MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
|
|
|
- Lars Ebbesen
- 9 år siden
- Visninger:
Transkript
1 MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes og eksakt den samme analyse kan reproduceres) enkelt at dokumentere. Per Kragh Andersen 1 2 SAS analyst menu/skema-orienteret overbygning skriver og kører programmer for en ingen udenadslære, ingen syntaksfejl let at importere filer med andre formater Men: man får ikke alt med det er tungt at bruge i længden reproducerbarheden mistes produktet er på vej ud hos SAS Institute. OBESE: vægt/idealvægt, Eksempel: Blodtryk og fedme BP: systolisk blodtryk SEX OBESE BP male male female male female male female male female male female male female male female male female male female female female female
2 Data ligger i tekst filen bp.txt, som indeholder følgende variable SEX: karaktervariabel OBESE: fedmegrad, dvs. vægt/idealvægt BP: systolisk blodtryk Dvs.: 3 variable 102 observationer Indlæsning og udskrivning i SAS: infile bp.txt firstobs=2; proc print data=bp; var sex obese bp; Her laves et midlertidigt datasæt bp, som kun eksisterer indenfor det program, der er tale om. Derefter skrives det ud, dvs. der kommer en liste i output-vinduet. 5 6 NB! SAS skal vide, præcist hvor filen bp.txt ligger, dvs. man skal angive hele stien hen til filen (f.eks. e:\mphdata\bp.txt hvis den ligger på USB-nøglen e:\ i biblioteket mphdata ). Man kan også læse direkte fra www (hvis ens PC er på nettet!): filename bpfile url ; infile bpfile firstobs=2; Direkte programmering Indlæsning og datamanipulationer: Datastep: data a; < evt. indlaesning > < data manipulation > Procedurekald, proc xxx proc XXX data = a ; < procedure specifikationer > Datamanipulationer kun mellem data a; og. 7 8
3 Eksempel: infile bp.txt firstobs=2 ; input sex obese bp ; if bp>150 then bp150=1; if bp<150 then bp150=0; if bp=. then bp150=.; proc print data=bp; var sex obese bp bp150; proc freq data=bp; tables sex * bp150 ; Indtastning af program i Editor vinduet: Piletaster, backspace, delete, Home og End virker som de plejer. Kvajetast i kommandobjælken. Gyldige SAS-ord bliver blå når de er korrekt stavet. Når programmet er kørt (Run Submit, den lille mand der løber eller F8) kommer der resultater i: Log-vindue: Her kan man se, hvordan kørslen er gået hvor mange observationer, man har hvor mange variable, der er om der var nogen fejl hvilke sider, der er skrevet af hvilke procedurer Output-vindue: selve resultaterne (hvis der er nogen) Graph-vindue (måske) Her gemmes evt. plots i rækkefølge Der skiftes mellem vinduerne ved at klikke på Windows i kommandobjælken. Ændringer i programmet: Når man kører programmet, bliver hele teksten i Editor-vinduet kørt. Hvis man kun ønsker at køre en del af programmet, skal man blot først markere den del, man vil køre. Bemærk: SAS-kørslerne (Log- Output- og Graph-vindue) kumulerer, dvs. alt bliver gemt fortløbende. Slet en gang imellem, vælg Edit Clear, eller Ctrl-E. Lad være med at printe ud! Husk at gemme selve programmet ind imellem
4 Det er god tone at specificere input-datasættet i alle procedurekald: infile bp.txt firstobs=2 ; input sex obese bp ; proc univariate data = bp ; var obese bp ; SAS-Datasæt Et SAS-datasæt er en fil hvor data ligger i et særligt format. Man skelner mellem at lave Permanente SAS-datasæt: data sasuser.bp; her, men måske noget andet hjemme Temporære (midlertidige) SAS-datasæt: forsvinder, når I lukker ned for SAS Brug af proc freq. Ganske tilsvarende, når man skal anvende sådanne, men lige først skal modificere dem: Permanente SAS-datasæt: data ny ; set sasuser.bp ;... Temporære (midlertidige) SAS-datasæt: data ny ; set bp ;... infile bp.txt firstobs=2; set bp; bp150 = (bp>150); /* anden maade at lave variablen paa */ fed=(obese>1.3); proc freq data=bp; table sex*bp150/nocol nopercent relrisk chisq; 15 16
5 Brug af proc freq. SEX TABLE OF SEX BY BP150 BP150 Frequency Row Pct 0 1 Total female male Total STATISTICS FOR TABLE OF SEX BY BP150 Statistic DF Value Prob Chi-Square Likelihood Ratio Chi-Square Continuity Adj. Chi-Square Mantel-Haenszel Chi-Square Fisher s Exact Test (Left) (Right) (2-Tail) Phi Coefficient Contingency Coefficient Cramer s V etc. etc. Estimates of the Relative Risk (Row1/Row2) 95% Type of Study Value Confidence Bounds Case-Control Cohort (Col1 Risk) Cohort (Col2 Risk) Sample Size = 102 WARNING: 50% of the cells have expected counts less than 5. Chi-Square may not be a valid test. Brug af proc freq: Mantel-Haenszel analyse. infile bp.txt firstobs=2; set bp; bp150 = (bp>150); fed=(obese>1.3); proc freq data=bp; table fed*sex*bp150/nocol nopercent relrisk chisq cmh; 19 20
