1. februar Lungefunktions data fra tirsdags Gennemsnit l/min
|
|
|
- Max Lorentzen
- 9 år siden
- Visninger:
Transkript
1 Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud fra estimat og standard error) Sikkerhedsintervaller og statistiske tests Køn Kvinder Mænd Lungefunktions data fra tirsdags Gennemsnit l/min l/min Udfra dette kunne vi beregne sikkerhedsintervaller for: Middelværdien for hvert køn Differenn mellem middel PEFR for mænd og kvinder 95% sikkerhedsinterval : CI: Estimat ±.96 (Estimat) og hoste Har bronkitis i den tidlige barndom betydning nere i livet? Obrveret! som 5-årig ( + B) ( B) Hoster om natten som 4-årig Lad os først på de, der ikke har haft bronkitis. π B = Estimat: Sandsynlighed for at hoste om natten givet man ikke har haft bronkitis 44 ˆ π B = = Total Ukendt! Bedste bud: 4.% af de, der ikke har haft bronkitis, hoster om natten. 3 Hoster om natten som 4-årig Total Hvad er usikkerheden,, på estimatet? ( ˆ π ) = ˆ π ( ˆ π ) n B B B B = ( ) 046 = CI( π ) = ˆ π ±.96 ( ˆ π ) B B B = ± = ( ; ) = ( 3.0 ; 5.4 )% ˆ π = B 4 Risiko for hoste om natten 5 Risiko for hoste om natten 6 Estimate CI Estimate CI ; ; ; ; Konklusion (På basis af dis data ): Risiko for at et barn, der ikke har haft bronkitis, hoster ligger et sted mellem 3.0% og 5.4% - bedste bud er 4.%. Risiko for at et barn, der har haft bronkitis hoster, ligger et sted mellem 6.0% og 3.0% - bedste bud er 9.5%. Noget tyder på større risiko for at hoste om natten, når man har haft bronkitis. Risikodifferens: RD = π + B π B RD = ˆ π ˆ π = = B B ( RD) = ( ˆ π + B ) + ( ˆ π B ) = = CI( RD ) = ± = ( 0.06; )
2 Risiko Differens Estimate Risiko for hoste om natten CI 0.060; ; ; Konklusion: Risikoen for hoste om natten er et sted mellem.6 og 9.0 procentpoint højere, hvis man har haft bronkitis som 5-årig. Bemærk er mindst for gruppen, da der er langt flere børn i denne gruppe. Usikkerheden på differenn er større end den største usikkerhed for de to grupper. 7 Hvilke antagelr ligger bag beregningerne? Antagel : Antagel : Uafhængighed mellem grupper Data i hver gruppe er binomial-fordelt Uafhængighed mellem grupper: Denne antagel er nødvendig for at man kan bruge formlen: RD = ˆ π + ˆ π ( ) ( + B ) ( B ) Er den rimelig i bronkitis ekmplet?, data stammer for to forskellige grupper børn. Et muligt problem kunne være hvis der var to søskende i hver sin gruppe. Så vil der pga. arv/miljø være en sammenhæng mellem hvorvidt de to børn hoster. 8 Data i hver af grupperne er binomial-fordelt: Denne antagel er nødvendig for, at man kan bruge formlen: ( ˆ π ) = ˆ π ( ˆ π ) n Data er binomialfordelt hvis: Uafhængige delforsøg. Præcist to mulige udfald (hoster/ikke hoster, død/levende). 3 Sandsynligheden for succes, π, er den samme for alle delforsøg. 4 Antal, n, delforsøg man betragter afhænger ikke af udfaldene. Opfyldt? Ingen søskende i samme gruppe. Klar definition af hoste. Grupperne kan betragtes som homogene. Der er ikke snydt under data indsamlingen. 