Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning
|
|
|
- Grethe Klausen
- 9 år siden
- Visninger:
Transkript
1 Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning
2 Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden Start 8:15!!!! Kursusgang: 2 x 45 min forelæsning + opgaveregning Indhold: Groft sagt kapitel 1 til 11 i Newbold Eksamen: Individuel mundtlig efter 7-trins skala Eksamen tager udgangspunkt i et antal opgaver. Software: SPSS
3 Flyskræk! Passer overskriften? Politiken 6/12-07 Er du tryg ved at flyve? Ja: 86% i % i 2007 Er der virkelig sket en ændring eller kunne det lige så godt være tilfældigt? Svaret kommer til sidst i kurset ;-)
4 Nogle definitioner Population: Mængden af alle individer vi er interesserede i. fx alle virksomheder i DK Parameter: Et deskriptivt mål for populationen (for eksempel middelværdi og varians). fx gennemsnits antal ansatte Stikprøve (sample): Mængde af data taget fra en delmængde af populationen fx 10 tilfældigt udvalgte virksomheder Statistik: Et deskriptivt mål for stikprøven. fx gennemsnits antal ansatte blandt de 10. Variabel: En karakteristik af populationen eller stikprøven fx antal ansatte, omsætning, region, type
5 Typisk statistisk problemstilling Vi ønsker at udtale os om en population (alle flyrejsende) ud fra en stikprøve (et udsnit af de flyrejsende). Vi vil udtale os om en parameter for populationen (andelen af trygge flyrejsende) ud fra en stikprøve statistik (andelen af trygge flyrejsende i stikprøven). Parameteren er aldrig kendt! Vigtigt: Vi er ligeglade med medlemmerne af stikprøven! Det er populationen vi vil udtale os om!
6 Lidt om stikprøver Simpel tilfældig stikprøve: Alle medlemmer i populationen har lige stor sandsynlighed for at blive udvalgt til stikprøven Notation: N : Størrelsen af populationen (alle vælgere) n : Størrelsen af stikprøven (antal udvalgte) Population Stikprøve:
7 Deskriptiv versus inferential statistik Deskriptiv statistik: Metoder til at organisere og præsentere data på en informativ måde. Inferential statistik Omhandler: Estimation, test af hypoteser, analyse af sammenhæng og forudsigelse. Eksempel: Hvad er middel-indkomsten i region nord? Er den større en ?
8 Deskriptiv Statistik Data består af en eller flere variable, fx højde, køn, alder, favoritfarve for hvert medlem i stikprøven. Hvordan data (de enkelte variable) opsummeres / beskrives afhænger bl.a. datas natur. Hovedopdeling: Kategorisk eller numerisk variabel Kvalitativ variabel: Kategorisk variabel, forskelle giver ikke mening. Kvantitative variable: numerisk variabel, forskelle giver mening.
9 Kategoriske variable Variable hvis værdi er en kategori, fx. Ryger: Ja, Nej Godt vejr: Meget enig, devis enig,, meget uenig Favoritfarve: Rød, grøn, anden Ordinal kategorisk variabel Kategorierne har en rækkefølge (Godt vejr) Nominal kategorisk variabel Kategorierne har ikke en rækkefølge (Favoritfarve)
10 Deskriptiv statistik: Kategoriske variable Kategorisk variable opsummeres typisk i et bar plot Højden af baren svarer til frekvensen (dvs. antallet) af medlemmer af hver kategori. Antal Andele Kumulative andele: Andelen af observationer der tilhører denne eller tidligere kategorier.
11 Numerisk Variabel Variabel der tager en talværdi. Diskret numerisk variabel Variabel kan tage et tælleligt antal værdier Typisk udtryk for et antal Fx. antal forsikring-anmeldelser på en uge Kontinuert numerisk variabel Variabel kan tage alle værdier i et interval Typisk udtryk for noget man kan måle. Fx. Højde, vægt, tid, afstand. Indkomst?
