Logistisk regression og prædiktion
|
|
|
- Bjarne Olsen
- 9 år siden
- Visninger:
Transkript
1 Faculty of Health Sciences Introduktion Logistisk regression og prædiktion 16. Maj 2012 Julie Forman Biostatistisk Afdeling, Københavns Universitet Hvad er en god diagnostisk model? En model med god overensstemmelse mellem observerede og fittede værdier. En model der forklarer så meget som muligt af variationen i data. En model der kan prædiktere outcome med rimelig præcision. I praksis: Ikke så godt at glemme en vigtig risikofaktor eller overse en meget ikke-lineær effekt. 2 / 36 Fittede sandsynligheder Prædiktion i SAS De fittede (prædikterede) sandsynligheder for den logistiske regressions model er: ˆP i = exp(ˆα + ˆβ 1 x i1 + + ˆβ k x ik ) 1 + exp(ˆα + ˆβ 1 x i1 + + ˆβ k x ik ) ˆα, ˆβ 1,..., ˆβ k er parameterestimaterne. x i1,..., x ik er kovariaterne for den i te observation. NB: Optional output fra de fleste statistiske softwarepakker. 3 / 36 4 / 36
2 Eksempel: Menarke Eksempel: Menarke Prædikterede sandsynligheder: Obs age menarche _LEVEL_ estprob / 36 6 / 36 Brier score Som overordnet mål for goodness of fit, kan man udregne: Brier score(model) = 1 n n (Y i ˆP i ) 2 i=1 Denne skal sættes i forhold til den tilsvarende nul-score: Brier score(null model) = 1 n n (Y i Ȳ )2 Hvor Ȳ er frekvensen af cases i data. Nul-scoren er den totale variation i data svarerende til en model uden forklarende variable. i=1 Den forklarede variation i data bliver således: 7 / 36 R 2 = Brier score(null model) Brier score(model) Brier score(null model) Eksempel: Menarke Frekvens af menarke Ȳ = = Den totale variation (nul-score) er Brier score for modellen med alder er Alder forklarer R 2 = = 74.7% af variationen i data. 8 / 36
3 Prædiktiv modellering Prædiktion i SAS Ofte er selve formålet med den logistiske regression at udvikle en model til klassifikation/diagnosticering af nye individer. Dette kræver at modellen er tilpas god til at skelne cases fra non-cases ved at prædiktere hhv. høje og lave sandsynligheder for disse. Der findes særlige statistiske værktøjer til at evaluere om en logistisk regression en god prædiktionsmodel. 9 / / 36 Eksempel: Hypertension Sensitivitet og specificitet Kunne vi finde frem til mænd med hypertension udfra risikoforholdene snorken, fedme og rygning? Obs smoking obesity snoring n count estprob Ad hoc klassifikation: Prædikteret risiko 25%... Hvor af hhv. cases og non-cases klassificeres korrekt? Sensitiviteten er sandsynligheden for positiv diagnose blandt faktiske cases. 100% ved perfekt prædiktion. Kaldes også den sande positiv rate. Specificiteten er sandsynligheden for negativ diagnose blandt faktiske non-cases. 100% ved perfekt prædiktion Lig med 1 minus den falske positiv rate. 11 / / 36
4 Eksempel: Hypertension Eksempel: Hypertension Ad hoc klassifikationen "Prædikteret risiko 25%"selekterer 23 af de 79 cases og 51 af de 354 non-cases. Sensitivitet % Specificitet % Ville et andet skæringspunkt end 25% give en bedre diagnose? Varierende skæringpunkter ved 0%, 5%, dots 50%. Classification Table Correct Incorrect Percentages Prob Non- Non- Sensi- Speci- False False Level Event Event Event Event Correct tivity ficity POS NEG Bemærk trade-off mellem sensitiviteten og specificiteten. 13 / / 36 ROC kurven Area under the curve (AUC) Sensitivitet vs 1-specificitet for varierende risiko-skæringspunkt. Arealet under ROC kurven bruges som overordnet mål for goodness of fit / prædiktiv evne. AUC= 1 for en perfekt prædiktionsmodel AUC= 0.5 for en ubrugelig prædiktionsmodel (kunne ligeså godt slå plat og krone) Eksempel: AUC=0.617 for hypertensionsdata Det er selvfølgelig bedre bare at måle patientens blodtryk! Jo stejlere kurve desto bedre prædiktion. 15 / / 36
5 Konkordans AUC kan beregnes som: AUC = Antal (case,non-case)-par med ˆP case ˆP case Antal (case,non-case)-par i alt svarende til frekvensen af såkaldte konkordante observationspar. The LOGISTIC Procedure Association of Predicted Probabilities and Observed Responses Percent Concordant 97.7 Somers D Percent Discordant 2.3 Gamma Percent Tied 0.0 Tau-a Pairs c Prædiktion i SAS 17 / / 36 Prædikterede sandsynligheder i SAS ROC kurver i SAS Prædikterede sandsynligheder for de enkelte observationer gemmes i et datasæt, estimated med: PROC LOGISTIC DESCENDING DATA=mdata; MODEL menarche=age; OUTPUT OUT=estimated predicted=estprob; RUN; PROC PRINT DATA=estimated; RUN; Det er nemt at få tegnet ROC-kurven og udregnet AUC. ODS GRAHPICS ON; PROC LOGISTIC DESCENDING DATA=hypertension PLOTS=ROC(id=prob); CLASS snoring obesity smoking; MODEL count/n=snoring obesity smoking / CTABLE PPROB = (0 TO 1 BY 0.1) OUTROC = ROC; RUN; ODS GRAPHICS OFF; 19 / 36 Med SAS 9.2 eller nyere version. 20 / 36