9 Normalfordelingen En vigtig fordeling af to forskellige grunde: Mange slags data er næsten normalfordelte normalfordelte (muligvis efter en transformation). Mange estimater er næsten normalfordelte, normalfordelte, hvis de er baret på mange obrvationer (muligvis efter en transformation). Ingenting er helt normalfordelt, men mange gange er det en rigtig god approksimation! Relative størrelr som Odds Ratio, Relative Risiko og Rate Ratio skal analyres på log-skala (ln) barnets vægt Fødlsvægt for 03 børn P 3.5kg < fødlsvægt < 4.0kg ( ) Normalfordeling: en god approksimation Fødlsvægt i kg
3 Tæthedsfunktion: Sandsynlighed for en obrvation i et interval = areal under kurven. Areal under kurven=. Høj værdi for en given x-værdi Mange obrvationer tæt ved denne værdi. Lille værdi for en given x-værdi Få obrvationer tæt ved denne værdi Forskellige normalfordelinger: Middelværdi=0 Spredning= Middelværdi= Spredning= Middelværdi=0 Spredning= Standard normalfordelingen µ = σ = Middelværdi Spredning 68.3% µ = σ = Middelværdi Spredning 95.45% 5.9% 5.9%.8%.8% µ σ µ µ + σ µ σ µ µ + σ Bland side 09 Bland side 09 µ = Middelværdi σ = Spredning µ.96 σ µ 95.00%.50%.50% Bland side 0 og Svend Juul side 3 µ +.96 σ 7 Tabel over standardnormalfordelingen 8 Bland side 09 z P( Z < z) z P( Z < z) z P( Z < z) % %.0 84.% % %. 86.4% % -0.8.%. 88.5% % % % % %.4 9.9% % % % % % % -.3.% % % -..4% % % -..8% %.9 97.% -.0.3% % % -.9.9% %. 98.% % %. 98.6% % % % % %.4 99.% % % % % % % % % % -..5% % % % % % %.0 84.% % 3
4 9 Sandsynlighed for mere end.96 spredninger fra middelværdi: i en normalfordeling! 5% ud af 0 obrvationer: Mere end.96 sd fra middelværdi standard deviation (spredning) 95% af obrvationerne fra en normalfordeling : middelværdi.96 sd obrvation middelværd i+.96 sd 0 Dvs. der er 95% chance for: obrvation -middelværdi sd Middelværdi ukendt, men sd kendt 95% sikkerhedsinterval for middelværdien: obrvation.96 sd middelværdi obrvatio n+.96 sd Baret på én obrvation! Bares det på basis af n obrvationer fås: gennemsnit.96 m middelværdi gennemsn it+.96 m 95% prædiktionsinterval for en obrvation sd m = Standard error of the mean n Tilbage til fødlsvægtene: Godt beskrevet ved en normalfordeling! Statistisk test Risikodifferenn for hoste blandt børn, der har/ikke har haft bronkitis n = 03 x = 3558g sd = 446g Et 95% prædiktionsinterval for fødlsvægten: 3558g ± g = ( 683; 443) g Konklusion: 95% af børn fra en tilsvarende population vil have en fødlsvægt mellem.7 og 4.4 kg. Risikodifferenn, RD, er ukendt! Men vi har et estimat : RD = RD = ( ) Spørgsmål: Er dis data forenelige med at RD=0.0? (Hypote) Dvs. ingen sammenhæng med bronkitis. Der gælder at estimatet, RD, er (næsten) normalfordelt med spredning==0.088 middelværdi RD Under hypoten er RD =0 Normalfordeling med: middelværdi 0 spredning==0.088 Vi har obrveret 0.053! 0.3%!! Vi har godt nok været uheldige! Det tror jeg ikke vi har! = Så må hypoten være forkert! Hypoten! Det afviger (noget) fra det forventede! Hvor stor er sandsynligheden for at obrvere en lige så stor eller større afvigel? Vi forkaster hypoten : Risikodifferenn er 0.5% 0.3% Hvad var nu det? Vi sammenlignede vores estimat (0.053) med hypoten 0. Som målestok brugte vi usikkerheden på estimatet: =0.088 Estimat Hypote RD RD = =.83 RD ( ) Usikkerheden på estimatet Dvs. estimatet ligger.83 er fra det forventede! Hvor ofte vil dette ske? Svar : Tabelopslag giver 0.6% = 0.3% Fra forrige side 4
