Buildings & Energy Paradoxes & Paradigms

Relaterede dokumenter
Buildings Energy Climate Change

Bygninger og energi Paradokser & paradigmer. Rob Marsh Seniorforsker Arkitekt MAA PhD SBi Energi & Miljø Aalborg Universitet

Bygninger, energi & klima i helhedsperspektiv. Rob Marsh, Seniorforsker Arkitekt MAA PhD SBi Energi & Miljø, Aalborg Universitet

Arkitektur, energi & klima i helhedsperspektiv. Rob Marsh, Seniorforsker Arkitekt MAA PhD SBi Energi & Miljø, Aalborg Universitet

Energy-saving potential A case study of the Danish building stock. Kim B. Wittchen Danish Building Research Institute, SBi AALBORG UNIVERSITY

The effects of occupant behaviour on energy consumption in buildings

Statistical information form the Danish EPC database - use for the building stock model in Denmark

TILFREDSHED: BLIVER BEBOERNE MERE TILFREDSE MED INDEKLIMAET I ENERGIEFFEKTIVE BOLIGER? H E N R I K N. K N U D S EN

Intelligent Glazed Facades

Udfordringer med indeklima ved energirenovering

Hvad skal nye materialer og løsninger kunne i fremtiden?

Udgangspunkt, ændring ift. BR10 og væsentlige problematikker

TMC - Klima

Procuring sustainable refurbishment

FORSKNINGSMÆSSIGE FOKUSOMÅDER MOD VENTILATION I NÆSTEN ENERGINEUTRALT BYGGERI PER HEISELBERG INSTITUT FOR BYGGERI OG ANLÆG

USERTEC USER PRACTICES, TECHNOLOGIES AND RESIDENTIAL ENERGY CONSUMPTION

netværk: : Integrerede lavenergiløsninger til nye bygninger

Implementation of the Building directive in Denmark. Contents. (from a layman in urban planning)

Svend Erik Mikkelsen, COWI

BRUGERADFÆRD EN OVERSET FAKTOR. Per Heiselberg Institut for Byggeri og Anlæg

85/15 Moving energy. forward. Charles Nielsen, Director R&D. Kystdirektoratet 28. november Fremtidens anvendelse af søterritortiet

Baltic Development Forum

SOLENERGIDAGEN 2005 Integration of Architectural Values in the Solar Cells of Tomorrow

Nye fjernvarmesystemer. Svend Svendsen DTU BYG

Supermarkeder og Smart Grid muligheder for fleksibelt elforbrug

Lavere U-værdier fører til øget energiforbrug! Intelligente glasfacader et eksperimentelt studium

Næste generation solvarme / 4. Generation Fjernvarme

USERTEC BRUGERPRAKSIS, TEKNOLOGI OG BOLIGERS ENERGIFORBRUG

Small Autonomous Devices in civil Engineering. Uses and requirements. By Peter H. Møller Rambøll

SiteCover Supplying fair weather for the construct ionindust ry

Fjerde Generation Fjernvarme

Active House. Fremtidens helhedsorienterede byggeri. Active House visionen - nye muligheder Bolig for livet fra vision til virkelighed

ELplus Beregn apparaters elforbrug - og Vask -besparelser i boliger tidligt i projekteringsfasen

En svær fødsel men nu sker det!!

Nye energikrav Kim B. Wittchen. Akademisk Arkitektforening og DANSKE ARK seminar 6. maj 2011

I hvilke tilfælde kan det betale sig at energirenovere parcelhuse? Ove Mørck

Methods to increase qualifications for energy savings in buildings

OVEROPHEDNING, BRUG AF KØLING OG AKTIV SOLAFSKÆRMNING -

BALANCERING AF FJERNVARME FOR ØGET OPTAG AF LAVTEMPERATUR OVERSKUDSVARME

Måling af bruttoenergiforbrug i nybyggeri svarende til BR2005 energikrav Projektresumé

LYS Temadag Kunstakademiets Arkitektskole 22. januar 2010 Ellen Kathrine Hansen, Arkitekt MAA, VKR Holding

Energibesparende tiltag i eksisterende bygninger. Kim B. Wittchen Statens Byggeforskningsinstitut, Energi og Miljø Aalborg Universitet

Challenges for the Future Greater Helsinki - North-European Metropolis

University Medical Center of Princeton David Bodnar Construction Management Senior Thesis

Bilag. Resume. Side 1 af 12

! " # $ % & ' ( ( ( ) * +

Møde Bygherreforeningen 25.juni 2010

l i n d a b presentation CMD 07 Business area Ventilation

Dagslys, dagslyskvaliteter og dagslysets betydning for brugere af bygninger og boliger

Beboeres tilfredshed og oplevelser i lavenergiboliger. Henrik N. Knudsen Statens Byggeforskningsinstitut, Aalborg Universitet

Can renewables meet the energy demand in heavy industries?

Brint og grønne brændstoffers rolle i fremtidens smarte energi systemer

mod en 2020-lavenergistrategi

PlanEnergi. Independent consultant Established in 1983 Specialised in:

Engelsby, Tøjhushaven, CD-RES

Ventilation. Du skal selv være med til at holde din lejlighed sund You are responsible too: keep your apartment healthy

RADIANCE WORKSHOP, October ROHIT MANUDHANE CHRISTOPH REINHART Harvard Graduate School of Design

Light and wellbeing in hospitals

Local Heating Concepts for Power Balancing

CASE - Energy renovation of buildings and 4.th Generation of District Heating

FBBB temamøde d. 4. Juni 2015, Odense

Indeklima i danske skoler og kontorer. Jørn Toftum

SDHplus Solar District Heating in Europe

Anvendelse af biomasse i scenarier for 100% vedvarende energi

FJERNVARME I FREMTIDEN?

Agenda. Hvad er Smart City og hvem er aktørerne? Udfordringer. Muligheder

GEOENERGI EN EFFEKTIV ENERGIRESSOURCE. Præsentation af Lars Hjortshøj Jacobsen ATES A/S ÈN KONCERN MED TRE FAGLIGE SPOR

Transition to Renewable Energy until in the EU, Denmark, and

Software til Energi-optimering. -Hvad vi fandt derude...

Global carbon cycle studies with LPJ-GUESS

Indoor Climate and Energy in Buildings. Claus Topp Team Director, NIRAS Indoor Climate, Energy and Installations in Buildings

News from the barn. by Nikolaj Stidsen and Michael Frederiksen. midtjysk svinerådgivning - vi flytter viden

IDA National energiplan Elsystemer

Energibesparelse og komfort. Servodan A/S, når naturens ressourcer skal udnyttes optimalt

Signe Kongebro. fokus på evidens og metodefrihed

Experiences of Region Zealand

I henhol til informationen givet i tryksagen Nationalt testcenter for vindmøller i Østerild Klitplantage fremsender undertegnede følgende forslag:

Brugerdreven innovation

Solid TYRES for your FORKLIFT TRUCKS

Energirenovering af boliger og indeklima

Integreres design af byggeri v. Birthe Møller Andersen

Fremtidens brugerinstallationer for fjernvarmen. Jan Eric Thorsen, Director DHS Application Centre and HEX research, Danfoss Heating

H2020 DiscardLess ( ) Lessons learnt. Chefkonsulent, seniorrådgiver Erling P. Larsen, DTU Aqua, Denmark,

FIRE DTU BYG. Performance -Based Design Fully-Developed Fires DTU

Intelligente Glasfacader - et eksperimentelt studium

ALLROUND 360 ONE 360 ONE SOFT SQUARY BLOCKY OWI TUBO EASY B75 EASY B100

Stratego, Scotland , november 17.

Hvad jeg vil sige. Brugerne er vigtige. Energi effektivisering er ikke det samme som energibesparelser

den energineutrale bolig - det selvforsynende hus

Climate adaptation in Denmarkand a groundwater dilemma

BEBOERNES HVERDAGSPRAKSIS, BOLIGRENOVERING OG ENERGIFORBRUG

Improving data services by creating a question database. Nanna Floor Clausen Danish Data Archives

GREEN KEY GREEN DREAMS

Sport for the elderly

Den tekniske vinkel på ejendomsprojekter

Effektiv udnyttelse af træ i energisystemet

KONTORLEJEMÅL I KREATIVT MILJØ Hillerødgade 30A, 1., 2200 København N Sag (AW)

Basic statistics for experimental medical researchers

Our activities. Dry sales market. The assortment

Omstilling af det danske energisystem til 100% vedvarende energi Scenarieanalyser i CEESA-projektet

Transkript:

Buildings & Energy Paradoxes & Paradigms Rob Marsh Senior Researcher Architect MAA PhD SBi Energy & Environment Danish Building Research Institute University of Aalborg

Past Present Future

Giv indeklimaet og økonomien et friskt pust Panasonic varmepumpe Luk op for varmen med en Panasonic varmepumpe, og nyd de fordele, det giver for hele familien. I får et sundt indeklima, varmebesparelser på op til 66% samt et miljøvenligt varmeanlæg, der er let at betjene. Varmepumpen kan også køle jeres bolig ned på varme sommerdage.

Past

Past: Existing building stock Total housing stock 1975-2005: Low population growth: + 7% Growing floor area: + 50% Falling heat consumption: - 20% Growing electricity use: + 70% Relativ ændring (1975 = 100 %) 250% 200% 150% 100% 50% 0% 1975 1985 1995 2005 Figur 1. Relativ ændring Samlet i befolkningstal befolkning, etageareal Samlet etageareal Samlet varmeforbrug Samlet elforbrug (Energistyrelsen, 2007).

Past: Existing building stock 250% Total office stock 1975-2005: Relativ ændring (1975 = 100 %) 200% Growing floor area: + 55% 150% Falling heat consumption: + 10% 100% Growing electricity use: + 160% 50% 0% 1975 1985 1995 2005 Figur 1. Relativ ændring Samlet i befolkningstal befolkning, etageareal Samlet etageareal Samlet varmeforbrug Samlet elforbrug (Energistyrelsen, 2007). Relativ ændring (1975 = 100 %) 250% 200% 150% 100% 50% 0% 1975 1985 1995 2005 Figur 3. Relativ Samlet ændring etageareal i etageareal og energiforbrug Samlet varmeforbrug Samlet elforbrug (Dansk Ejendomsmæglerforening, 2007; Sadolin &

Past: Existing building stock Relativ ændring (1975 = 100 %) 250% Total office stock 1975-2005: 200% Growing floor area: + 55% 150% Falling heat consumption: + 10% 100% Growing electricity use: + 160% 50% Relativ ændring (1975 = 100 %) 250% 200% 150% 100% 50% 0% 1975 1985 1995 2005 Figur 1. Relativ ændring Samlet i befolkningstal befolkning, etageareal Samlet etageareal Samlet varmeforbrug Samlet elforbrug (Energistyrelsen, 2007). 0% 1975 1985 1995 2005 Figur 3. Relativ Samlet ændring etageareal i etageareal og energiforbrug Samlet varmeforbrug Samlet elforbrug (Dansk Ejendomsmæglerforening, 2007; Sadolin &

Past: Existing building stock Falling/stable heat consumption: - Insulation of existing building fabric; window refurbishment - New heating system; change in heat supply - Improved energy regulations in Building Regulations

Past: Existing building stock Extreme growth in electricity consumption: - Growing ownership rates for electrical appliances - Growth in Knowledge Society, IT/multimedia og service sector - New buildings with high electricity usage to lighting, ventilation, cooling

Past: Typical new buildings through time New build housing 1975-2005: Falling heat consumption: - 60% Growing electricity use: + 10% Primærenergiforbrug kwh/m 2 200 150 100 50 0 1975 1985 1995 2005 Figur 2. Primærenergiforbrug Varmeforbrug nybyggede boliger Elforbrug

Past: Typical new buildings through time Primærenergiforbrug kwh/m 2 200 New build offices 1975-2005: 150 Falling heat consumption: - 60% Growing 100 electricity use: + 55% 50 0 1975 1985 1995 2005 Figur 2. Primærenergiforbrug Varmeforbrug nybyggede boliger Elforbrug Primærenergiforbrug kwh/m 2 200 150 100 50 0 1975 1985 1995 2005 Figur 4. Primærenergiforbrug Varmeforbrug for nybyggede kontorer Elforbrug

Past: Typical new buildings through time Primærenergiforbrug kwh/m 2 200 150 100 50 Primærenergiforbrug kwh/m 2 200 150 100 50 0 1975 1985 1995 2005 Figur 2. Primærenergiforbrug Varmeforbrug nybyggede boliger Elforbrug 0 1975 1985 1995 2005 Figur 4. Primærenergiforbrug Varmeforbrug for nybyggede kontorer Elforbrug Major transformation since 1970's oil crisis: - Improvements in energy regulations giving large heat savings - Growing electricity consumption has not been regulated

Paradox 1 Primary energy Primærenergiforbrug consumption Rising Stigende electricity elforbrug consumption Focus on space heating savings corresponds with Past Fortid Falling Faldende heat consumption varmeforbrug Present Nutid Rising electricity consumption

Paradox 1 Primary energy Primærenergiforbrug consumption Rising Stigende electricity elforbrug consumption Focus on space heating savings contributes to Past Fortid Falling Faldende heat consumption varmeforbrug Present Nutid Rising electricity consumption

Paradigm 1 Historical narrow focus on space heating from 1977 to 2006 Say: Energy savings Mean: Heat savings Primærenergiforbrug kwh/m 2 250 200 150 100 Everything else 50 0 1970's house Space heating

Paradigm 1 Focus on reducing space heating has created negative energy and indoor climatic consequences Primærenergiforbrug kwh/m 2 250 200 150 100 Everything else 50 0 1970's house Space heating

Low energy paradigm: Passive solar Concept developed i 1960-70's: - Mountainous zones with considerable sunshine in the winter - Large south-facing glazed areas to minimise heating Used in Denmark from 1970's despite different climate: - Cloudy or overcast sky for 80 % of daylight hours in the winter - Well known projects with documented summer overheating problems

Low energy paradigm: Passive solar - Narrow low energy paradigm with focus on space heating - Passive solar energy reduces space heating demand Opvarmningsbehov kwh/m 2 60 40 20 0 Syd: 10 % 40 % 70 % Nord: 70 % 40 % 10 % Facadens glasandel som procentdel af facadeareal Figur 5. Opvarmningsbehov og passiv solvarme for en typisk bolig beregnet i henhold til BR-S98.

Low energy paradigm: Passive solar - 60 Wider low energy paradigm with 40 focus on space heating Opvarmningsbehov kwh/m 2 and overheating/cooling 20 - No advantage from 0 Syd: passive 10 % solar 40 energy % 70 % Nord: 70 % 40 % 10 % Facadens glasandel som procentdel af facadeareal because of overheating Figur 5. Opvarmningsbehov og passiv solvarme Primærenergiforbrug kwh/m 2 60 40 20 0 Syd: 10 % 40 % 70 % Nord: 70 % 40 % 10 % Facadens glasandel som procentdel af facadeareal Overtemperatur Opvarmning

Low energy paradigm: Passive solar Opvarmningsbehov kwh/m 2 60 40 20 0 Syd: 10 % 40 % 70 % Nord: 70 % 40 % 10 % Facadens glasandel som procentdel af facadeareal Figur 5. Opvarmningsbehov og passiv solvarme for en typisk bolig beregnet i henhold til BR-S98. Primærenergiforbrug kwh/m 2 60 40 20 0 Syd: 10 % 40 % 70 % Nord: 70 % 40 % 10 % Facadens glasandel som procentdel af facadeareal Overtemperatur Opvarmning Same building; different low energy paradigms: - Narrow low energy paradigm creates invisible problems - Heat consumption replaced by electricity consumption

Low energy paradigm: Mechanical heat recovery ventilation Heat recovery efficiency: 65 % - 90 % Systems have a relatively high electricity consumption: - Deep buildings with internal rooms must be ventilated mechanically all year round - Always advertised by high heat recovery efficiency - Data on electricity consumption hidden

Low energy paradigm: Mechanical heat recovery ventilation - Narrow low energy paradigm with focus on space heating - Mechanical heat recovery reduces space heating demand Opvarmningsbehov kwh/m 2 60 40 20 0 Mekanisk Mekanisk Naturlig udsugning varme- ventilation genvinding Figur 7. Opvarmningsbehov og ventilationsløsning for en typisk bolig beregnet i henhold til BR-S98.

Low energy paradigm: Mechanical heat recovery ventilation - 60 Wider low energy paradigm Opvarmningsbehov kwh/m 2 with 40 focus on space heating and electricity to building services 20 - No difference between 0 natural ventilation and mechanical heat recovery Mekanisk Mekanisk Naturlig udsugning varme- ventilation genvinding Figur 7. Opvarmningsbehov og ventilationsløsning Primærenergiforbrug kwh/m 2 60 40 20 0 Mekanisk Mekanisk Naturlig udsugning varme- ventilation genvinding Figur 8. Primærenergiforbrug og ventilationsløsning Teknik Opvarmning

Low energy paradigm: Mechanical heat recovery ventilation Opvarmningsbehov kwh/m 2 60 40 20 0 Mekanisk Mekanisk Naturlig udsugning varme- ventilation genvinding Figur 7. Opvarmningsbehov og ventilationsløsning for en typisk bolig beregnet i henhold til BR-S98. Primærenergiforbrug kwh/m 2 60 40 20 0 Mekanisk Mekanisk Naturlig udsugning varme- ventilation genvinding Figur 8. Primærenergiforbrug og ventilationsløsning Teknik Opvarmning Same building; different low energy paradigms: - Narrow low energy paradigm creates invisible problems - Heat consumption replaced by electricity consumption - No energy saving from mechanical heat recovery (until 2010)

Low energy paradigm Low energy housing until 2006: Low energy? - No! - Low space heating demand - High electricity consumption - Overheating & high cooling demand - Same primary energy consumption as ordinary housing without specific heat saving strategies

Present

Present: Energy regulations Danish regulations 1977-2005: - Space heating demand Danish regulations 2006-: - Heating - Hot water - Cooling/overheating - Building services - Renewable energy production from solar thermal & PV - Weighted in relation to primary energy consumption: District heat/oil/gas: 1.0 Electricity: 2.5

Present: Primary energy factors District heating: Fjernvarmeforbrug: 1,00 kwh Electricity: Elforbrug: 1,00 kwh Distributionstab: 0,25 kwh Eksport: 0,33 kwh Distributionstab: 0,05 kwh Spildvarme: 0,46 kwh Eget forbrug: 0,08 kwh Import: 0,26 kwh Produktionstab: 1,44 kwh Primærenergiforbrug: 0,79 kwh Primærenergiforbrug: 2,64 kwh Figur 10. Anvendt primærenergi forbundet med Energy regulations : 1,00 Primary energy: 1,00 CO2 emissions: 1,00 Energy regulations: 2,50 Primary energy: 3,30 CO2 emissions: 4,20

Primary energy factors: Existing housing stock Heat consumption Electricity consumption 19 % 38 % 62 % 51 % 49 % 81 % Measured energy Primary energy CO2-emissions

Paradigm 2 Primary energy Primærenergiforbrug consumption Electricity Elforbrug: 70% % Heat 30% Varmeforbrug: 30 % Apparater: 40 % Belysning: 10 % Teknik: 10 % Overtemperatur: 10 % Varmt brugsvand: 10 % Opvarmning: 20 % Ikke omfattet af energibestemmelser: 50 % Not covered by energy Regs. 50 % Covered by Omfattet af energy energi- Regs. bestemmelser: 50 % 50% New buildings Nye energy bygningers consumption energiforbrug Focus on primary energy/co2 radically changes energy balance of buildings Focus of Energy Regulations covers less than half total primary energy consumption

Paradox 2 Current focus on Energy Regulations and Low Energy Classes for 2010 2015 2020 Primærenergiforbrug kwh/m 2 250 200 150 100 50 Everything else Building services Overheating/cooling Hot water 0 2000'ernes 2000's energ house Space heating

Paradox 2 Current focus on Energy Regulations and Low Energy Classes for 2010: 25 % reduction 2015: 50 % reduction 2020: 75 % reduction Primærenergiforbrug kwh/m 2 Everything else 2020'ernes 2020's lavene house Building services Overheating/cooling Hot water Space heating

Paradox 2 Current focus on Energy Regulations and Low Energy Classes for 2010: 25 % reduction 2015: 50 % reduction 2020: 75 % reduction Everything else expected to grow 25% because of increased electricity to IT/multimedia Actual saving in total primary energy = 30 % Primærenergiforbrug kwh/m 2 2020'ernes 2020's lavene house Everything else Building services Overheating/cooling Hot water Space heating

Future

Future: Low energy demonstration projects We have seen the future: - and it does not look good!

Future: Low energy demonstration projects Two projects aiming at LE2015 or Passive House standard: - Comfort House - Future Detatched House Afrapportering til Energiforskningsprogrammet 2007 Det Grønne Hus i samarbejde med SBi Erfaringsopfølgning på lavenergibyggeri klasse 1 og 2. - med "Fremtidens Parcelhuse" som eksempel Udarbejdet af: Lars Kristensen og Ole Michael Jensen (red.) Bidrag fra: Heidi Arvedsen (DGH), Niels Christian Bergsøe (SBi), Ole Michael Jensen (SBi), Henrik N. Knudsen (SBi), Jesper Kragh (SBi), Lars Kristensen (DGH), Tommy Olsen (DGH), Torben Valdbjørn Rasmussen (SBi) Vurdering af indeklimaet i hidtidigt lavenergibyggeri - med henblik på forbedringer i fremtidens lavenergibyggeri Tine Steen Larsen Udarbejdet for: Erhvervs- og byggestyrelsen DCE Contract Report No. 100 Institut for Byggeri og Anlæg

Future: Low energy demonstration projects Overall conclusions: - Too much overheating - Occupants use mini-coolers - Too much south-facing glass - No/fixed solar shading - Mechanical ventilation designed for winter, not summer - Not possible to use natural ventilation - Occupants cannot control indoor comfort - BMS cannot control building services Afrapportering til Energiforskningsprogrammet 2007 Det Grønne Hus i samarbejde med SBi Erfaringsopfølgning på lavenergibyggeri klasse 1 og 2. - med "Fremtidens Parcelhuse" som eksempel Udarbejdet af: Lars Kristensen og Ole Michael Jensen (red.) Bidrag fra: Heidi Arvedsen (DGH), Niels Christian Bergsøe (SBi), Ole Michael Jensen (SBi), Henrik N. Knudsen (SBi), Jesper Kragh (SBi), Lars Kristensen (DGH), Tommy Olsen (DGH), Torben Valdbjørn Rasmussen (SBi) Udarbejdet for: Erhvervs- og byggestyrelsen DCE Contract Report No. 100 Vurdering af indeklimaet i hidtidigt lavenergibyggeri - med henblik på forbedringer i fremtidens lavenergibyggeri Tine Steen Larsen Institut for Byggeri og Anlæg

Paradox 3 Primary energy Primærenergiforbrug consumption Rising Stigende cooling køling demand Falling Faldende space heating opvarmning demand Reduced space heating demand results in Rising cooling demand 6 Past Nutid Present Fremtid

Paradigm 3 Heat balance in new low energy buildings is radically different: - Heat savings - Growing electricity consumption - Larges glass facades - User demands - Climate change Summer conditions dominate; not winter

What is a low/zero-energy building? - Do we need wider demands to energy and indoor climate? How should passive and active solutions be balanced? - Regulative demand to building design and/or technologies? How can users and occupants control low/zero energy buildings? - Can we open the windows?