6 Sammenligning af ROC kurver i SAS Flere ROC kurver samtidigt og test af forskel med: ODS GRAHPICS ON; PROC LOGISTIC DESCENDING DATA=ivf PLOTS=ROC; CLASS smoking; MODEL overstim = antral ovolume cyclelength fsh age bmi smoking; Prædiktion i SAS ROC All predictors antral ovolume cyclelength fsh age bmi smoking; ROC Antral follicles antral; ROCCONTRAST REFERENCE( All predictors ) / ESTIMATE; RUN; ODS GRAPHICS OFF; 21 / / 36 IVF: introduktion IVF: data Kvinder i IVF-behandling gennemgår hormonterapi hvorigennem folliklerne modnes og senere høstes. De fleste kvinder reagerer tilfredsstillende på standard hormon dosis, men et ikke ubetydeligt mindretal overstimuleres med medfølgende symptomer der i yderste konsekvens kan være livstruende. Vi ønsker derfor så vidt muligt at identificere de kvinder der er i risiko for overstimulering udfra den tilgængelige information. Freiesleben et al: Risk chart to identify low and excessive response among first cycle IVF patients, Reproductive BioMedicine Vol. 22, Data fra 276 kvinder i IVF behandling. Alle modtog standard dosis. 43 blev overstimuleret. Potentielle prædiktorer: Variabel N Mean Std Dev Minimum Maximum age bmi antral ovolume cyclelength fsh smoking / / 36
7 IVF: logistisk regression IVF: Potentielle prædiktionsmodeller Analysis of Maximum Likelihood Estimates Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept ANTRAL OVOLUME CYCLELENGTH FSH AGE BMI SMOKING Tilsyneladende flere væsentlige risikofaktorer. 25 / / 36 IVF: ROC analyse IVF: Estimeret risiko Er det nødvendigt at have alle faktorerne med? The LOGISTIC Procedure ROC Contrast Rows Estimation and Testing Results Standard 95% Wald Pr > Contrast Estimate Error Confidence Limits Chi-Square ChiSq Model - All predictors Antral - All predictors Ovolume - All predictors Cyclelength - All predictors FSH - All predictors <.0001 Age - All predictors <.0001 BMI - All predictors <.0001 Antrale follikler alene prædikterer stort set ligeså godt som alle variablene tilsammen (hvilket ikke er alt for godt). 27 / / 36
8 Prædiktion vs signifikans Regressionsanalyse med hypotese test og ROC-analyse kan give ret forskellige resultater. Det ses tit at en ny forklarende variabel der er stærkt signifikante i multipel logistisk regression, kun giver yderst beskedne forbedringer i prædiktiv evne (AUC) når den tilføjes til de kendte risikofaktorer. En insignifikant forklarende variabel kan omvendt godt være en god prædiktor (ses oftest i små datasæt). Prædiktion i SAS 29 / / 36 Overfitting Ekstern og intern validering Goodness of fit mål som Brier score og AUC favoriserer komplekse modeller (mange kovariater) fordi disse altid bedre vil kunne tilpasse sig de individuelle observationer i data. Men øget kompleksitet giver ikke nødvendigvis bedre præditioner. Pas på overfitting Ideelt set bør en prædiktionsmodel bedømmes på sin evne til at prædiktere nye observationer der ikke har været brugt til at udvikle modellen (i.e. estimere modelparametrene). I mangel af uafhængige testdata, kan det oprindelige datasæt deles op i et modellerings-datasæt og et testdatasæt. For at undgå snyd bør opsplitning, modellering og evaluering randomiseres og gentages et antal gange (fx ved bootstrap krydsvalidering). 31 / / 36
9 Andre prædiktionsmodeller Stepwise regression Logistisk regression er langt fra den eneste måde at konstruere prædiktionsmodeller på. Andre modeller: Desission trees, random forrests, neural nets, support vector machines etc. Nogle af disse modeller er udviklet til at kunne håndtere store mængder af information / mange forklarende variable fx i form af genetiske profiler. Mange software pakker (inklusiv SAS) har algortimer til automatisk selektion af variable til prædiktionsmodeller i form af stepwise regression (forward/ backwards elimination). Dette giver ikke nødvendigvis gode prædiktionsmodeller da variablene tilvælges og fravælges på baggrund af p-værdier, i.e. signifikans. Statistisk forskning viser at resultaterne af stepwise regression ofte er ustabile; Hvis man sletter nogle tilfældige valgte observationer i data, vælger algoritmen nogle helt andre variable ud! 33 / / 36 Her kan i få mere at vide Tak for idag Om basale begreber og logistisk regression: DG Altman: Practical Statistics for Medical Research, Chapman & Hall/CRC, (2nd edition, 1999). Eller en anden bog om basal biostatistik. Om SAS proc logistic support.sas.com Om prædiktion Ph.d.-kursus: Statistical evaluation of diagnostic and predictive models (Der er af og til ledige pladser... ) 35 / / 36