6 sex The FREQ Procedure Table 1 of sex by bp150 Controlling for fed=0 bp150 Frequency Row Pct 0 1 Total female male Total etc. etc. Statistics for Table 1 of sex by bp150 Controlling for fed=0 Statistic DF Value Prob Chi-Square Estimates of the Relative Risk (Row1/Row2) Type of Study Value 95% Confidence Limits Case-Control (Odds Ratio) Cohort (Col1 Risk) Cohort (Col2 Risk) sex Table 2 of sex by bp150 Controlling for fed=1 bp150 Frequency Row Pct 0 1 Total female male Total etc. etc. Statistics for Table 2 of sex by bp150 Controlling for fed=1 Statistic DF Value Prob Chi-Square Estimates of the Relative Risk (Row1/Row2) Type of Study Value 95% Confidence Limits Case-Control (Odds Ratio) Cohort (Col1 Risk) Cohort (Col2 Risk)
7 Summary Statistics for sex by bp150 Controlling for fed Cochran-Mantel-Haenszel Statistics (Based on Table Scores) Statistic Alternative Hypothesis DF Value Prob Nonzero Correlation Row Mean Scores Differ General Association Estimates of the Common Relative Risk (Row1/Row2) Type of Study Method Value Case-Control Mantel-Haenszel (Odds Ratio) Logit Cohort Mantel-Haenszel (Col1 Risk) Logit Cohort Mantel-Haenszel (Col2 Risk) Logit Type of Study Method 95% Confidence Limits Case-Control Mantel-Haenszel (Odds Ratio) Logit Cohort Mantel-Haenszel (Col1 Risk) Logit Cohort Mantel-Haenszel (Col2 Risk) Logit Breslow-Day Test for Homogeneity of the Odds Ratios Chi-Square DF 1 Pr > ChiSq Brug af proc genmod: Logistisk regression. infile bp.txt firstobs=2; set bp; bp150 = (bp>150); proc genmod data=bp descending; class sex; model bp150=sex/dist=bin type3; estimate m vs. f sex -1 1 / exp;
8 The GENMOD Procedure Model Information Response Profile Ordered Total Value bp150 Frequency Data Set WORK.BP Distribution Binomial Link Function Logit Dependent Variable bp150 Observations Used 102 Class Level Information PROC GENMOD is modeling the probability that bp150= 1. Parameter Information Parameter Effect sex Class Levels Values sex 2 female male Prm1 Intercept Prm2 sex female Prm3 sex male Analysis Of Parameter Estimates Criteria For Assessing Goodness Of Fit Criterion DF Value Value/DF Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X Log Likelihood Algorithm converged. Standard Wald 95% Ch Parameter DF Estimate Error Confidence Limits Squa Intercept sex female sex male Scale Parameter Pr > ChiSq Intercept <.0001 sex female sex male
9 LR Statistics For Type 3 Analysis Chi- Source DF Square Pr > ChiSq sex Contrast Estimate Results Standard Chi- Label Estimate Error Alpha Confidence Limits Square m vs. f Exp(m vs. f) Label Pr > ChiSq m vs. f Exp(m vs. f) 26
MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes
Introduktion til SAS. Faculty of Health Sciences
Faculty of Health Sciences Introduktion til SAS Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Eksempel: Blodtryk og fedme OBESE: vægt/idealvægt,
Postoperative komplikationer
Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.
Statistiske Modeller 1: Kontingenstabeller i SAS
Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.
Løsning til opgave i logistisk regression
Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator
Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013
Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.
Introduktion til Regneøvelser med SAS
MPH specialmodul i Epidemiologi og biostatistik Introduktion til Regneøvelser med SAS Forår 2006 Bendix Carstensen Steno Diabetes Center & Biostatistisk afdeling Institut for Folkesundhedsvidenskab Københavns
Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014
Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke
Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S
Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed
Opgavebesvarelse, logistisk regression
Opgavebesvarelse, logistisk regression Data ligger i rop.xls på kursushjemmesiden: http://staff.pubhealth.ku.dk/ jufo/courses/logistic/ Når du har gemt data på din computer, kan det indlæses i SAS med
Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.
