/eksponerings variable Variationskilder
1 Multipel lineær regression
1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Forelæsning 11: Tovejs variansanalyse, ANOVA
Introduktion til Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Statistik Lektion 16 Multipel Lineær Regression
Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk
1 Sammenligning af 2 grupper Responsvariabel og forklarende variabel Afhængige/uafhængige stikprøver... 2
Indhold 1 Sammenligning af 2 grupper 2 1.1 Responsvariabel og forklarende variabel......................... 2 1.2 Afhængige/uafhængige stikprøver............................ 2 2 Sammenligning af 2 middelværdier
1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau...
Indhold 1 Statistisk inferens: Hypotese og test 2 1.1 Nulhypotese - alternativ.................................. 2 1.2 Teststatistik........................................ 3 1.3 P-værdi..........................................
Besvarelse af vitcap -opgaven
Besvarelse af -opgaven Spørgsmål 1 Indlæs data Dette gøres fra Analyst med File/Open, som sædvanlig. Spørgsmål 2 Beskriv fordelingen af vital capacity og i de 3 grupper ved hjælp af summary statistics.
Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data
Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: [email protected] Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