Simpel og multipel logistisk regression
Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende
Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008
Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet [email protected] www.biostat.ku.dk/~bxc
Løsning til opgave i logistisk regression
Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator
Opgavebesvarelse, logistisk regression
Opgavebesvarelse, logistisk regression Data ligger i rop.xls på kursushjemmesiden: http://staff.pubhealth.ku.dk/ jufo/courses/logistic/ Når du har gemt data på din computer, kan det indlæses i SAS med
MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes
Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression
Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende
Faculty of Health Sciences. Basal Statistik. Logistisk regression mm. Lene Theil Skovgaard. 5. marts 2018
Faculty of Health Sciences Basal Statistik Logistisk regression mm. Lene Theil Skovgaard 5. marts 2018 1 / 22 APPENDIX vedr. SPSS svarende til diverse slides: To-gange-to tabeller, s. 3 Plot af binære
Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.
1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S
Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed
En intro til radiologisk statistik
En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Løsning til øvelsesopgaver dag 4 spg 5-9
Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for
Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge
Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges
9. Chi-i-anden test, case-control data, logistisk regression.
Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU [email protected], 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/
Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable
Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Sammenhæng
Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??
Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,
MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes
Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration
Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: [email protected] Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion
Basal statistik. 30. januar 2007
Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet
Morten Frydenberg 26. april 2004
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie
Morten Frydenberg 14. marts 2006
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen
Logistisk Regression - fortsat
Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative
Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014
Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke
To samhørende variable
To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen
Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j
Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Kvantitative Metoder 1 - Forår 2007. Dagens program
Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative
Besvarelse af vitcap -opgaven
Besvarelse af -opgaven Spørgsmål 1 Indlæs data Dette gøres fra Analyst med File/Open, som sædvanlig. Spørgsmål 2 Beskriv fordelingen af vital capacity og i de 3 grupper ved hjælp af summary statistics.
Statistiske Modeller 1: Kontingenstabeller i SAS
Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.
Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)
Økonometri 1 Forår 2003 Ugeseddel 13 Program for øvelserne: Gruppearbejde Opsamling af gruppearbejdet og introduktion af SAS SAS-øvelser i computerkælderen Øvelsesopgave 6: Hvem består første årsprøve
Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.
Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i
Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:
1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14
Morten Frydenberg Biostatistik version dato:
Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard
Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013
Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.