1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;
Vejledende besvarelse af hjemmeopgave
Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2013 Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) I forbindelse med en undersøgelse af vitamin
Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008
Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet [email protected] www.biostat.ku.dk/~bxc
Opgavebesvarelse, Basalkursus, uge 3
Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt
Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:
1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14
Simpel og multipel logistisk regression
Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Faculty of Health Sciences. Basal Statistik. Logistisk regression mm. Lene Theil Skovgaard. 5. marts 2018
Faculty of Health Sciences Basal Statistik Logistisk regression mm. Lene Theil Skovgaard 5. marts 2018 1 / 22 APPENDIX vedr. SPSS svarende til diverse slides: To-gange-to tabeller, s. 3 Plot af binære
Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.
Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes
Morten Frydenberg 26. april 2004
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.
Vejledende besvarelse af hjemmeopgave, efterår 2018
Vejledende besvarelse af hjemmeopgave, efterår 2018 Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (30. oktober.-1. november). Der er foretaget en del undersøgelser af krigsveteraner og
Vejledende besvarelse af hjemmeopgave, forår 2015
Vejledende besvarelse af hjemmeopgave, forår 2015 En stikprøve bestående af 65 mænd og 65 kvinder er blevet undersøgt med henblik på at se på en evt. sammenhæng mellem kropstemperatur og puls. På hjemmesiden
Besvarelse af vitcap -opgaven
Besvarelse af -opgaven Spørgsmål 1 Indlæs data Dette gøres fra Analyst med File/Open, som sædvanlig. Spørgsmål 2 Beskriv fordelingen af vital capacity og i de 3 grupper ved hjælp af summary statistics.
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1
Basal Statistik Logistisk Regression Judith L. Jacobsen, PhD. Lene Theil Skovgaard http://staff.pubhealth.ku.dk/~lts/basal13_ [email protected] Dagens Tekst Logistisk regression Binære data Logit transformation
Vejledende besvarelse af hjemmeopgave, forår 2017
Vejledende besvarelse af hjemmeopgave, forår 2017 På hjemmesiden http://publicifsv.sund.ku.dk/~lts/basal17_1/hjemmeopgave/hjemmeopgave.txt ligger data fra 400 fødende kvinder. Der er tale om et uddrag
Hvorfor SAS Kort intro til SAS
Hvorfor SAS Kort intro til SAS Efterår 2015 Janne Petersen Judith L Jacobsen Lene Theil Skovgaard Kan alt Alle ph.d. studerende har gratis adgang Fra universitetet eller hospitalerne Kode --- hjælp fra
INTRODUKTION TIL dele af SAS
INTRODUKTION TIL dele af SAS Der er flere forskellige angrebsvinkler ved statistiske analyser i SAS. Vi skal her kun beskæftige os med to af disse, nemlig Direkte programmering. Brug af SAS ANALYST Hvilken
Logistisk Regression - fortsat
Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative
Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)
Økonometri 1 Forår 2003 Ugeseddel 13 Program for øvelserne: Gruppearbejde Opsamling af gruppearbejdet og introduktion af SAS SAS-øvelser i computerkælderen Øvelsesopgave 6: Hvem består første årsprøve
Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge
Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges
Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable
Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Sammenhæng
Morten Frydenberg 14. marts 2006
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod
Besvarelse af opgave om Vital Capacity
Besvarelse af opgave om Vital Capacity hentet fra P. Armitage & G. Berry: Statistical methods in medical research. 2nd ed. Blackwell, 1987. Spørgsmål 1: Indlæs data og konstruer en faktor (klassevariabel)
Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser
Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp
Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller
Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression
Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende
Vejledende besvarelse af hjemmeopgave, forår 2016
Vejledende besvarelse af hjemmeopgave, forår 2016 Udleveret 1. marts, afleveres senest ved øvelserne i uge 13 (29. marts-1. april) Denne opgave fokuserer på at beskrive niveauet af hormonet AMH (højt niveau
Reeksamen i Statistik for biokemikere. Blok 3 2007.
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet
Kort intro til SAS. Efterår 2015. Janne Petersen Judith L Jacobsen Lene Theil Skovgaard
Kort intro til SAS Efterår 2015 Janne Petersen Judith L Jacobsen Lene Theil Skovgaard 1 Hvorfor SAS Kan alt Alle ph.d. studerende har gratis adgang Fra universitetet eller hospitalerne Kode --- hjælp fra
Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet.