5 Estimat: RD = Hypote: RD=0 Teststørel: z =.83 P-værdi: 0.6% Konklusion: Hvis hypoten er sand, så er der kun 0.6% chance for at få et estimat, der ligger så lige så langt eller længere væk fra hypoten end det vi har obrveret. Det er med andre ord næsten usandsynligt at obrvere det vi har t hvis hypoten er sand. Men vi har jo obrveret det vi har obrveret ergo må hypoten være falsk. Husk CI: (0.06;0.090) 0 ligger ikke i intervallet! Overensstemmel mellem test og sikkerhedsinterval! 5 Estimat: RD = Hypote: RD=0.05 Teststørel: z = 0.67 P-værdi: 86% = 43% Konklusion: z = ( ) = 0.67 Hvis hypoten var sand, så er der 86% chance for at få estimatet, der ligger så lige så langt eller længere væk fra hypoten end det vi har obrveret. Data strider således ikke mod hypoten. Hypoten kan akcepteres. På basis af dis data kan vi ikke afvi at risikoen for hoste er 5% højere for børn, der har haft bronkitis! Husk CI: (0.06;0.090) 0.05 ligger i intervallet! Overensstemmel mellem test og sikkerhedsinterval! 6 Generelt 7 Generelt 8 Lad θ betegne den ukendte størrel man ønsker at kende. Hvis man er interesret i differenn mellem to parametre: Den relevante statistiske analy bør bestå af beregning af to tal : ˆ θ og ˆ θ : ( ˆ θ ): ( ˆ θ ) Et estimat af (gæt på) θ Et estimat af (gæt på) usikkerheden af estimatet Et approksimativt 95% sikkerhedsinterval : ˆ θ ±.96 ( ˆ θ ) δ = θ θ så er estimatet: ˆ δ = ˆ θ ˆ θ Hvis to estimater ˆ θ og ˆ θ er uafhængige så er: ( ˆ δ ) = ( ˆ θ ) + e( θ ) s ˆ Formlerne for estimatet og afhænger af den statistiske model og kan være meget komplicerede. I langt de fleste tilfælde bruges computer programmer. HUSK! Relative størrelr som Odds Ratio, Relative Risiko og Rate Ratio skal analyres på log-skala (LN). Hoster om natten 9 Generelt: Et statistisk test 30 Total Data/estimat: ˆ θ med ( ˆ θ ) Hypote: θ = θ 0 ˆ θ θ Associationsmål relativ risiko Beregn: z = ( 0 B RR π + = ˆ B RR π ˆ θ ) + = = =.6385 π p-værdi = P B ˆ π B ( Z < z ) i standard normalfordeling ln ( RR ) = ln (.6385) = Approksimativ Konklusion: Hvis p-værdien er lille er data ikke forenelig med hypoten og hypoten må forkastes. ( ln ( RR )) = + = Oftes sættes grænn til 5% 95% CI(ln ( RR )): ± = ( ;.834) Bemærk: Man kan bruge en anden, når man tester, end 95% CI( RR ): ( exp ( ) ; exp(.834) ) = (.4; 3. 6) den man bruger til beregning af CI ( Bland afsnit 8.6). Formlerne kan findes på de sidste sider. Dette vil vi ikke gøre i dette kursus. 5