12 Histogram Numeriske data præsenteres typisk med et histogram Histogrammet inddeler et interval i et passende antal delintervaller For hvert del interval er en kasse, hvis areal er proportional med frekvensen (dvs. antallet) af data i det interval.
13 Percentiler Det P te percentil er den værdi, hvor P% af data ligger under. Antag vi har en stikprøve med n observationer. Antag observationerne er sorterede. Den P te percentil er (ca) givet ved den (n+1)p/100 te observation. Eksempel: Antag n = 75 og P = 25. Find en værdi, så 25% af data ligger under denne værdi. Løsning: Vælg data punkt nr. 76*25/100 = 19
14 Kvartiler Kvartiler inddeler data i kvarte. 1., 2. og 3. kvartil svarer til 25., 50., og 75. percentiler. 25% af data ligger under 1. kvartil (Q 1 ) 50% af data ligger under 2. kvartil (Q 2 ) 75% af data ligger under 3. kvartil (Q 3 )
15 Centralitet og Variation χ χ χ χχ χ χ χ χ χ χχχ χ χ χ 0 0 Centralitet: Mål for hvor data ligger Fx: Median, middelværdi, toppunkt (mode) Variation: Mål for hvor meget data er spredt ud Fx spænd (range), varians, standard afvigelse
16 Centralitet: Median Medianen er værdien af den midterste observation. Medianen er 50% percentilen og 2. kvartil. n = antal observationer n ulige : Medianen = midterste observation n lige : Medianen = gennemsnit af to midterste obs. medianen medianen? χ χ χχχ χ χ χ χ χχχ χ χ 0 0 Data: 7, 9, 11, 12, 13, 15, 17 n = 7
17 Gennemsnit / Middelværdi Populationens gennemsnit (ukendt) (mean) N x x + x + = = L μ = N N i i + x i er værdien for i te medlem i populationen. μ = my Stikprøve-gennemsnit (sample mean) x x + x + x = = L = n n = x streg. x n i i + Bemærk: Græske bogstaver betegner det ukendte. x x n N
18 Gennemsnit: Eksempel Stikprøve-gennemsnit x n x x + x + = = L = n n i i + x n Stikprøve-gennemsnit x = = 12 x =? 0 χ χ χχχ χ χ 0 χ χ χχχ χ χ
19 Eksempel: Vægt Bemærk at vægt-fordelingen er lidt højre-skæv, dvs. fordelingen hælder til højre.
20 Variansen Variansen er et mål for variationen. Populationensvariansen (ukendt) σ σ = sigma Stikprøve-varians s ( x ) N 2 i = 1 i μ 2 = 2 De n-1 sikrer at s 2 i gennemsnit er lig σ 2. n N ( x x) i 1 = i= n 1 2
21 Varians: Eksempel Stikprøve-gennemsnit Stikprøve-gennemsnit s 2 n ( x x) 1 = i= n 1 i 2 s (7 12) + (9 12) + (11 12) + (12 12) = , (13 12) 2 + (15 12)? 2 + (17 12) 2 0 χ χ χχχ χ χ? 0 χ χ χχχ χ χ 0 χ χ χχχ χ χ
22 Standardafvigelsen Standardafvigelsen er kvadratroden af variansen Populationens standard afvigelsen (ukendt) σ Stikprøve-standard afvigelsen ( x ) N 2 i = i μ 2 1 = σ = N ( x x) 2 i 1 s = s = = n 1 n i 2
