Statistik og Sandsynlighedsregning 2
|
|
|
- Malene Graversen
- 9 år siden
- Visninger:
Transkript
1 Statistik og Sandsynlighedsregning 2 Den flerdimensionale normalfordeling, fordeling af ( X,SSD) Helle Sørensen Uge 9, mandag SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 1 / 16
2 Program Resultaterne fra denne uge skal bruges som arbejdsheste i projekt 1. I dag: Den flerdimensionale standardnormalfordeling Fordeling af ( X,SSD), hvor SSD = n i=1 (X i X ) 2 Onsdag: T -variablen og t-fordelingen Mere om χ 2 -fordelingen, Gamma-fordelingen. SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 2 / 16
3 Hvorfor skulle dette nu være interessant... Eksempel 1: Hormonkonc. før og efter tilsætning af et stof til foderet: Cow Initial (µg/ml) Final (µg/ml) Diff. (µg/ml) Koncentrationen stiger for otte ud af de ni køer. Gennemsnitlig stigning er d = 1 n (d d n ) = Er det nok til at slutte at stoffet påvirker hormonkoncentrationen? Empirisk varians og spredning, s 2 = SSD n 1 = 1 ( (d 1 n 1 d) 2 + (d n d) 2) = , s = SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 3 / 16
4 Hvorfor skulle dette nu være interessant... Eksempel 2: Syv personers gæt på antallet af punkter i en en punktsky (gennemsnit af fire gæt) Person Average guess Empirisk middelværdi, varians og spredning: Det sande antal punkter er 161. ȳ = , s 2 = , s = Kan man sige noget om hvorvidt man generelt over- eller underestimerer eller ingen af delene størrelsen af sådan en punktsky? SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 4 / 16
5 Populationer og stikprøver Interesseret i middelværdien (og måske variansen) i en population: µ = EX og σ 2 = Var(X ). Har kun en stikprøve til rådighed: empirisk middelv. og varians: X og s 2. Vil bruge de empiriske størrelser som estimatorer for populationsstørrelserne: ˆµ = X, ˆσ 2 = s 2 Men hvilke egenskaber har estimatorerne? SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 5 / 16
6 Foldning af normalfordelinger: repetition Sætning Hvis X 1,...,X n er uafhængige og X i N(µ i,σi 2 ) så er summen X X n normalfordelt med middelværdi µ µ n og varians σ σ n 2. Første del af beviset gik ud på at vise følgende: Lemma U 1 og U 2 uafhængige N(0,1)-fordelte, α 2 + β 2 = 1. Definer ( ) ( )( ) V1 α β U1 = β α V 2 Så er V 1 og V 2 uafhængige og begge N(0,1)-fordelte. Det specielle ved matricen er at det er en ortonormal-/ortogonalmatrix: Søjlerne er ortogonale (vinkelrette) Søjlerne har norm 1 (længde 1) Specielt er det(a) = 1, A 1 = A t og Au = u. U 2 SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 6 / 16
7 Notation og ortonormale/ortogonale matricer Elementer i R n opfattes som søjler: x = Transponering: x t (række), A t. Indre produkt: x y = x 1 y 1 + x n y n Norm: x = x x = x x n 2 x 1. x n {e 1,...,e n } ortonormalbasis for R n hvis { 0, hvis i j e i e j = 1, hvis i = j SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 7 / 16
8 Notation og ortonormale/ortogonale matricer n n-matrix M er en ortonormalmatrix/ortogonalmatrix hvis M t M = I. M er en ortonormalbasis hvis og kun hvis dens søjler udgør en ortonormalbasis. For en ortonormalmatrix M gælder M er invertibel med M 1 = M t det(m) = 1 afbildningen x Mx bevarer indre produkt og norm: (Mx) (My) = x y og Mx = x SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 8 / 16
9 Standardnormalfordelingen i R n U 1,...,U n iid. N(0,1)-fordelte. iid = independent and identically distrubuted = uafh. og identisk fordelte. Den simultane fordeling af (U 1,...,U n ) kaldes den n-dimensionale standardnormalfordeling. Hvad er tætheden for (U 1,...,U n )? Sætning Hvis U er standardnormalfordelt i R n og M er en n n-ortonormalmatrix, så er V = MU også standardnormalfordelt. Bevis: sætning SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 9 / 16
10 X og SSD X 1,...,X n iid. N(µ,σ 2 )-fordelte: X = 1 n (X X n ), SSD = (X 1 X ) (X n X ) 2 NB. s 2 = 1 n 1 SSD. Hvad er den simultane fordeling af ( X,SSD)? Kender faktisk allerede fordelingen af X... SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 10 / 16
11 Set-up Vil bruge sætning fra før. Har brug for: U 1,...,U n iid. N(0,1)-fordelte En passende ortonormalmatrix Definer U i = (X i µ)/σ. Så er U 1,...,U n uafhængige hvorfor? U i N(0,1) de er jo netop standardiseret Ū = ( X µ)/σ 1/ n Definer desuden første søjle i M t som e 1 =. 1/ og supplér til n ortogonal matrix M t. Første række i M er konstant, 1/ n. Konklusion fra sætning 8.3.1: V 1,...,V n er iid. N(0,1) hvor V = MU. SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 11 / 16
12 X Regn på V 1 og indse at V 1 = 1 σ n( X µ) Hvad siger det om fordelingen af X? SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 12 / 16
13 SSD Husk at V 2 1 = nū2 V = U U i Ū = (X i X )/σ Regn på SSD og indse at SSD = σ 2 (V V 2 n ) Altså er SSD/σ 2 summen af n 1 uafhængige kvadrerede N(0,1)-variable. Denne fordeling kaldes χ 2 -fordelingen med n 1 frihedsgrader. Vi siger så at SSD er σ 2 χ 2 -fordelt med n 1 frihedsgrader. Hvad kan vi sige om den simultane fordeling af ( X,SSD)? SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 13 / 16
14 Fordeling af ( X,SSD) Har altså vist følgende meget vigtige sætning: Sætning Hvis X 1,...,X n er iid. N(µ,σ 2 )-fordelte, så er X og SSD uafhængige X N(µ,σ 2 /n) SSD σ 2 χ 2 n 1 Sætningen ser desuden på den stokastiske variabel n( X µ) n( X µ) T = = SSD/(n 1) s... men den snakker vi om på onsdag. SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 14 / 16
15 Tæthed for χ 2 -fordelingen Tæthed for χ 2 -fordelingen med hhv. 1, 3, 5, 8 frihedsgrader SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 15 / 16
16 Resume Vigtige ting fra i dag: Fordelingen af ( X, SSD) for uafhængige, identisk normalf. variable. Den er vigtige på alle mulige måder: fra et sandsynlighedsteoretisk perspektiv fra et statistisk perspektiv fra et projekt1-perspektiv... Onsdag: T -variablen og t-fordelingen Mere om χ 2 -fordelingen, Gamma-fordelingen. Eftermiddag: Mere R (Susanne) Fra næste uge: Statistik med Susanne! SaSt2 (Uge 9, mandag) Flerdim. N, ford. af ( X,SSD) 16 / 16
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Transformation af kontinuerte fordelinger på R, flerdimensionale kontinuerte fordelinger, mere om normalfordelingen Helle Sørensen Uge 7, onsdag SaSt2 (Uge 7, onsdag)
Konfidensinterval for µ (σ kendt)
Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)
Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau
ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
Kapitel 3 Centraltendens og spredning
Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning
Modul 5: Test for én stikprøve
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.
Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud
Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner
Module 2: Beskrivende Statistik
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen og Hans Chr. Petersen Module 2: Beskrivende Statistik 2.1 Histogrammer og søjlediagrammer......................... 1 2.2 Sammenfatning
Ensidet variansanalyse
Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: [email protected] StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger
Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie
Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: [email protected] I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:
En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger
Institut for Økonomi Aarhus Universitet Statistik 1, Forår 2001 Allan Würtz 4. April, 2001 En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger Uniform fordeling Benyttes som model for situationer,
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff
Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination
Module 12: Mere om variansanalyse
Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................
Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede
Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??
Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,
Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model
Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H
Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................
Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen
Program Statitik og Sandynlighedregning 2 Normalfordelingen venner og bekendte Helle Sørenen Uge 9, ondag Reultaterne fra denne uge kal bruge om arbejdhete i projekt 1. I formiddag: χ 2 -fordelingen, t-fordelingen,
Modul 3: Kontinuerte stokastiske variable
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 3: Kontinuerte stokastiske variable 3.1 Kontinuerte stokastiske variable........................... 1 3.1.1 Tæthedsfunktion...............................
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Signifikanstestet. usædvanlig godt godt
Signifikanstestet Fordeling af rygevaner som 45-årig og senere selvrapporteret helbred som 51-årig blandt tilfældigt udvalgte mænd i Københavns Amt i 1987. helbred som 51 årig rygevaner som 45 årig Total
LinAlg Skriftlig prøve 20. januar 2009, 9 12 Vejledende besvarelse
LinAlg Skriftlig prøve. januar 9, 9 Vejledende besvarelse Dette eksamenssæt løber over 5 sider, denne side inklusive. Sættet stilles til løsning over 3 timer med alle sædvanlige hjælpemidler, bortset fra
Repetition Stokastisk variabel
Repetition Stokastisk variabel Diskret stokastisk variabel Udfaldsrum endelige eller tællelige mange antal elementer Sandsynlighedsfunktion f(x) er ofte tabellagt Udregning af sandsynligheder P( a < X
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Kombinatorik. Eksempel 2: En mand har 7 par bukser og 10 skjorter. Skal han både vælge en skjorte og et par bukser, så har han 10. 7=70 mulige valg.
Noter til Biomat, 005. Kombinatorik. - eller kunsten at tælle. Alle tal i kombinatorik-afsnittet er hele og ikke-negative. Additionsprincippet enten - eller : Antag vi enten skal lave et valg med m muligheder
Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220
Oversigt [LA] 6, 7, 8
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen
Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne
Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne 5. undervisningsuge, onsdag
Note om Monte Carlo eksperimenter
Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.
Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller
Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles
Opgaver til Kapitel 3
Opgaver til Kapitel 3 Hvis en opgave indeholder data, vil et sasprogram, der indlæser data være til rådighed i kataloget statbib/atskurser/stat1/opgaver/kapitel_03 For eksempel vil data til opgave 3.1
Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0
Middelværdi og varians Middelværdien af en diskret skalarfunktion f(x), for x = 0, N er: µ = N f(x) N x=0 For vektorfuktioner er middelværdivektoren tilsvarende: µ = N f(x) N x=0 Middelværdien er en af
Sandsynlighedsregning: endeligt udfaldsrum (repetition)
Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)
standard normalfordelingen på R 2.
Standard normalfordelingen på R 2 Lad f (x, y) = 1 x 2 +y 2 2π e 2. Vi har så f (x, y) = 1 2π e x2 2 1 2π e y2 2, og ved Tonelli f dm 2 = 1. Ved µ(a) = A f dm 2 defineres et sandsynlighedsmål på R 2 målet
Note til styrkefunktionen
Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger
Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Konfidens intervaller
Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
En Introduktion til SAS. Kapitel 6.
En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden
Kapitel 3 Centraltendens og spredning
Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 25 Indledning I kapitel 2 omsatte vi de rå data til en tabel, der bedre viste materialets fordeling
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen
Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: [email protected] Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse
Kvantitative Metoder 1 - Forår 2007
Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte
DesignMat Egenværdier og Egenvektorer
DesignMat Egenværdier og Egenvektorer Preben Alsholm September 008 1 Egenværdier og Egenvektorer 1.1 Definition og Eksempel 1 Definition og Eksempel 1 Lad V være et vektorrum over L (enten R eller C).
Manual til TI-89. Af: Martin Kyhl og Andreas Kristansen. Med denne i hånden til eksamen burde de fleste opgaver kunne løses på få minutter.
Manual til TI-89 Af: Martin Kyhl og Andreas Kristansen Med denne i hånden til eksamen burde de fleste opgaver kunne løses på få minutter. Indholdsfortegnelse 0 Indledning...3 0.1 Forord...3 0.2 Syntax
Sandsynlighedsregning Stokastisk variabel
Sandsynlighedsregning Stokastisk variabel I eksperimenter knyttes ofte en talværdi til hvert udfald. S s X(s) R Definition: En stokastisk variabel X er en funktion defineret på S, der antager værdier på
MODELLER I REMOTE SENSING
MODELLER I REMOTE SENSING AF VEGETATION SPECIALE KRISTINE BACHER Roskilde Universitet Geografi og matematik August 2014 Vejledere: Eva Bøgh og Carsten Lunde Petersen Abstract The purpose of this thesis
Sudoku. Jørgen Brandt. Sudoku 1
Jørgen Brandt 1 Men hvad er? Antal Minimal Odds and Ends 2 3 9 7 1 4 7 2 8 5 2 9 1 8 7 4 3 6 7 1 7 9 3 2 6 5 2 Men hvad er? Antal Minimal Odds and Ends Hemmeligheden bag 2 3 9 7 1 4 7 2 8 5 2 9 1 8 7 4
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data
Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: [email protected] Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration
Sandsynlighedsregning Oversigt over begreber og fordelinger
Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)
Trivsel og fravær i folkeskolen
Trivsel og fravær i folkeskolen Sammenfatning De årlige trivselsmålinger i folkeskolen måler elevernes trivsel på fire forskellige områder: faglig trivsel, social trivsel, støtte og inspiration og ro og
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Funktionalligninger - løsningsstrategier og opgaver
Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =
Afstandsformlerne i Rummet
Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R Helle Sørensen Uge 6, mandag SaSt2 (Uge 6, mandag) Tætheder og kont. fordelinger 1 / 19 Program Velkommen I dag:
