Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie
|
|
|
- Magdalene Nøhr
- 9 år siden
- Visninger:
Transkript
1 Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler: Aldersfordeling i hjertestudie (Example 2.) Collinge et al Torsdag: Tosidet variansanalyse StatBK (Uge 49, mandag) Ensidet ANOVA / 8 StatBK (Uge 49, mandag) Ensidet ANOVA 2 / 8 Eksempel: Aldersfordeling i hjertestudie Statistisk model og hypotese Data fra Tabel 2. (side 325), parallelle boxplot side 329: Tre behandlingsgrupper: surgery, control I, control II med hhv. 25, 25 og 8 observationer Er aldersfordelingen ens i de tre grupper? Kunne lave parvise test. Hvorfor er det ikke en god ide? Notation: y ij : observationen nummer j i den i te gruppe r grupper, her r = 3 n i observationer i gruppe i. Her: n = 25, n 2 = 25 og n 3 = 8 n observationer i alt, n = n n r. Her n = 68 i =,2,...,r og j =,2,...n i. Statistisk model, dvs. antagelser: y ij normalfordelt med middelværdi α i og spredning σ y ij erne er uafhængige Forskellige middelværdier i grupperne, α,α 2,...,α r Samme spredning σ i grupperne (kan testes vha. Bartlett s test) Hvad er den interessante hypotese? StatBK (Uge 49, mandag) Ensidet ANOVA 3 / 8 StatBK (Uge 49, mandag) Ensidet ANOVA 4 / 8
2 Variation mellem grupper og indenfor grupper Frihedsgrader og Mean Squares (MS) Mere notation Gruppegennemsnit ȳ i. Totalgennemsnit ȳ.. Opdeling af total variation i variation mellem grupper (between) og variation indenfor grupper (within): hvor SST = SSB + SSW SST: afstand fra observationer til totalgennemnit (y ij ȳ..) SSB: afstand fra gruppegennems. til totalgennemsnit (y i. ȳ..) SSW: afstand fra observationer til gruppegennemsnit (y ij ȳ i.) Se formler for SST, SSB, SSW på side 325. Frihedsgrader: antal uafhængige led i SS-størrelserne, Mean squares, MS = SS/DF: DFT = n, DFB = r, DFW = n r MST = SST DFT, SSB MSB = DFB, SSW MSW = DFW Størrelserne samles som regel i et variansanalyseskema (side 326). NB. Trykfejl side 326 i MSW: ȳ i. rettes til y ij. StatBK (Uge 49, mandag) Ensidet ANOVA 5 / 8 StatBK (Uge 49, mandag) Ensidet ANOVA 6 / 8 Eksempel Test af hypotesen om ens middelværdier Gruppegennemsnit, ȳ. = 26.08, ȳ 2. = 33.80, ȳ 3. = 27.22, Kvadratsummer, SST = , SSB = 842.9, SSW = Variansanalyseskema side 328. Husk: SST = SSB + SSW og DFT = DFB + DFW. Men: MST MSB + MSW. MS-størrelserne er nyttige fordi de kan bruges til at teste hypotesen om ens middelværdier MSW er et estimat for σ 2 : ˆσ = MSW Husk H 0 : α = α 2 = α r. F -teststørrelsen måler variation mellem grupper i forhold til variation indenfor grupper: F = MSB MSW = r n i= i j= (ȳ i. ȳ..) 2 /(r ) r i= n i j= (y ij ȳ i.) 2 /(n r) Hvilke værdier af F passer godt med hypotesen? Hvilke værdier af F passer dårligt med hypotesen? Hvis H 0 sand: F er F -fordelt med r og n r frihedsgrader, så p-værdien skal beregnes i denne fordeling: p = P(F F obs ) StatBK (Uge 49, mandag) Ensidet ANOVA 7 / 8 StatBK (Uge 49, mandag) Ensidet ANOVA 8 / 8
3 F -fordelingen og konklusion Tætheder for F (,20) og F (5,20) på side 327. Sir R.A. Fisher Ifølge bogen er F -fordelingen opkaldt efter Ronald Aylmer Fisher, variansanalysens fader : Density F(2,65) F Tabel B side 475 og 476 giver fraktilerne (cirka): F 2,65,0.95 = 3.5 F 2,65,0.99 = 4.98 Hvad fortæller det os om p-værdien? Bør altså tage højde for alder i analysen af hjertedata det burde vi faktisk gøre under alle omstændigheder da det kan forklare dele af variationen. StatBK (Uge 49, mandag) Ensidet ANOVA 9 / 8 StatBK (Uge 49, mandag) Ensidet ANOVA 0 / 8 Bartlett s test Bartlett s test Bemærk: Disse slides er en del af pensum! En vigtig antagelser er at spredningerne er ens i grupperne. Man bør undersøge om denne antagelse er rimelig før man sammenligner middelværdierne Bartlett s test. Antagelser og hypotese: Antagelse: y ij N(α i,σ i ) Hypotese: H 0 : σ = σ 2 = = σ r Stikprøvespredning i i te gruppe: s i Testet går ud på at sammenligne værdierne s,...,s r på passende måde. Teststørrelse hvor B = c ( (n r)log(msw) c = + ( r 3(r ) i= r i= (n i )log(s 2 i ) ) n i n r Store værdier passer dårligt med H 0, så p-værdien er p = P(B B obs ). Hvis H 0 er sand så er B χ 2 -fordelt med r frihedsgrader. Se tabel B7. SAS kan heldigvis nemt beregne dette for os... I eksemplet fås: B = 0.87, p = 0.9 ) StatBK (Uge 49, mandag) Ensidet ANOVA / 8 StatBK (Uge 49, mandag) Ensidet ANOVA 2 / 8
4 Sammenligning af to grupper Parvise sammenligninger Interesseret i at sammenligne gruppe og 2, for eksempel. Forskel estimeres til ȳ. ȳ 2. med 95%-konfidensinterval ȳ. ȳ 2. ± t 0.975,n r MSW + n n 2 Bemærk at konfidensintervallet er baseret på alle data: antal frihedsgrader er n r spredningsestimatet ˆσ = MSW er baseret på alle obs. Konfidensintervallet fra før tager hensyn til the individual error rate, altså den usikkerhed der er associeret netop denne sammenligning. Hvis vi foretager mange parvise sammenligninger er der en sådan usikkerhed associeret med hver sammenligning. Den samlede usikkerhed the family error rate er større. Hvis vi vil tage højde for det skal vi gøre vores konfidensintervaller bredere. Skifter t-fraktilen ud med et større tal. Flere forskellige metoder, men lad os fokusere på Tukey-metoden. Hvad giver dette i eksemplet? StatBK (Uge 49, mandag) Ensidet ANOVA 3 / 8 StatBK (Uge 49, mandag) Ensidet ANOVA 4 / 8 Tukey-konfidensintervaller SAS Tukey-konfidensinterval for forskel mellem gruppe og 2: ȳ. ȳ 2. ± q r,n r,0.95 MSW + 2 n n 2 q-størrelsen er givet i Tabel B2, side I eksemplet er q 3,65,0.95 = 3.40 og konfidensintervallerne bliver: surgery vs. control I : ( 2.06, 3.38) surgery vs. control II : ( 5.89, 3.60) control I vs. control II : (.83,.32) proc glm data=biost2_; class group; model age = group / solution; means group / hovtest=bartlett tukey; run; StatBK (Uge 49, mandag) Ensidet ANOVA 5 / 8 StatBK (Uge 49, mandag) Ensidet ANOVA 6 / 8
5 Eksempel: data fra Collinge et al Resumé Flere muligheder for analyser Sædvanlig ensidet variansanalyse med fire grupper Sammenligning af spredninger Sammenligning af (alle fire) middelværdier Konfidensintervaller for interessante forskelle To trinsanalyse: først sammenligning af de tre kontrolgrupper, dernæst sammenligning af kontroller mod gruppe 4. (Den anden analyse er gennemført i Variansanalyse i SAS ) Ensidet variansanalyse sammenligning af grupper Sammenligning af spredninger: Bartlett s test Sammenligning af middelværdier: F -test baseret på MSB og MSW Efterfølgende parvise sammenligninger hvor alle observationer inddrages til kontstruktion af konfidensintervaller (og evt. test) Tukey-korrektion for multiple sammenligninger Og lidt om fremtiden... Tosidet variansanalyse (to indelingskriterier) torsdag Flersidet variansanalyse mandag uge 50 Modelkontrol (residualanalyse) formentlig først mandag i uge 5 StatBK (Uge 49, mandag) Ensidet ANOVA 7 / 8 StatBK (Uge 49, mandag) Ensidet ANOVA 8 / 8
Ensidet variansanalyse
Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: [email protected] StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger
Program. Tosidet variansanalyse og forsøgsplanlægning. Repetition: ensidet variansanalyse. Eksempel: data fra Collinge et al
Program Tosidet variansanalyse og forsøgsplanlægning Helle Sørensen E-mail: [email protected] I formiddag: Ensidet ANOVA: repetition og Collinge eksempel. Additiv tosidet ANOVA (blokforsøg) Tosidet ANOVA
Konfidensinterval for µ (σ kendt)
Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)
Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??
Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,
Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration
Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: [email protected] Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion
Modul 5: Test for én stikprøve
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................
Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.
Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud
Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper
Program Forsøgsplanlægning og tosidet variansanalyse Helle Sørensen E-mail: [email protected] I formiddag: Forsøgstyper og forsøgsplanlægning Analyse af data fra fuldstændigt randomiseret blokforsøg: tosidet
Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren
Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: [email protected] Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet
To-sidet varians analyse
To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),
Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer
Program Simpel og multipel lineær regression Helle Sørensen E-mail: [email protected] Simpel LR: repetition, konfidensintervaller, test, prædiktionsintervaller, mm. Multipel LR: estimation, valg af model,
To-sidet variansanalyse
Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet
Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger
Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: [email protected] I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan
Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau
ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer
Module 12: Mere om variansanalyse
Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
En Introduktion til SAS. Kapitel 6.