6 Få data dårlige approksimationer 3 Sikkerhedsintervaller og test. 3 Ekmpel, Streptomycin, Bland Table personer deraf har 3 fået det bedre Data kan antages at være binomial-fordelt. 3 ˆ π = = 0.867, ( πˆ ) = ( 0.867) 5 = Approks. 95% CI: ± = ( 0.695,.039) Dårlig approksimation! Ups! Eksakt/korrekt 95% CI (findes vha. af tabel eller computer) ( 0.594, 0.983) Morale: Hvis der er få eller mange hændelr, så er approksimationerne ikke gode! Men: For nogle modeller findes der eksakte metoder. 95%-sikkerhedsintervallet indeholder hypoten hvis og kun hvis p-værdien er større end 5%. Ved sammenligning af to parametre baret på to uafhængige data sæt, tre situationer: A: Intet overlap: B: Et estimat i det andet CI: Hverken A eller B: så p-værdi < 5% så p-værdi >5% så: p-værdi =? Risiko for hoste om natten Estimate CI ; ; Associationsmål i tabeller: Risiko differenr Status Population 0 Sandsynlighed a b n π 34 Risiko Differens ; c d n π Sammenligning af de to grupper: 0 ikke med i CI p= 0.6% < 5% 0.05 med i CI p= 86% > 5% De to sikkerhedsintervaller overlapper ikke p= 0.6% < 5% Risiko Differens: ˆ π a c = ˆ ( ˆi ) ˆi ( ˆi ) / ni n π = n π = π π RD = π π a c = = n n RD ˆ π ˆ π a b c d ( RD) = ( ˆ π) + ( ˆ π ) = n n Bland p 30 & Juul s 6 Ekmpel: Bland side 30 Hoster som 4 årig som 5 årig Total Obs. Risk RD = = ( ˆ π ) = ( ) / 73 = ( ˆ π ) = ( ) /046 = RD = = ( ) = + = % CI( RD ): ± = ( 0.068; ) 35 Associationsmål i tabeller: Relativ risiko Status Population 0 Relativ Risiko: RR = π π ˆ π a n RR = = ˆ π n c ( ln ( RR) ) = + a n c n Sandsynlighed a b n π c d n π Bland p 3 & Juul s
7 Ekmpel: Bland side 3 Hoster som 4 årig som 5 årig Total Obs. Risk RR = =.6385 ln ( RR) = ln (.6385) = ( ln ( RR )) = + = % CI(ln ( RR )): ± = ( ;.834) 95% CI( RR ): ( exp( );exp (.834) ) = (.4;3.6) 37 Associationsmål i tabeller: Odds ratio Status Population 0 Odds Ratio: π π π ( π ) OR = = π π ( π ) π ˆ π ˆ π a d OR = = ˆ π ˆ π b c ( ln ( OR) ) = a b c d Sandsynlighed a b n π c d n π 38 Bland p 40 & Juul s 6 Ekmpel: Bland side Sikkerhedsinterval for en enkelt rate 40 Hoster som 4 årig som 5 årig Total Odds Events Risikotid Rate Y T IR OR = = ln OR = ln.3978 = ( ) ( ) ( ln ( OR )) = = IR = Y T ( ln ( IR) ) = Y 95% CI(ln ( OR )): ± = ( ;.3787) 95% CI( OR ): ( exp( );exp (.3787) ) = (.45;3.97) Ekmpel: 4 Sammenligning af to rater: Rate ratio 4 Emigrations Antal nye Risikotid Rate alder tilfælde (år) (antal per år) <5 år Population Events Risikotid Rate Y T IR 4 IR = = / år 00000år ln ( IR ) = ln ( ) = ( ln ( IR )) = = % CI(ln ( IR )): ± = (.6330; ) 95% CI( IR): ( exp(.6330 );exp( ) ) = ( 0.8;.0 ) / 00000år Y T IR Incidence Rate Ratio IR IRR = IR IR Y T IRR = = IR T Y ( ln ( IRR) ) = Y + Y Juul s 64 7
8 Ekmpel: Emigrations Antal nye Risikotid Rate alder tilfælde (år) (antal per år) <5 år år IRR = = = ln IRR = ln = ( ) ( ) ( ln ( IRR )) = + = Sammenligning af to rater: Rate differens Population Events Risikotid Incidens Rate Differens Rate Y T IR Y T IR IRD = IR IR Y Y IRD = IR IR = T T 44 95% CI(ln ( IRR )): ± = ( ;.59630) 95% CI( IRR ): ( exp( );exp(.59630) ) = (.65;3.4) Y Y ( IRD) = + T T Juul s 64 Ekmpel: 45 Emigrations Antal nye Risikotid Rate alder tilfælde (år) (antal per år) <5 år år år 00000år IRD = ( ) / =.790/ 4 8 ( IRD ) = år år 4 8 = + / = / 00000år 00000år 95% CI( IRD ):.790± = (.8; 4.30 ) / 00000år 8
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.
Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte
Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,
Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts
Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader
Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala
3 5% 5% 5% 0 3 4 5 6 7 8 9 0 Statistik for biologer 005-6, modul 5: Normalfordelingen opstår når mange forskellige faktorer uafhængigt af hinanden bidrager med additiv variation til. F.eks. Højde af rekrutter
Statistik kommandoer i Stata opdateret 22/ Erik Parner
Statistik kommandoer i Stata opdateret 22/4 2008 Erik Parner Indledning... 1 Simple beskrivelser... 1 Data manipulation... 1 Estimation af proportioner... 2 Estimation af rater... 2 Estimation af Relativ
OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model
Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1
Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Morten Frydenberg 14. marts 2006
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen
OR stiger eksponentielt med forskellen i BMI. kompliceret model svær at forstå og analysere
Epidemiologi og biostatistik. Uge 5, torsdag 5. september 003 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver
Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm
Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik [email protected] Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april
Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts
Århus 19. marts 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 7: 23. marts Epibasic er nu opdateret til version 2.04 med arkene Str any og weighted Alle tabeller og tegninger
Morten Frydenberg Biostatistik version dato:
Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,
Produkt og marked - matematiske og statistiske metoder
Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring
Kursus i Epidemiologi og Biostatistik. Epidemiologiske mål. Studiedesign. Svend Juul
Kursus i Epidemiologi og Biostatistik Epidemiologiske mål Studiedesign Svend Juul 1 Pludselig uventet spædbarnsdød (vuggedød, Sudden Infant Death Syndrome, SIDS) Uventet dødsfald hos et rask spædbarn (8
Epidemiologiske associationsmål
Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, [email protected] Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 16. april 2015 l Dias nummer 1 Sidste gang
Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar
Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
9. Chi-i-anden test, case-control data, logistisk regression.
Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU [email protected], 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/
Morten Frydenberg Biostatistik version dato:
Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard
6. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag)
Institut for Epidemiologi og Socialmedicin Institut for Biostatistik. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag) Opgave 1 Læs afsnit.1 i An Introduction to Medical Statistics, specielt
Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo
Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens
Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve
Note om Monte Carlo metoden
Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at
24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion
. februar 00 Ikke parametrisk statistiske test : Ideen bag Epidemiologi og biostatistik. Uge, mandag. februar 00 Morten Frydenberg, Institut for Biostatistik. To grupper: Mann-Whitney / Wilcoxon testet
1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau...
Indhold 1 Statistisk inferens: Hypotese og test 2 1.1 Nulhypotese - alternativ.................................. 2 1.2 Teststatistik........................................ 3 1.3 P-værdi..........................................
Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/
Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial
Morten Frydenberg 26. april 2004
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.
Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Løsninger til kapitel 6
Opgave 6.1 a) 180 200 P ( X < 180) = Φ = Φ( = 0, 1587 b) 220 200 P ( X > 220) = Φ = Φ(1) = 0, 8413 c) 200 200 P ( X > 200) = 1 X < 200) = 1 Φ = ) = 1 0,5 = 0, 5 d) P ( X = 230) = 0 e) 180 200 P ( X 180)
Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau
Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation
Kapitel 4 Sandsynlighed og statistiske modeller
Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze [email protected] Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen
Epidemiologiske associationsmål
Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, [email protected] Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2016 l Dias nummer 1 Sidste gang
1 Sammenligning af 2 grupper Responsvariabel og forklarende variabel Afhængige/uafhængige stikprøver... 2
Indhold 1 Sammenligning af 2 grupper 2 1.1 Responsvariabel og forklarende variabel......................... 2 1.2 Afhængige/uafhængige stikprøver............................ 2 2 Sammenligning af 2 middelværdier
Epidemiologi og Biostatistik
Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag
Analyse af binære responsvariable
Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger
Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Besvarelse af opgavesættet ved Reeksamen forår 2008
Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie
Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136
Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man
Hyppigheds- og associationsmål. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011
Hyppigheds- og associationsmål Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011 Læringsmål Incidens Incidens rate Incidens proportion Prævalens proportion
Statistiske modeller
Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder
Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen
Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - [email protected] Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05
Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ
Epidemiologi og Biostatistik. Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002
Epidemiologi og Biostatistik Mogens Erlandsen, Institut for Biostatistik Uge 1, tirsdag d. 5. februar 2002 1 Statestik Det hedder det ikke! Statistik 2 Streptomycin til behandling af lunge-tuberkulose?
Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher
Kursus 02323: Introducerende Statistik Forelæsning 12: Forsøgsplanlægning Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Korrelation Pearson korrelationen
-9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen
Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)
Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up
Opgaver til kapitel 3
Opgaver til kapitel 3 3.1 En løber er interesseret i at undersøge om hendes løbeur er kalibreret korrekt. Hun udmåler derfor en strækning på præcis 1000 m og løber den 16 gange. For hver løbetur noterer
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]
Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele
Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om
