Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet
|
|
|
- Christina Kvist
- 9 år siden
- Visninger:
Transkript
1 Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet
2 Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter fulgt i 6 mdr. En række variable blandt andet om vaccinationsstatus blev målt ved baseline. Formålet var at undersøge om vaccination har betydning for overlevelsen. 1
3 BCG data Død BCG ja nej total ja nej total Relativ hyppighed af død med BCG 124/3300=3.76% Relativ hyppighed af død uden 97/1973=4.92% BCG ser udtil at forbedre overlevelsen - men kunne denne forskel være opstået tilfældigt? 2
4 Statistisk analyse Udfra en lille stikprøve vil vi drage konklusioner om den bagved liggende population. Forbedres overlevelsen i Bissau af vaccination? Fordi vi kun har en stikprøve vil vores konklusioner være usikre. Hvis vi havde gentaget forsøget ville vi måske have fået et andet resultat. Vaccination synes at forbedre overlevelsen, men kunne denne forskel være opstået tilfældigt? 3
5 En statistisk model for Bissau data Sansynlighed for at død med BCG er p 1 Antallet af døde med BCG følger B(3300, p 1 ) Sansynlighed for at død uden BCG er p 2 Antallet af døde uden BCG følger B(1973, p 2 ) 4
6 Estimation i Bissau data Udfra data hvad er da vores bedste bud på dødssandsynlighederne? død BCG ja nej total ja nej total p 1 =124/3300=3.76% p 2 = 97/1973=4.92% 5
7 Hypotesen Arbejdshypotesen: vaccine forbedrer overlevelsen Signifikanstestet kan (kun) falcificere hypoteser. Den hypotese vi tester er den modsatte. Statistisk nul-hypotese: vaccine påvirker ikke overlevelsen Udtrykkes via modellens parametre H 0 : p 1 = p 2 (videnskabeligt spørgsmål statistisk hypotese) Alternativ H A : p 1 p 2 6
8 Teststørrelsen Afvigelser mellem data og hypotese måles ved teststørrelsen alle celler (observeret forventet) 2 forventet hvor forventet angiver det forventede celleantal hvis hypotesen havde været sand. Hvad mener du med forventede celleantal? 7
9 Estimation under H 0 Hvis nu dødssandsynlighederne var ens hvad er så vores bedste bud på denne sandsynlighed? Generel Outcome Exposure yes no total yes a b n 1 no c d n 2 total a + c b + d n Vores data død BCG ja nej total ja nej total Svar: andelen af døde i data. p = a + c n = =
10 Forventede celletal og teststørrelse Forventet antal døde med BCG: = Forventet antal døde uden BCG: = 82.7 Observeret Forventet under H 0 død BCG ja nej total ja nej total død BCG ja nej total ja nej total Teststørrelsen bliver: χ 2 = ( ) ( )2 ( )2 ( ) = 4.13 Store værdier er kritiske 9
11 p-værdien Vi har set χ 2 = 4.13 er det er stor afvigelse? Det afgøres ved at beregne p-værdien Hvis hypotesen var sand, hvad ville sandsynligheden så være for at få en χ 2 -værdi på 4.13 eller derover. Her skal vi bruge statistisk teori som siger, at under H 0 vil teststørrelsen følge en χ 2 -fordeling med en frihedsgrad (df = 1) 10
12 Illustration af p p-værdien er sandsynligheden for en værdi over p-værdi = P (χ ) =
13 Konklusion Signifikansniveau sættes til p-værdi= < 0.05, så vi forkaster hypotesen hvis hypotesen er sand er det usædvanligt at få en så stor afvigelse mellem data og hypotese som vi har fået - vi vælger derfor at tro at hypotesen ikke er sand 12
14 Kritiske værdier for χ 2 -test Den kritiske værdi afhænger af frihedsgrader og signifikansniveau. Med 1 frihedsgrad: chance for en værdi over 3.84 er 5%. Testets kritiske værdi er