En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j
Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!
Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model
Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H
Program. Residualanalyse Flersidet variansanalyse. Opgave BK.15. Modelkontrol: residualplot
Program Residualanalyse Flersidet variansanalyse Helle Sørensen Modelkontrol (residualanalyse) i tosidet ANOVA med vekselvirkning. Test og konklusion i tosidet ANOVA (repetition) Tresidet ANOVA: the works
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
Reeksamen i Statistik for Biokemikere 6. april 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på
Modelkontrol i Faktor Modeller
Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk
Sidste gang: One-way(ensidet)/one-factor ANOVA I dag: Two-factor ANOVA (Analysis of variance) Two-factor ANOVA med interaktion
VARIANSANALYSE 2 Sidste gang: One-way(ensidet)/one-factor ANOVA I dag: (Analysis of variance) med interaktion Problem: Hvordan håndterer vi forsøg, hvor effekten er forårsaget af to faktorer og en evt.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 6
Institut for Matematiske Fag Matematisk Modellering 1 Aarhus Universitet Eva B. Vedel Jensen 25. februar 2008 UGESEDDEL 6 Forelæsningerne torsdag den 21. februar og tirsdag den 26. februar. Jeg har gennemgået
Besvarelse af vitcap -opgaven
Besvarelse af -opgaven Spørgsmål 1 Indlæs data Dette gøres fra Analyst med File/Open, som sædvanlig. Spørgsmål 2 Beskriv fordelingen af vital capacity og i de 3 grupper ved hjælp af summary statistics.
Note til styrkefunktionen
Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Den flerdimensionale normalfordeling, fordeling af ( X,SSD) Helle Sørensen Uge 9, mandag SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 1 / 16 Program Resultaterne
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ
Indhold 1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) 2 1.1 Variation indenfor og mellem grupper.......................... 2 1.2 F-test for ingen
grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller
Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles
Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................
Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable
Faculty of Health Sciences Logistisk regression: Interaktion Kvantitative responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected]
Kapitel 3 Centraltendens og spredning
Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning
Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og
Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)
Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test
Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
Forelæsning 11: Envejs variansanalyse, ANOVA
Kursus 02323: Introduktion til Statistik Forelæsning 11: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Eksamen i Statistik for biokemikere. Blok
Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)
Løsning til øvelsesopgaver dag 4 spg 5-9
Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Program. Flersidet variansanalyse og hierarkiske modeller. Eksempel: iltoptag for krabber. Eksempel: iltoptag for krabber.
Program Flersidet variansanalyse og hierarkiske modeller Helle Sørensen E-mail: [email protected] StatBK (Uge 50, mandag) Flersidet ANOVA 1 / 19 StatBK (Uge 50, mandag) Flersidet ANOVA 2 / 19 Eksempel:
Modul 11: Simpel lineær regression
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination
1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.
Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Valgkampens og valgets matematik
Ungdommens Naturvidenskabelige Forening: Valgkampens og valgets matematik Rune Stubager, ph.d., lektor, Institut for Statskundskab, Aarhus Universitet Disposition Meningsmålinger Hvorfor kan vi stole på
Signifikanstestet. usædvanlig godt godt
Signifikanstestet Fordeling af rygevaner som 45-årig og senere selvrapporteret helbred som 51-årig blandt tilfældigt udvalgte mænd i Københavns Amt i 1987. helbred som 51 årig rygevaner som 45 årig Total
Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12
Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt
Eksamen i Statistik for Biokemikere, Blok januar 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for Biokemikere, Blok 2 2008 09 19. januar 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet
Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen
Kursus 02402/02323 Introducerende Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Oversigt 1 Intro: Regneeksempel og TV-data fra B&O 2 Model og hypotese Per Bruun Brockhoff DTU Compute, Statistik
Statistik i basketball
En note til opgaveskrivning [email protected] 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større
Matematisk Modellering 1 Hjælpeark
Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
SENIORKURSUS STATA OG BIOSTATISTIK
SENIORKURSUS STATA OG BIOSTATISTIK Aarhus Universitet juni 011 Genopfriskning af statistik Basale tankegange og begreber (i dag) Sammenligninger (i morgen) Sammenhænge (i overmorgen) Brug af programpakken
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
a) Har måleresultaterne for de 2 laboranter samme varians? b) Tyder resultaterne på, at nogen af laboranterne måler med en systematisk fejl?
Module 6: Exercises 6.1 To laboranter....................... 2 6.2 Nicotamid i piller..................... 3 6.3 Karakterer......................... 5 6.4 Blodtryk hos kvinder................... 6 6.5
Statistik med GeoGebra
Statistik med GeoGebra Hayati Balo, AAMS, marts 2012 1 Observationssæt Det talmateriale, som man gerne vil undersøge, kaldes et observationssæt. Det talsæt som fremgår i tabel 5.1 kan indsættes i GeoGebra
To samhørende variable
To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Module 3: Statistiske modeller
Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Module 12: Mere om variansanalyse
Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........
Epidemiologi og Biostatistik
Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag
