Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable
|
|
|
- Gunnar Mikkelsen
- 9 år siden
- Visninger:
Transkript
1 Faculty of Health Sciences Logistisk regression: Interaktion Kvantitative responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet
2 Interaktion / effektmodifikation Der er interaktion mellem to forklarende variable hvis effekten (på responsen) af den ene variabel afhænger af den anden variabel. Eksempler: Effekten af rygning på risikoen for CHD er forskellig for mænd og kvinder. Effekten af alder på risikoen for CHD er forskellig for mænd og kvinder. I statistik taler vi om interaktion eller vekselvirkning. I epidemiologi om effektmodifikation. 2 / 28
3 Interaktion mellem to kategoriske variable Framingham respons: CHD01 i = { 1 i fik CHD 0 i fik ikke CHD Vi ser på effekten af køn og rygning: mand i = { 1 i er mand 0 i er kvinde og ryger i = { 1 i er ryger 0 i er ikke-ryger Interaktion mellem køn og rygning svarer til at der ikke er struktur i log-odds: a 1 K ikke-ryger ( ) ln pi a 1 p i = 2 M ikke-ryger a 3 K ryger a 4 M ryger. NB: Det svarer til en ny forklarende variabel med 4 niveauer. 3 / 28
4 Brugbar formulering af interaktion ml køn og rygning Definer en ny variabel - et interaktionsled - ved mandryger i = mand i ryger i = { 1 hvis i er mand og ryger 0 ellers Interaktionsmodellen kan formuleres ( ) pi ln = a + b 1 mand i + b 2 ryger 1 p i + b 3 mandryger i i a K ikke-ryger a + b = 1 M ikke-ryger a + b 2 K ryger a + b 1 + b 2 + b 3 M ryger. Hvis b 3 = 0 er der ikke interaktion mellem køn og rygning. 4 / 28
5 Test for interaktion i SAS I SAS PROC GENMOD skrives proc genmod data=framing descending; class sex smoke; model chd01 = sex smoke sex*smoke / dist=bin type3; run; Man finder estimatet b 3 = 0.48, SE=0.31, Wald=2.44, P=0.12. Der altså ikke tegn på interaktion mellem køn og rygning. 5 / 28
6 Modellen uden interaktion Vi er derfor tilbage ved den additive model ( ) pi ln 1 p i = a + b 1 mand i + b 2 ryger i a K ikke-ryger a + b = 1 M ikke-ryger a + b 2 K ryger a + b 1 + b 2 M ryger. 6 / 28
7 Interaktion mellem kategorisk og kvantitativ For alder defineres en ny variabel - et interaktionsled - ved mandalder i = mand i alder i = { alderi hvis i er mand 0 hvis i er kvinde Interaktionsmodellen kan formuleres ( ) pi ln = a + b 1 mand i + b 2 alder i + b 3 mandalder i 1 p i { a + b2 alder = i kvinder (a + b 1 ) + (b 2 + b 3 ) alder i maend Dvs. b 3 beskriver forskellen i hældningen mellem mænd og kvinder. Hvis b 3 = 0 er der ikke interaktion mellem køn og alder. 7 / 28
8 Interaktion mellem køn og alder I interaktionsmodellen har mænd og kvinder hver deres linie: log odds Males Females Age 8 / 28
9 Interaktion mellem køn og alder Manglende interaktion svarer til parallelle linier: log odds Males Females Age 9 / 28
10 Interaktion i SAS I PROC GENMOD inkluderes alene SEX som en CLASS variabel og interaktionsleddet defineres som før: proc genmod data=framing descending; class sex; model chd01 = sex age sex*age/ dist=bin type3; run; Man finder estimatet b 3 = 0.05, SE=0.03, Wald=3.14, P=0.08. Der er ikke belæg for at konstatere interaktion mellem køn og alder. 10 / 28
11 SAS-øvelser. Vi vil her undersøge om der er en interaktion mellem køn og SBP på CHD01 i Framingham studiet. Vi ser fortsat (jvf hjemmeopgave i kvantitative forklarende variable) på følgende inddeling af SBP: sbpgrp = 0 SPB < SPB < SPB SPB > / Indlæs data fra filen dag5.sas på kursushjemmesiden. Denne stump kode danner responsvariablen CHD01 og grupperet SBP sbpgrp. 2. Undersøg om der er interaktion mellem køn og grupperet blodtryk.