Introduktion til samfundsvidenskabelig metode Samfundsvidenskabelig metode IT-Universitetet September 2007 Mikkel Leihardt Hvad er metode? Metode er regler og retningslinjer for, hvordan vi undersøger
Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.
Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)
Besvarelse af juul2 -opgaven
Besvarelse af juul2 -opgaven Spørgsmål 1 Indlæs data Dette gøres fra Analyst med File/Open, som sædvanlig. Spørgsmål 2 Lav regressionsanalyser for hvert køn af igf1 vs. alder for præpubertale (Tanner stadium
Confounding og stratificeret analyse
Faculty of Health Sciences Confounding og stratificeret analyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Kursets form Seks fredage
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
Kategoriske data. Basal Statistik for medicinske PhD-studerende October 2008
Kategoriske data Basal Statistik for medicinske PhD-studerende October 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet [email protected] www.biostat.ku.dk/~bxc
Lineær regression i SAS. Lineær regression i SAS p.1/20
Lineær regression i SAS Lineær regression i SAS p.1/20 Lineær regression i SAS Simpel lineær regression Grafisk modelkontrol Multipel lineær regression SAS-procedurer: PROC REG PROC GPLOT Lineær regression
Regressionsanalyse i SAS
Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Inge Henningsen Afdeling for Anvendt Matematik og Statistik December 2006 Regressionsanalyse uden gentagelser Regressionsanalyse
Løsning til øvelsesopgaver dag 4 spg 5-9
Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for
Generelle lineære modeller
Generelle lineære modeller Regressionsmodeller med én uafhængig intervalskala variabel: Y en eller flere uafhængige variable: X 1,..,X k Den betingede fordeling af Y givet X 1,..,X k antages at være normal
Eksamen Bacheloruddannelsen i Medicin med industriel specialisering
Eksamen 2016 Titel på kursus: Uddannelse: Semester: Forsøgsdesign og metoder Bacheloruddannelsen i Medicin med industriel specialisering 6. semester Eksamensdato: 17-02-2015 Tid: kl. 09.00-11.00 Bedømmelsesform
Besvarelse af opgave om Vital Capacity
Besvarelse af opgave om Vital Capacity I filen cadmium.txt ligger observationer fra et eksempel omhandlende lungefunktionen hos arbejdere i cadmium industrien (hentet fra P. Armitage & G. Berry: Statistical
Logistisk regression og prædiktion
Faculty of Health Sciences Introduktion Logistisk regression og prædiktion 16. Maj 2012 Julie Forman Biostatistisk Afdeling, Københavns Universitet Hvad er en god diagnostisk model? En model med god overensstemmelse
Reeksamen i Statistik for Biokemikere 6. april 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på
Statistik for MPH: 7
Statistik for MPH: 7 3. november 2011 www.biostat.ku.dk/~pka/mph11 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:
Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??
Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,
3. SPSS Output. Descriptives. [DataSet1] C:\Users\Thomas\Desktop\Eservice_i_produktgruppen_Bekldning.sav
3. SPSS Output DESCRIPTIVES VARIABLES=DEM DEM5 DEM10 DEM11 /STATISTICS=MEAN STDDEV MIN MAX. Descriptives [DataSet1] C:\Users\Thomas\Desktop\Eservice_i_produktgruppen_Bekldning.sav Descriptive Statistics
Eksamen i Statistik for Biokemikere, Blok januar 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for Biokemikere, Blok 2 2008 09 19. januar 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet
Ikke-parametriske tests
Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference
Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j
Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!
1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.
Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller
Opgavebesvarelse, Basalkursus, uge 3
Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation
q-værdien som skal sammenlignes med den kritiske Chi-i-Anden værdi p-værdien som skal sammenlignes med signifikansniveauet.
Introduktion: Chi-i-Anden test (Goodness of Fit) på computeren fungerer som en "black-boks"- kommando, hvor eleverne med udgangspunkt i en nulhypotese (H ) taster de forventede og de observerede talværdier
9. Chi-i-anden test, case-control data, logistisk regression.
Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU [email protected], 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/
Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og
Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)
Basal statistik. 30. januar 2007
Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet
Afdeling for Teoretisk Statistik August 2004 Institut for Matematisk fag Aarhus Universitet. Jørgen Granfeldt INTRODUKTION TIL SAS 1
Afdeling for Teoretisk Statistik August 2004 Institut for Matematisk fag Aarhus Universitet Jørgen Granfeldt INTRODUKTION TIL SAS 1 1 Eksempler baseret på SAS 9.1 for Windows Indholdsfortegnelse INDHOLDSFORTEGNELSE................................
