Models for Understanding versus Models for Prediction

Relaterede dokumenter
Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

Linear Programming ١ C H A P T E R 2

Basic statistics for experimental medical researchers

X M Y. What is mediation? Mediation analysis an introduction. Definition

DoodleBUGS (Hands-on)

Statistik for MPH: 7

CHAPTER 8: USING OBJECTS

Vina Nguyen HSSP July 13, 2008

Reexam questions in Statistics and Evidence-based medicine, august sem. Medis/Medicin, Modul 2.4.

A multimodel data assimilation framework for hydrology

The GAssist Pittsburgh Learning Classifier System. Dr. J. Bacardit, N. Krasnogor G53BIO - Bioinformatics

Barnets navn: Børnehave: Kommune: Barnets modersmål (kan være mere end et)

State sequence prediction in imprecise hidden Markov models

Exercise 6.14 Linearly independent vectors are also affinely independent.

Applications. Computational Linguistics: Jordan Boyd-Graber University of Maryland RL FOR MACHINE TRANSLATION. Slides adapted from Phillip Koehn

PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU

what is this all about? Introduction three-phase diode bridge rectifier input voltages input voltages, waveforms normalization of voltages voltages?

High-Performance Data Mining med SAS Enterprise Miner 14.1

Measuring the Impact of Bicycle Marketing Messages. Thomas Krag Mobility Advice Trafikdage i Aalborg,

Kvant Eksamen December timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer.

Byg din informationsarkitektur ud fra en velafprøvet forståelsesramme The Open Group Architecture Framework (TOGAF)

Privat-, statslig- eller regional institution m.v. Andet Added Bekaempelsesudfoerende: string No Label: Bekæmpelsesudførende

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )

PEMS RDE Workshop. AVL M.O.V.E Integrative Mobile Vehicle Evaluation

Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints

SCHOOL OF COMMUNICATION AND CULTURE AARHUS UNIVERSITY MARIANNE PING HUANG 12 APRIL 2018 DEVELOPMENT COORDINATOR

Molio specifications, development and challenges. ICIS DA 2019 Portland, Kim Streuli, Molio,

Introduction Ronny Bismark

Sport for the elderly

Basic Design Flow. Logic Design Logic synthesis Logic optimization Technology mapping Physical design. Floorplanning Placement Fabrication

Heuristics for Improving

Logistisk Regression - fortsat

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Kunstig intelligens. Thomas Bolander, Lektor, DTU Compute. Siri-kommissionen, 17. august Thomas Bolander, Siri-kommissionen, 17/8-16 p.

On the complexity of drawing trees nicely: corrigendum

Deep Learning og Computer Vision. C h r i s H o l m b e r g B a h n s e n

Differential Evolution (DE) "Biologically-inspired computing", T. Krink, EVALife Group, Univ. of Aarhus, Denmark

Studieordning del 3,

ECE 551: Digital System * Design & Synthesis Lecture Set 5

Children s velomobility how cycling children are made and sustained

Department of Public Health. Case-control design. Katrine Strandberg-Larsen Department of Public Health, Section of Social Medicine

Om InfinIT

v Motivation v Multi- Atlas Segmentation v Learn Dictionary v Apply Dictionary v Results

Slot diffusers. Slot diffusers LD-17, LD-18

CONNECTING PEOPLE AUTOMATION & IT

Dumped ammunition - an environmental problem for sediment management?

Solid TYRES for your FORKLIFT TRUCKS

Ikke-parametriske tests

Managing stakeholders on major projects. - Learnings from Odense Letbane. Benthe Vestergård Communication director Odense Letbane P/S

Challenges for the Future Greater Helsinki - North-European Metropolis

Financial Management -II

Handout 1: Eksamensspørgsmål

Mock-ups in Design. Infinit Interessegruppemøde CSC Scandihealth 20/ Lars Bo Larsen

2a. Conceptual Modeling Methods

Afgrænsning af miljøvurdering: hvordan får vi den rigtig? Chair: Lone Kørnøv MILJØVURDERINGSDAG 2012 Aalborg

DSB s egen rejse med ny DSB App. Rubathas Thirumathyam Principal Architect Mobile

ESG reporting meeting investors needs

Observation Processes:

Cross-Sectorial Collaboration between the Primary Sector, the Secondary Sector and the Research Communities

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Richter 2013 Presentation Mentor: Professor Evans Philosophy Department Taylor Henderson May 31, 2013

Det Teknisk-Naturvidenskabelige Fakultet Første Studieår AALBORG UNIVERSITET Arkitektur Og Design MATEMATIK OG FORM

Some recent improvements of the assimilation of upgraded ASAR L2 wave spectra

Help / Hjælp

CHATBOTS! DM Ditte Wolff-Jacobsen

GNSS/INS Product Design Cycle. Taking into account MEMS-based IMU sensors

Sommereksamen Bacheloruddannelsen i Medicin/Medicin med industriel specialisering

Den uddannede har viden om: Den uddannede kan:

Quantum Biochemistry. Jan H. Jensen Department of Chemistry University of Copenhagen. Slides can be found at: DOI: /m9.figshare.

Translational Cancer Research

.. ; a b px a; b x R N µ, Σ N x; µ, Σ exp πσ x µ Σ x µ R σx + e x if is true 0 otherwise σ σ σ R + 0 i,j i j I i i i diag. x t {0,,, K} N {x n, t n }

Multivariate Extremes and Dependence in Elliptical Distributions

Forventer du at afslutte uddannelsen/har du afsluttet/ denne sommer?

Pontryagin Approximations for Optimal Design of Elastic Structures

Kapitalstruktur i Danmark. M. Borberg og J. Motzfeldt

Statistical information form the Danish EPC database - use for the building stock model in Denmark

RoE timestamp and presentation time in past

Forventer du at afslutte uddannelsen/har du afsluttet/ denne sommer?

Besvarelse af vitcap -opgaven

Maskinsikkerhed Risikovurdering Del 2: Praktisk vejledning og metodeeksempler

Maskindirektivet og Remote Access. Arbejdstilsynet Dau konference 2015 Arbejdsmiljøfagligt Center Erik Lund Lauridsen

Skriftlig Eksamen Kombinatorik, Sandsynlighed og Randomiserede Algoritmer (DM528)

Sign variation, the Grassmannian, and total positivity

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A +

KA 4.2 Kvantitative Forskningsmetoder Forår 2010

Measuring Evolution of Populations

Financial Literacy among 5-7 years old children

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

Bilag 1 GPS dataudskrifter fra Stena Carisma ved passage af målefelt

mandag den 23. september 13 Konceptkommunikation

Medinddragelse af patienter i forskningsprocessen. Hanne Konradsen Lektor, Karolinska Institutet Stockholm

Aktivering af Survey funktionalitet

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov.

Embedded Software Memory Size Estimation using COSMIC: A Case Study

Challenges of the Open Source Component Marketplace in the Industry

Introduktion af beslutningskonferencer - Vurderinger af usikkerheder i beslutningsgrundlaget for samfundsøkonomiske analyser

WIO200A INSTALLATIONS MANUAL Rev Dato:

Unitel EDI MT940 June Based on: SWIFT Standards - Category 9 MT940 Customer Statement Message (January 2004)

Improving data services by creating a question database. Nanna Floor Clausen Danish Data Archives

Præsentation af projektet: Byg på sikkerhed styrket uddannelse af arbejdsmiljøkoordinatorer i de nordiske lande

Transkript:

Models for Understanding versus Models for Prediction by Gilbert SAPORTA 15.12.2016 Antoine Tordeux Forschungszentrum Jülich, Germany

Models for Understanding versus Models for Prediction COMPSTAT 2008, pp. 315 322 Opposition between two modelling approaches in statistic (and elsewhere) : 1. Model to understand : Parsimonious representation of data to identify underlying mechanisms which have produced it. 2. Model to predict : Model intentionally complex (very large degrees of freedom) that are assessed by its performances to predict new observations. Author : Gilbert Saporta University professor emeritus at the CNAM Research field : Statistic (famous statistician in France) Models : Understand or predict? Introduction Slide 2

Content Models for understanding Models for prediction Applications Models : Understand or predict? Introduction Slide 3

Content Models for understanding Models for prediction Applications Models : Understand or predict? Models for understanding Slide 4

Models for understanding Models for understanding : Identification of underlying mechanisms Insights in the nature of the phenomenon of interest Few parameters that should be interpretable Parsimony principle Occam s razor attributed to William of Ockham (1287 1347) Among competing hypotheses, the one with the fewest assumptions should be selected and also : Ptolemy (90 168) We consider it a good principle to explain the phenomena by the simplest hypothesis possible, Isaac Newton (1642 1727) We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances, Albert Einstein (1879 1955) Everything should be made as simple as possible, but not simpler,... Models : Understand or predict? Models for understanding Slide 5

Models for understanding : Examples Model f ( ) : y = f (x; θ) + ε y : Variable to explain/predict Dependent variable, regressand, output variable,... x : Explanatory variables Independent variable, regressor, input variable,... θ : Parameters of the model Variable to calibrate and interpret ε : Unexplained part Noise with amplitude σ Parameter calibration : Least-squares, likelihood-based, Bayes + Confidence interval Model choice : Information criteria (Akaike, AIC ; Bayesian, BIC) + Test Regression model, linear regression, principal component regression, partial least squares (PLS regression),... Models : Understand or predict? Models for understanding Slide 6

Models for understanding : Limit Difficulties with Big data Observation number n Concentration of the likelihood : Information criteria AIC = 2ln ( L n(ˆθ) ) + 2k or BIC =. 2 ln ( L n(ˆθ) ) + ln(n)k tend to select models with minimal number of parameters Everything is significant (CI = [ˆµ ± qˆσ/ n ] = {ˆµ}, cor = 0.01 significant,... ) Difficulties with nonlinear/nonmonotonic relationship Complex phenomena Correlation : Linear relationship / Least squares : optimal for linear models Non-linear transformations to be initially determined (task that can be difficult) George Box (1919 2013) Essentially, all models are wrong, but some are useful Models : Understand or predict? Models for understanding Slide 7

Models for understanding : Illustration

Content Models for understanding Models for prediction Applications Models : Understand or predict? Models for prediction Slide 9

Models for prediction Data mining : KDD, big data Gregory Piatetsky-Shapiro, 1980 A model is merely an algorithm coming more from the data than from a theory Thanks to high computational power of modern computers Focus is no more accurate estimation of parameter or adequacy on past observations but the predictive ability, i.e. capacity of making good predictions Black-box model Vladimir Vapnic, 2006 Same formulation y = f (x; θ) + ε but here f is a very complex (non-linear) function (f has in general no explicit definition) and the dimensions of x and θ are high AI : Auto-formulation and calibration of the model (automatic Bayesian approach, unsupervised classification, machine learning,... ) Models for prediction : Neural network (e.g. multilayer perceptrons), support vector machine, genetic algorithm, decision tree,... Models : Understand or predict? Models for prediction Slide 10

Can we open the black box of AI? Davide Castelvecchi, Nature 538, 20 23, 2016 Illustration by Simon Prades

Models for prediction : Theory Risk minimization L is a loss function, the risk R = E(L) is the expectation of the loss Empirical risk : R emp = 1 n i L( y i, f (x i ; θ) ) h(ln(2n/h)+1) ln(α/4) Vapnik s inequality : R < R emp + n with h the Vapnik Chervonenkis dimension (i.e. the cardinality of the largest set of points that the algorithm can shatter prediction ability). No distributional assumptions are necessary (only h << n) Selection of the model with minimal bound for R : Ratio h/n is of interest Increase of the complexity and prediction ability h as n increases Models : Understand or predict? Models for prediction Slide 12

Models for prediction : Practice Empirical model choice VC-dimension difficult to evaluate in practice Empirical approach : Trade-off between the fit and robustness of a model Repeat in a K-Bootstrap loop :. S k is the k-th bootstrap-sampling ; partition S k in two sub-samples Sk 1 and S2 k Sk 1 : Training set used to fit the models S 2 k : Validation set use to estimate prediction error E k (Cross-validation) Select model with minimal mean prediction error E = 1 K k E k Models : Understand or predict? Models for prediction Slide 13

Models for prediction : Illustration

Content Models for understanding Models for prediction Applications Models : Understand or predict? Applications Slide 15

Models to predict : Applications Big data (KDD, data mining,... ) Video analysis (perception, facial identification,... ) Game (Go game,... ) Modelling of the brain Reliability (decision tree,... ) Robotic and autonomous vehicle Web (optimization, social networks,... ) Bank/Insurance (marketing, customer relation, risk assessment, fraud detection,... )... Models : Understand or predict? Applications Slide 16

Applications : Autonomous vehicles Driving situations very varied / Driving process poorly structured (F. Saad, 1987) Defining an understandable model giving satisfying response in any situation is not possible (especially in urban/dense situations or for mixed flow) Autonomous driving is a typical application field for the models for prediction Motion planning of autonomous vehicles by machine learning actively developed since the 1990 s (currently extensively developed) Neural networks, genetic algorithm, simulated annealing,... Projects : Eureka (1985), Cybercar (1997), Darpa Challenges (2004 07), Google Car (since 2010), Tesla (since 2014), PROUD (2015), DELPHI (2016),... Models : Understand or predict? Applications Slide 17

Autonomous vehicles: Example (1) Premise work (Autonomous steering Stanford University, 1992) Neural networks learning based on video analysis Experiment : 2mn learning (120 obs) Autonomous steering in curved roads Models : Understand or predict? Applications Slide 18

Autonomous vehicles: Example (2) Recent work (End-to-End Deep Learning for Self-Driving Cars, Bojarski et al., 2016) Convolutional Neural Network learning based on video analysis DAVE-2 Project (DARPA Challenge) Neural network : 27 M connections and 250 000 parameters! Training phase CNN architecture Models : Understand or predict? Applications Slide 19