12 3. Kør modellen med modellinien på formen model chdny = sex*sbpgrp / dist=bin type3; Er det den samme model? Hint : Prøv at fylde log-odds værdier ind i tabel for denne model og modellen i spg Bestem OR er for effekten af SBP-gruppe i forhold til den laveste gruppe (SBP 120) for hvert køn. Vink: Skriv Estimate-kommandoer af formen estimate 1 vs 0 for mænd sex*sbpgrp / exp; 5. Undersøg om effekten af SBP (kvantitativt, men grupperet) afhænger af køn (dvs. test for interaktion). 6. Kør modellen i 5. med modellinien på formen model chdny = sex sex*sbpgrp / dist=bin type3; Hvad beskriver den model (fortolk output)? 12 / 28
13 Analyse af kvantitative responsvarible Et udpluk af metoder til håndtering af kvantitative responsvariable Beskrivende statistik og grafer Sammenligning af to grupper (t-test, Wilcoxon s test) Sammenligning af flere grupper (ANOVA, ikke-parametriske tests) Lineær regression 13 / 28
14 Body mass index og vitamin D status Data er hentet fra Eksempel 1.1 i Regression with Linear Predictors af PK Andersen & LT Skovgaard. Data og program til at indlæse data i SAS kan findes på linearpredictors Data indeholder information om alder, BMI, land og vitamin D status for 420 kvinder. Vi vil undersøge relationen mellem BMI og vitamin D status for de irske kvinder og inddeler BMI i to kategorier (normal- og overvægtig): BMIgrp i = { 1 hvis kvinde i har BMI < 25 2 hvis kvinde i har BMI / 28
15 Illustration af data BMI Vitamin D < 25 >= / 28
16 Beskrivende statistik BMI-gruppe Antal Median Gennemsnit (ȳ ) SD(y) Normalvægtig Overvægtig Her er 1 ȳ = ni=1 1 n y i SD(y) = ni=1 n 1 (y i ȳ) 2 Hvad ser vi? 16 / 28
17 Beskrivende statistik i SAS Disse beskrivende mål og enkelte primitive grafer (histogram og box-plots) kan fås fra PROC UNIVARIATE. Bemærk at data først skal sorteres efter gruppevariablen. data irlwomen; set irlwomen; BMIgrp=1; if bmi>=25 then BMIgrp=2;; if bmi=. then BMIgrp=.; run; proc sort data=irlwomen; by BMIgrp; run; proc univariate data=irlwomen plot; var vitd; by BMIgrp; run; 17 / 28
18 Sammenligning af to grupper Vi ønsker at sammenligne middelværdien af vitamin D status for normal- og overvægtige. En parametrisk sammenligning er baseret på middelværdi og SE. CIs for middelværdierne (95%): ȳ ± 1.96 SD(y) n, SD(y) n = SE(ȳ). Vi finder Gruppe Gennemsnit SE Konfidensinterval Normalvægtig (45.4;66.9) Overvægtig (35.9;49.7) 18 / 28
19 t-testet t-teststørrelsen er t = ȳ1 ȳ 2 SE(ȳ 1 ȳ 2 ) hvor standardafvigelsen af differensen er SE(ȳ 1 ȳ 2 ) = (n 1 1)SD(y 1 ) 2 + (n 2 1)SD(y 2 ) 2 n 1 n 2 n 1 + n 2 2 og giver mening hvis SD(y 1 ) SD(y 2 ) (kan testes). Vi finder t = = 2.15 som er t-fordelt med df = n 1 + n 2 2 = 39 og dermed fås P = Et t-test med sammenligning af to grupper kaldes også for to-stikprøve t-testet (two-sample). 19 / 28
20 t-test i SAS I SAS kan t-testet udføres vha. PROC TTEST proc ttest data=irlwomen; class BMIgrp; var vitd; run; Bemærk at SAS laver to t-tests 1) Pooled forudsætter ens SD i grupperne. 2) Satterthwaite tillader forskellig SD i grupperne. SAS udfører tilmed et test for ens varianser (Folded F). Hvis P >.05 accepterer vi ens varianser og benytter 1). 20 / 28
21 Antagelser for t-testet Det er rimeligt at udføre et t-test når de fordelinger vi skal sammenligne er nogenlunde symmetriske. Testet fungerer bedst når fordelingerne er nogenlunde normalfordelte. Jo større stikprøve, jo bedre fungerer testet. 21 / 28
22 Ikke-parametrisk sammenligning af to grupper Er man bekymret for antagelserne for t-testet kan analysen suppleres med et ikke-parametrisk test, f.eks. et Wilcoxon rank sum test eller et Kruskal-Wallis test. Disse har lavere styrke. Teststørrelserne er baseret på rangordning af responsvariablen og bygger ikke på gennemsnit eller standardafvigelse. Den ikke-parametriske sammenligning kan foretages i SAS vha. PROC NPAR1WAY: proc npar1way data=irlwomen; class BMIgrp; var vitd; run; For Kruskal-Wallis finder vi en χ 2 -teststørrelse (df = 1) på 3.6 med tilhørende P = / 28
23 Sammenligning af flere grupper Sammenligning af responsen inden for en kategorisk variabel med flere grupper: Parametrisk: Ensidet variansanalyse (one-way ANOVA (ANalysis Of VAriance)). Dette svarer til lineær regression af responsen på en kategorisk (CLASS) variabel. Ikke-parametrisk: F.eks. et Kruskal-Wallis test (PROC NPAR1WAY) Sammenligning af responsen inden for to kategoriske variable: Parametrisk: Tosidet variansanalyse (two-way ANOVA). Dette svarer til lineær regression af responsen på to kategoriske (CLASS) variable. Til både ensidet- og tosidet variansanalyse benyttes PROC GENMOD. 23 / 28
24 Ensidet variansanalyse Definer en ny kategorisk variabel for BMI 1 hvis kvinde i har BMI < 25 BMIgrp3 i = 2 hvis kvinde i har 25 BMI 30 3 hvis kvinde i har BMI > 30. Modellen er E(Y i ) = a BMI < 25 a + b 1 25 BMI 30 a + b 2 BMI > 30 I PROC GENMOD kan vi teste om der er en effekt af BMI ved at teste b 1 = b 2 = / 28
25 Tosidet variansanalyse Hvis vi også tager køn med er modellen E(Y i ) = a K BMI < 25 a + b 1 K 25 BMI 30 a + b 2 K BMI > 30 a + c 1 M BMI < 25 a + c 1 + b 1 M 25 BMI 30 a + c 1 + b 2 M BMI > 30 Her svarer c 1 til effekten af køn. NB: Ingen interaktion. 25 / 28
26 Mulige regressionsmodeller For en kvantitativ responsvariabel kan vi betragte følgende typer af forklarende variable og tilhørende modeller: Forklarende variable Eksempel Model En kvantitativ alder simpel lineær regression En binær køn t-test En kvalitativ grupperet alder one-way ANOVA En kvant. og en kval. alder og køn parallelle regressionslinier To kvalitative grupperet alder og køn two-way ANOVA 26 / 28
27 Antagelser for lineær regression Alle modellerne svarer til en lineær regressionsmodel. Det betyder at alle analyser kan udføres ved PROC GENMOD. Modellerne bygger på en række antagelser: linearitet (skal efterprøves) ingen interaktion / effektmodifikation (kan efterprøves), præcis som i logistisk regression. Derudover skal responsen have samme varians (SD) for alle individer, helst have normalfordelt fejl y E(y). Dette kan / bør man checke! 27 / 28
28 SAS-øvelser i kvantitative udfaldsvariable 1. Lav et histogram af hhv SBP og ln(sbp) for mænd alene. Dette kan f.eks. gøres vha PROC UNIVARIATE på følgende måde: proc univariate data=framingmales; histogram sbp; run; hvor framingmales er et datasæt med mændene. 2. For mænd alene, sammenlign niveauet af hhv SBP og ln(sbp) ved et parametrisk og et ikke-parametrisk test. Rapportér p-værdierne - bliver konklusionen forskellig afhængigt af om man analyserer SBP eller ln(sbp)? 3. Undersøg om niveauet af ln(sbp) er den samme i de fire aldersgrupper 45-48, 49-52, 53-56, Brug både et parametrisk og et ikke-parametrisk test. 28 / 28
MPH specialmodul Epidemiologi og Biostatistik
MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable
Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Sammenhæng
Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.
1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;
Modul 5: Test for én stikprøve
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................
Konfidensinterval for µ (σ kendt)
Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)
Løsning til øvelsesopgaver dag 4 spg 5-9
Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for
Ensidet variansanalyse
Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: [email protected] StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger
Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie
Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: [email protected] I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.
Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud
Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25.
Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25. marts) En stikprøve bestående af 65 mænd og 65 kvinder
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
Logistisk regression
Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/
Morten Frydenberg 14. marts 2006
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen
En Introduktion til SAS. Kapitel 6.
En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel
Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer
Program Simpel og multipel lineær regression Helle Sørensen E-mail: [email protected] Simpel LR: repetition, konfidensintervaller, test, prædiktionsintervaller, mm. Multipel LR: estimation, valg af model,
Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration
Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: [email protected] Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion
Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004
Dagens program Økonometri 1 Dummyvariabler 21. oktober 2004 Emnet for denne forelæsning er kvalitative egenskaber i den multiple regressionsmodel (Wooldridge kap. 7.1-7.6) Kvalitative variabler generelt
Morten Frydenberg 26. april 2004
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.
Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau
ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer
Logistisk regression
Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] 21. marts 2013 Dagens program Chi-i-anden (χ 2 )-testet Sandsynligheder,
Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008
Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet [email protected] www.biostat.ku.dk/~bxc
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test
Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable
Dag 6: Interaktion. Overlevelsesanalyse
Dag 6: Interaktion. Overlevelsesanalyse How does CHD depend on gender and hypertension? Males: hypertension chd01 Females: Frequency Row Pct 0 1 Total ---------+--------+--------+ 0 352 95 447 78.75 21.25
Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)
Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
Basal statistik. 30. januar 2007
Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet
Statistik Lektion 4. Variansanalyse Modelkontrol
Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede
Simpel og multipel logistisk regression
Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende
Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge
Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2
Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.
Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i
Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet
Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,
Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)
Økonometri 1 Forår 2003 Ugeseddel 13 Program for øvelserne: Gruppearbejde Opsamling af gruppearbejdet og introduktion af SAS SAS-øvelser i computerkælderen Øvelsesopgave 6: Hvem består første årsprøve
Module 2: Beskrivende Statistik
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 2: Beskrivende Statistik 2.1 Histogrammer og søjlediagrammer......................... 1 2.2 Sammenfatning
Module 12: Mere om variansanalyse
Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge
Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
9. Chi-i-anden test, case-control data, logistisk regression.
Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU [email protected], 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation
Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model
Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ
Ligninger med reelle løsninger
Ligninger med reelle løsninger, marts 2008, Kirsten Rosenkilde 1 Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Vurdering af antallet af løsninger
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.
Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller
Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller
Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles
Introduktion til overlevelsesanalyse
Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected]
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Reeksamen i Statistik for Biokemikere 6. april 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på
Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger
Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................
Trivsel og fravær i folkeskolen
Trivsel og fravær i folkeskolen Sammenfatning De årlige trivselsmålinger i folkeskolen måler elevernes trivsel på fire forskellige områder: faglig trivsel, social trivsel, støtte og inspiration og ro og
Faculty of Health Sciences. SPSS appendix. Basal Statistik: Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 22.
Faculty of Health Sciences SPSS appendix Basal Statistik: Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 22. januar 2018 1 / 20 SPSS APPENDIX med instruktioner til SPSS-analyse svarende
Faculty of Health Sciences. Basal statistik. Lille SAS Manual. Lene Theil Skovgaard. 31. januar 2017
Faculty of Health Sciences Basal statistik Lille SAS Manual Lene Theil Skovgaard 31. januar 2017 1 / 42 Selve sproget Siderne 9-18 Indlæsning (9-12) Definition af nye variable (13) Missing values / Manglende
Basal statistik. Selve sproget. Grafik. Basale procedurer. Faculty of Health Sciences. Lille SAS Manual
Faculty of Health Sciences Selve sproget Basal statistik Lille SAS Manual Lene Theil Skovgaard 5. september 2017 Siderne 9-18 Indlæsning (9-12) Definition af nye variable (13) Missing values / Manglende
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220
Variansanalyse (ANOVA)
Faculty of Health Sciences Variansanalyse (ANOVA) Ulla B Mogensen Biostatistisk Afd., SUND, KU. Mail: [email protected] Indhold dag 3 T-test kort opsummering Ensidet variansanalyse Modelkontrol Tosidet variansanalyse
MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes
Note til styrkefunktionen
Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Introduktion til SAS. Faculty of Health Sciences
Faculty of Health Sciences Introduktion til SAS Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Eksempel: Blodtryk og fedme OBESE: vægt/idealvægt,
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden
To-sidet variansanalyse
Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til
Basal Statistik - SPSS
Faculty of Health Sciences Basal Statistik - SPSS Begreber. Parrede sammenligninger. Lene Theil Skovgaard 5. september 2017 1 / 16 APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides
Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ
Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet
Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Epidemiologi og Biostatistik
Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag
Privatansatte mænd bliver desuden noget hurtigere chef end kvinderne og forholdsvis flere ender i en chefstilling.
Sammenligning af privatansatte kvinder og mænds løn Privatansatte kvindelige djøfere i stillinger uden ledelsesansvar har en løn der udgør ca. 96 procent af den løn deres mandlige kolleger får. I sammenligningen
Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:
1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14
Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model
Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination
Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008
Indholdsfortegnelse 1 INDLEDNING OG PROBLEMSTILLING... 2 1.1 OVERVÆGT SOM CASE... 2 2 ANALYSEFORBEREDELSER... 4 2.1 HEPRO-UNDERSØGELSEN... 4 2.2 DEN AFHÆNGIGE VARIABEL VIGTIGHED AF ÆNDRINGEN AF VÆGT...