Eksamen Bacheloruddannelsen i Medicin med industriel specialisering
Eksamen 2016 Titel på kursus: Uddannelse: Semester: Forsøgsdesign og metoder Bacheloruddannelsen i Medicin med industriel specialisering 6. semester Eksamensdato: 17-02-2015 Tid: kl. 09.00-11.00 Bedømmelsesform
En intro til radiologisk statistik. Erik Morre Pedersen
En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur
Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller
Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende
Introduktion til GLIMMIX
Introduktion til GLIMMIX Af Jens Dick-Nielsen [email protected] 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.
Postoperative komplikationer
Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model
Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H
Besvarelse af opgavesættet ved Reeksamen forår 2008
Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie
Besvarelse af juul2 -opgaven
Besvarelse af juul2 -opgaven Spørgsmål 1 Indlæs data Dette gøres fra Analyst med File/Open, som sædvanlig. Spørgsmål 2 Lav regressionsanalyser for hvert køn af igf1 vs. alder for præpubertale (Tanner stadium
Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model
Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ
Skriftlig eksamen Science statistik- ST501
SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.
Epidemiologi og Biostatistik
Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag
Regressionsanalyse i SAS
Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Inge Henningsen Afdeling for Anvendt Matematik og Statistik December 2006 Regressionsanalyse uden gentagelser Regressionsanalyse
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod
1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.
Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller
Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved
Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.
Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller
Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles
Lineær regression i SAS. Lineær regression i SAS p.1/20
Lineær regression i SAS Lineær regression i SAS p.1/20 Lineær regression i SAS Simpel lineær regression Grafisk modelkontrol Multipel lineær regression SAS-procedurer: PROC REG PROC GPLOT Lineær regression
Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning
1 Multipel regressions model Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning PSE (I17) ASTA - 11. lektion
Overlevelsesanalyse. Faculty of Health Sciences
Faculty of Health Sciences Overlevelsesanalyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Program Overlevelsesdata Kaplan-Meier estimatoren
Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og
Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)
Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger
Øvelser til basalkursus, 5. uge Opgavebesvarelse: Knogledensitet hos unge piger I alt 112 piger har fået målt knogledensitet (bone mineral density, bmd) i 11-års alderen (baseline værdi). Pigerne er herefter
Basal Statistik - SPSS
Faculty of Health Sciences Basal Statistik - SPSS Regressionsanalyse. Lene Theil Skovgaard 5. februar 2018 1 / 12 APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides Indlæsning og
Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne
Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: [email protected] http://math.ku.dk/ susanne 5. undervisningsuge, onsdag
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Introduktion til Visual Data Mining and Machine Learning
SAS USER FORUM Introduktion til Visual Data Mining and Machine Learning Astrid Enslev Vestergård, SAS Institute Agenda Introduktion til et par machine learningmodeller Case-introduktion Demo SWEDEN 2017
Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Opgavebesvarelse, Basalkursus, uge 3
Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt
Reeksamen i Statistik for Biokemikere 6. april 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på
Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1
Mikro-kursus i statistik 2. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er hypotesetestning? I sundhedsvidenskab:! Hypotesetestning = Test af nulhypotesen Hypotese-testning anvendes til at vurdere,
Eksamen i Statistik for Biokemikere, Blok januar 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for Biokemikere, Blok 2 2008 09 19. januar 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet
Note til styrkefunktionen
Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H
Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1
Basal Statistik Logistisk Regression Judith L. Jacobsen, PhD. Lene Theil Skovgaard http://staff.pubhealth.ku.dk/~lts/basal13_ [email protected] Dagens Tekst Logistisk regression Binære data Logit transformation
Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data
Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: [email protected] Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration
Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.
Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud
Logistisk regression. Statistik Kandidatuddannelsen i Folkesundhedsvidenskab
Logistis regression Statisti Kandidatuddannelsen i Folesundhedsvidensab Multipel logistis regression Antagelser: Binære observationer (Y i, i=,.,n) f.es Ja/Nej Høj/Lav Død/Levende Kodet: / 0 Y i uafhængige
Generelle lineære modeller
Generelle lineære modeller Regressionsmodeller med én uafhængig intervalskala variabel: Y en eller flere uafhængige variable: X 1,..,X k Den betingede fordeling af Y givet X 1,..,X k antages at være normal
Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge
Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2