15 Hvordan præsenteres resultatet? Det er ikke nok at angive en p-værdi Effekten af vaccination skal også kvantificeres OR= %-CI(0.575; 0.991), p = Bemærk, 95%-sikkerhedsintervalet ikke overdækker 1, hvilket er i ovensstemmelse med at effekten er signifikant. 14
16 Fejl af type I og II Type I: forkaster sand hypotese. Type II: forkaster ikke falsk hypotese Vi kender ikke sandheden og ved derfor ikke hvornår vi begår en fejl. Vi tester udfra data, men disse er behæftet med usikkerhed som kan drille os (selvom der er 60% blå bolde i posen, kan stikprøven godt indeholde 50% og hypotesen forkastes ikke). 15
17 Risiko for fejl af type I Givet ved signifikansniveauet (typisk 5%). Vi forkaster hvis χ Hvis hypotesen er sand sker dette med en sandsynlighed på 5% 16
18 Kan man undgå fejl? Nej. I øvelse 4 så vi at risiko for fejl af type I og II hænger sammen. 50 bolde udtages, 50% blå bolde i posen (hypotesen er sand) Sandsynlighed for at forkaste H 0 : 1. grænse 33 blå bolde - ssh for Type I fejl 1% 2. grænse 31 blå bolde - ssh for Type I fejl 5% Jeg vil gerne have en lav risiko for en Type I fejl, så umiddelbart virker en grænse på 33 blå bolde bedre. 17
19 Sammenhæng mellem risiko for type I og type II fejl 50 bolde udtages, 60% blå bolde i posen (hypotesen er forkert) Sandsynlighed for at forkaste H 0 : 1. grænse 33 blå bolde: 19%, ssh Type II fejl= 81% (Type I fejl 1%) 2. grænse 31 blå bolde: 38%, ssh Type II fejl= 62% (Type I fejl 5%) Når risiko for Type I fejl stiger, så falder risiko for Type II fejl 18
20 OK - vi vælger et signifikansniveau på 5% Hvad er risikoen for type II fejlen så? Den afhænger af to ting 1. sample size 2. hvor forkert hypotesen er Istedet for at tale om risiko for type II fejl tales om styrken styrke = P (forkast H 0 H 0 falsk) = 1 P (ikke forkast H 0 falsk) = 1 P (type II fejl) 19
21 Styrke i boldøvelse Sandsynligheden for at forkaste hypotesen udfra en stikpøve på hhv 50 og 25 bolde. Jo mere forkert hypotesen er, jo lettere er det at opdage det. Jo større stikprøve, jo større chance for at forkaste en forkert hypotese 20
22 R C-tabeller Fordeling af rygevaner som 45- årig og senere selvrapporteret helbred som 51-årig blandt tilfældigt udvalgte mænd i Københavns Amt i rygevaner som 45 årig Total aldrig nej usædvanlig godt godt helbred som 51 årig mindre godt elendigt Total ,7% 76% 6,3% 1,0% 100% ,6% 78% 6,3% 100% ,3% 74% 8,8% 1,3% 100% ,0% 73% 15,3% 2,7% 100% ,9% 85% 8,8% 2,9% 100% ,2% 76% 9,4% 1,4% 100% 2 21
23 χ 2 -testet i R C-tabeller χ 2 -testet kan direkte generaliseres til R C-tabeller Observeret tabel sammenlignes med forventet tabel. alle celler (observeret forventet) 2 forventet χ 2 df med df = (antal rækker 1)(antal søjler 1) 22
24 χ 2 -fordelinger Bemærk at når df vokser skubbes fordelingerne mod højre. 23
25 Rygning og helbred Fordeling af rygevaner som 45- årig og senere selvrapporteret helbred som 51-årig blandt tilfældigt udvalgte mænd i Københavns Amt i rygevaner som 45 årig Total aldrig nej usædvanlig godt godt helbred som 51 årig mindre godt elendigt Total ,7% 76% 6,3% 1,0% 100% ,6% 78% 6,3% 100% ,3% 74% 8,8% 1,3% 100% ,0% 73% 15,3% 2,7% 100% ,9% 85% 8,8% 2,9% 100% ,2% 76% 9,4% 1,4% 100% 2 24
26 Rygning og helbred - hypotesen? Hypotese: Uafhængighed mellem rygning og helbred P (helbred rygevaner) = P (helbred) Fordeling af helbred i i te rygegruppe (i = 1,..., 4) p i = (p i1, p i2, p i3, p i4 ) H 0 : p 1 = p 2 = p 3 = p 4 = p 5 Forventede celletal beregnes udfra fordelingen i sidste række (se Tabel 10-2 i bogen). χ 2 = 16.2, df = (5 1)(4 1) = 12, p = 0.18 Sammenhængen ikke statistisk signifikant 25
27 Fortolkning af in-signifikant p-værdi En in-signifikant p-værdi må ikke fortolkes som bevis for ingen sammenhæng Der er to grunde til at et statistisk test bliver insignifikant 1. der er virkelig ingen sammenhæng 2. der er ikke nok information i data (type II fejl) 26
28 To forskellige resultater OR med sikkerhedsinterval i to studier 27
29 Uafhænighed kan også testes med γ Her er teststørrelsen givet ved z = γ se( γ) Under hypotesen om ingen sammenhæng følger z en standardiseret normalfordeling N(0, 1). density z Små og store værdier er kritiske 28
30 Rygning og helbred Fordeling af rygevaner som 45- årig og senere selvrapporteret helbred som 51-årig blandt tilfældigt udvalgte mænd i Københavns Amt i rygevaner som 45 årig Total aldrig nej usædvanlig godt godt helbred som 51 årig mindre godt elendigt Total ,7% 76% 6,3% 1,0% 100% ,6% 78% 6,3% 100% ,3% 74% 8,8% 1,3% 100% ,0% 73% 15,3% 2,7% 100% ,9% 85% 8,8% 2,9% 100% ,2% 76% 9,4% 1,4% 100% 2 χ 2 = 16.2, df = 12, p = 0.18, γ = 0.242, p =
31 Hvilket test er bedst? Hvis der er sammenhæng mellem to variable, hvilket test vil så med størst sandsynlighed forkaste hypotesen. Med andre ord: hvilket test har størst styrke? Det afhænger af på hvilken måde hypotesen er forkert. Illustration: simulationer. 30
32 Simulation I Design: 4 grupper med hver sin sandsynlighed outcome personer i hver gruppe. Forsøget udføres 1000 gange. I hvert datasæt beregnes γ og χ 2 -testet. Andel forkast (styrke): χ 2 : = 0.48, γ: = 0.68 γ vinder 31
33 Simulation II Design: 4 grupper med hver sin sandsynlighed outcome personer i hver gruppe. Forsøget udføres 1000 gange. I hvert datasæt beregnes γ og χ 2 -testet. Andel forkast (styrke): γ: = 0.082, χ2 : = 0.49 χ2 vinder 32
34 Konlusion: χ 2 vs γ γ: har større styke til at finde monotone sammenhænge. Men kan være elendig til at finde sammenhænge der ikke er monotone χ 2 : kan finde alle mulige afvigelser fra H tabeller: her bruges χ 2 -testet og odds-ratioer. 33
35 p rules p-værdien er vigtig Spiller stor rolle indenfor mange forskningsfelter Vanskeligt at publicere uden en signifikant p-værdi For stor fokus på forskellen mellem og Angiv p. Der er forskel på p = og p <
36 Er p-værdien unaturlig? Friday night in a strange bar you are contacted by a person who wants to play heads-and-tails with you. You lose if it is heads. You take a look at the coin and flip it 10 times. The result is: heads, heads, heads, heads, tails, heads, heads, heads, heads, heads You decline to play. If the coin was fair the data would be quite unlikely. p-value = P (0 tails)+p (1 tails) = (0.5) = % You reject the hypothesis of a fair coin. 35
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Mantel-Haenszel analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Mantel-Haenszel analyser Mantel-Haenszel analyser Sidst lærte vi om stratificerede analyser. I dag kigger vi på et specialtilfælde: både exposure
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf
Statistik II 1. Lektion. Analyse af kontingenstabeller
Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af
Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 4 Statistik & sandsynlighedsregning 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0
Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt
Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele
Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om
Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.
Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data
Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: [email protected] Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration
Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A)
Vejledende eksamensopgaver vedr. hypotesetest (stx B og stx A) Opgave 1 I nedenstående tabel ses resultaterne af samtlige hjerteklapoperationer i 007-08 ved Odense Universitetshospital (OUH) sammenlignet
Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Forelæsning 9: Inferens for andele (kapitel 10)
Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination
Personlig stemmeafgivning
Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary
1 Kontingenstabeller Betinget fordeling Uafhængighed 2 Chi-kvadrat test for uafhængighed Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary
Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller
Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Indledende om Signifikanstest Boldøvelser 1 Påstand: Et nyt præparat M virker mod migræne. Inden præparatet kan markedsføres, skal denne påstand
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse
Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
Kapitel 8 Chi-i-anden (χ 2 ) prøven
Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på
Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau...
Indhold 1 Statistisk inferens: Hypotese og test 2 1.1 Nulhypotese - alternativ.................................. 2 1.2 Teststatistik........................................ 3 1.3 P-værdi..........................................
Vejledende besvarelser til opgaver i kapitel 14
Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser
Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp
Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.
Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt
Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau
Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi
Logistisk regression. Statistik Kandidatuddannelsen i Folkesundhedsvidenskab
Logistis regression Statisti Kandidatuddannelsen i Folesundhedsvidensab Multipel logistis regression Antagelser: Binære observationer (Y i, i=,.,n) f.es Ja/Nej Høj/Lav Død/Levende Kodet: / 0 Y i uafhængige
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.
2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher
Kursus 02323: Introducerende Statistik Forelæsning 12: Forsøgsplanlægning Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Postoperative komplikationer
Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.
Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
To-sidet varians analyse
To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
Løsning til eksamen d.27 Maj 2010
DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)
Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up
Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1
Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
1. februar Lungefunktions data fra tirsdags Gennemsnit l/min
Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
for gymnasiet og hf 2017 Karsten Juul
for gymnasiet og hf 75 50 5 017 Karsten Juul Statistik for gymnasiet og hf 017 Karsten Juul 5/11-017 Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm Hæftet må benyttes i undervisningen
Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala
3 5% 5% 5% 0 3 4 5 6 7 8 9 0 Statistik for biologer 005-6, modul 5: Normalfordelingen opstår når mange forskellige faktorer uafhængigt af hinanden bidrager med additiv variation til. F.eks. Højde af rekrutter
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) Variation indenfor og mellem grupper F-test for ingen effekt AnovaTabel Beregning af p-værdi i F-fordelingen
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1
Mikro-kursus i statistik 2. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er hypotesetestning? I sundhedsvidenskab:! Hypotesetestning = Test af nulhypotesen Hypotese-testning anvendes til at vurdere,
Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller
Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles
c) For, er, hvorefter. Forklar.
1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:
Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,
Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi
En teoretisk årsagsmodel: Operationalisering: Vurdering af epidemiologiske undersøgelser. 1. Informationsproblemer Darts et eksempel på målefejl
Vurdering af epidemiologiske undersøgelser Jørn Attermann. februar 00 I denne forelæsning vil vi se på fejl, som kan have betydning for fortolkningen af resultater fra epidemiologiske undersøgelser. Traditionelt
Kapitel 7 Forskelle mellem centraltendenser
Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens
OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model
Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Kapitel 12 Variansanalyse
Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet
En intro til radiologisk statistik. Erik Morre Pedersen
En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur
1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ
Indhold 1 Ensidet variansanalyse(kvantitativt outcome) - sammenligning af flere grupper(kvalitativ exposure) 2 1.1 Variation indenfor og mellem grupper.......................... 2 1.2 F-test for ingen