23 Sammen middelværdi og varians (ca.)
24 Chebychevs Sætning Antag vi har en population med middelværdi μ standard afvigelse σ For enhver konstant k > 1 gælder at intervallet μ ± kσ indeholder mindst 100[1-(1/k 2 )]% af populationen. Eksempel: k = 2 100[1-(1/k 2 )]% = 100[1-1/4]% = 75% Dvs. intervallet μ ±2 σ indeholder mindst 75%. For forrige slide (ca.) 0 ± 2* 5 = [ ; 4.48 ]
25 Tommelfinger regel For mange (store) populationer gælder μ ± σ indeholder 68% af populationen μ ±2 σ indeholder 95% af populationen μ -2 σ μ + 2 σ 0 χ χ χχχ χ χ μ
26 Eksempel: Vægt x 2s x + 2s x ± 2s = 71,05 ± 2 13,92 [43,21; 98.92] x
27 Sandsynligheder Hændelser Sandsynligheder Regler for sandsynligheder
28 Udgangspunktet Eksperiment: Handling, der leder frem til et af flere mulige udfald Fx. Kast med en terning Vælg 10 tilfældige virksomheder. Udfald: Observation eller måling Fx: Antal øjne på en terning 10 navngivne virksomheder.
29 Udfaldsrum Udfaldsrummet er mængden af mulige udfald af eksperimentet, S = {O 1,O 2,,O k } Udfaldene skal være udtømmende Eksempler: Terningkast: S={1,2,3,4,5,6} S={1,2,3,4,5} dur ikke! Møntkast: S={plat, krone} S={plat} dur ikke O i er i te udfald af k mulige. Udfaldene må ikke overlappe Terningkast: S={1,2,3,4,5,6} S={1-2,2-3,3-4,4-5,5-6} dur ikke!
30 Hændelser En simpel hændelse er et udfald i udfaldsrummet Eksempel: Terningkast en 6 er er en simpel hændelse En hændelse er en mængde af en eller flere simple hændelser i et udfaldsrummet Eksempel: Terningkast A={1,4,6} er en hændelse Hændelser kan indtegnes i et Venn diagram Venn Diagram A 1, 4, 6 2,3,5 S
31 Sandsynlighed En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten af en usikker begivenhed. Sandsynligheden for en hændelse, A, betegnes P(A) En sandsynlighed er et reelt tal mellem 0 og 1. P(A) = 0 : Hændelsen A sker aldrig P(A) = 1 : Hændelsen A sker altid Ex: Sandsynligheden for regn i morgen er 0,5 Ex: Sandsynligheden for at få 7 rigtige i lotto er 0,
32 Klassisk Sandsynlighed Antag at alle udfald forekommer med lige stor sandsynlighed. Da er sandsynligheden for en hændelse A givet ved: hvor ( A) N N N A er antal udfald i hændelsen A. N er antal udfald i udfaldsrummet S. P = A Eksempel: Terningkast lige sandsynlighed for alle udfald. Lad A={1,2,4} N A = 3 N = 6 P(A) = 3/6 = 0.5
33 Regler for sandsynlighed Givet et udfaldsrum S={O 1, O 2,, O k } da skal sandsynlighederne opfylde: 1) For enhver hændelse A i udfaldsrummet S 0 P( A) 1 Dvs. sandsynlighden for en hændelse er et tal mellem 0 og 1. 2) For enhver hændelse A i udfaldsrummet S r P ( A) = P( O ) O A Dvs. sandsynligheden for en hændelse er summen af sandsynlighederne for de simple hændelser indeholdt i A. 3) P(S) = 1 i Dvs summen af sandsynlighederne for alle simple hændelser i ufladsrummet er 1. i
34 Komplimentærmængden Komplementet af en mængde A, er mængden Ā, der indeholder alle elementer i S, der ikke er i A. Eksempel: S={1,2,3,4,5,6} og A={1,4,6}. Så er Ā={2,3,5} A 1, 4, 6 Ā 2,3,5 S Spørgsmål: Antag vi kender P(A). Find P(Ā) =
35 Fællesmængden Fællesmængden af A og B, A B, er mængden, der indeholder de elementer, der er i både A og B A A B 1, 2 3 4, 5 B 6 S Eksempel: A = {1,2,3}, hændelsen at vi slår 1,2 eller 3 øjne. B = {3,4,5}, hændelsen at vi slår 3,4 eller 5 øjne. A B, hændelsen at både A og B indtræffer. A B = {3}
36 Foreningsmængden Foreningsmængden af A og B, A U B, er mængden, der indeholder de elementer, der er i A eller B eller begge S A 1, 2 3 4, 5 B 6 A U B Eksempel: A = {1,2,3}, hændelsen at vi slår 1,2 eller 3 øjne. B = {3,4,5}, hændelsen at vi slår 3,4 eller 5 øjne. A B, hændelsen at A og/eller B indtræffer. A B = {1,2,3,4,5}
37 Spørgsmål Antag vi kender følgende sandsynlighed P(A) P(B) P(A B) Hvad er sandynligheden for A B P(A B ) = A A B 1, 2 3 4, 5 B 6 S
38 Den tomme mængde Den tomme mængde betegnes Ø P(Ø) = To mængder er disjunkte, hvis fællesmængden A B=Ø A={1,2,3} B={4,5} A B={Ø} A 1, 2, 3 4, 5 6 B S Dvs to disjunkte hændelser ikke kan indtræffe på samme tid (mutually exclusive). Antag A B=Ø. Hvad er da P(A B) =?
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden
Statistik. Introduktion Deskriptiv statistik Sandsynslighedregning
Statistik Introduktion Deskriptiv statistik Sandsynslighedregning Introduktion Kasper K. Berthelsen, Institut f. Mat. Fag 8 Kursusgange Individuel mundtlig eksamen (7-skala) Udgangspunkt i opgaver Software:
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale
Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder
Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten
Kvantitative Metoder 1 - Forår 2007. Dagens program
Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe
Statistik. Hjemmeside: kkb. Statistik - lektion 1 p.1/22
Statistik Kursets omfang: 2 ECTS Inklusiv mini-projekt! Bog: Complete Business Statistics, AD Aczel & J. Sounderpandian Software: SPSS eller Excel?? Forelæser: Kasper K. Berthelsen E-mail: [email protected]
Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium
Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,
Basal statistik. 30. januar 2007
Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet
Kapitel 3 Centraltendens og spredning
Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 25 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Introduktion 1 Formelt Lærere: Esben Budtz-Jørgensen Jørgen Holm Petersen Øvelseslærere: Berivan+Kathrine, Amalie+Annabell Databehandling: SPSS
Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne
Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne 5. undervisningsuge, onsdag
Billedbehandling og mønstergenkendelse: Lidt elementær statistik (version 1)
; C ED 6 > Billedbehandling og mønstergenkendelse Lidt elementær statistik (version 1) Klaus Hansen 24 september 2003 1 Elementære empiriske mål Hvis vi har observationer kan vi udregne gennemsnit og varians
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Statistik noter - Efterår 2009 Keller - Statistics for management and economics
Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin
Forelæsning 1: Intro og beskrivende statistik
Kursus 02402 Introduktion til Statistik Forelæsning 1: Intro og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination
Indblik i statistik - for samfundsvidenskab
Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Introduktion
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Introduktion 1 Formelt Lærer: Jørgen Holm Petersen Øvelseslærere: Signe, Helene, Marie, Amalie Databehandling: SPSS Eksamen: Ugeopgave efterfulgt
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information
Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller
Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.
Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder
Sandsynlighedsregning Stokastisk variabel
Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau
ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen
Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1
Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke
Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.
Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population
Hvad skal vi lave i dag?
p. 1/2 Hvad skal vi lave i dag? Eksempler på stokastiske variable. Ventetid på krone ved møntkast. Antal plat ved n kast. Antal radioaktive henfald. Ventetiden på en flyulykke. Udtrækning af tal i et interval.
Deskriptiv Statitik. Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ [email protected]
Deskriptiv Statitik Judith L. Jacobsen, PhD. http://staff.pubhealth.ku.dk/~lts/basal09_1/ [email protected] Kursus formål Planlægning af studier selve indsamlingen af data, opstilling af statistiske hypoteser
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
Repetition Stokastisk variabel
Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff
Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark
Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.
Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig
1 Sandsynlighed Sandsynlighedsbegrebet Definitioner Diskret fordeling Betinget sandsynlighed og uafhængighed...
Indhold 1 Sandsynlighed 1 1.1 Sandsynlighedsbegrebet................................. 1 1.2 Definitioner........................................ 2 1.3 Diskret fordeling.....................................
Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
Module 2: Beskrivende Statistik
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 2: Beskrivende Statistik 2.1 Histogrammer og søjlediagrammer......................... 1 2.2 Sammenfatning
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring
Kapitel 3 Centraltendens og spredning
Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning
Matematikkens mysterier - på et obligatorisk niveau. 9. Sandsynlighedsregning
Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 9. Sandsynlighedsregning Hvad er den typiske størrelse af et nittehoved? 9. Statistik og sandsynlighedsregning Indhold 9.0 Indledning
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning
Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,
Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................
Værktøjshjælp for TI-Nspire CAS Struktur for appendiks:
Værktøjshjælp for TI-Nspire CAS Struktur for appendiks: Til hvert af de gennemgåede værktøjer findes der 5 afsnit. De enkelte afsnit kan læses uafhængigt af hinanden. Der forudsættes et elementært kendskab
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.
Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Allan C. Malmberg. Terningkast
Allan C. Malmberg Terningkast INFA 2008 Programmet Terning Terning er et INFA-program tilrettelagt med henblik på elever i 8. - 10. klasse som har særlig interesse i at arbejde med situationer af chancemæssig
Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:
Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og
University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version
university of copenhagen University of Copenhagen Notat om statistisk inferens Larsen, Martin Vinæs Publication date: 2014 Document Version Peer-review version Citation for published version (APA): Larsen,
Note til styrkefunktionen
Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
Løsninger til kapitel 1
Opgave. a) observation hyppighed frekvens kum. frekvens 2,25,25 3,875,325 2 3,875,5 3 3,875,6875 4,625,75 5,625,825 6,,825 7 2,25,9375 8,,9375 9,625, Frekvenser illustreres i et pindediagram,2,8,6,4,2,,8,6,4,2
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Fig. 1 Billede af de 60 terninger på mit skrivebord
Simulation af χ 2 - fordeling John Andersen Introduktion En dag kastede jeg 60 terninger Fig. 1 Billede af de 60 terninger på mit skrivebord For at danne mig et billede af hyppighederne flyttede jeg rundt
for gymnasiet og hf 2016 Karsten Juul
for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen
Grundlæggende statistik Lektion 2 Indhold Diskrete fordelinger Binomial fordelingen Poisson fordelingen Hypergeometrisk fordeling Data typer el. typer af tilfældige variable Diskrete variable > Kategoriseres
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen
Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +
Statistik i basketball
En note til opgaveskrivning [email protected] 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større
Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet
Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,
Statistiske data. Datamatricen. Variable j. ... X ij = x ij... Anonymiserede og ækvivalente dataindivider. Datamodellen
Statistiske data Datamatricen Variable j Individer i X ij = x ij Anonymiserede og ækvivalente dataindivider Datamodellen Hvis dataindividerne er udvalgte repræsentanter fra en population, så er datamatrice
Statistik og Databehandling N: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/kurser/ statdatabehandling/f06/
Statistik og Databehandling N: sandsynligheder Kursushjemmeside: http://www.imf.au.dk/kurser/ statdatabehandling/f06/ Jens Ledet Jensen Statistik og Databehandling N: sandsynlighederkursushjemmeside:http://www.imf.au.dk/kurser/statdatabehandling/f06/
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres)
Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Til Gribskovløbet 006 gennemførte 118 kvinder 1,4 km distancen. Fordelingen af kvindernes løbstider
Lad os som eksempel se på samtidigt kast med en terning og en mønt:
SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Elementær sandsynlighedsregning
Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en
