Markante sæsonudsving på boligmarkedet
|
|
|
- Magdalene Dahl
- 9 år siden
- Visninger:
Transkript
1 N O T A T Markante sæsonudsving på boligmarkedet 9. marts 0 Denne analyse estimerer effekten af de sæsonudsving, der præger prisudviklingen på boligmarkedet. Disse priseffekter kan være hensigtsmæssige at kvantificere, dels for at øge oplysningsniveauet for både købere og sælgere på markedet, og dels for at vide, hvor stor en del af aktuelle prisændringer på boligmarkedet, der kan tilskrives årstiderne og ikke realøkonomiske ændringer. Ved hjælp af en økonometrisk analyse estimeres den prisændring, der i hvert kvartal kan henføres til årstiden, og der korrigeres derfor for prisændringer, som skyldes øvrige forklaringsfaktorer som eksempelvis renten. Kontakt Morten Aastrup Direkte [email protected] De vigtigste konklusioner er : at priserne på både ejerlejligheder og parcel- og rækkehuse er under betydelig påvirkning af sæsoneffekter, når der korrigeres for effekter forårsaget af konjunkturer, renter og policyindgreb. at priserne på parcel- og rækkehuse - alt andet lige - stiger i omegnen af,5 pct. i første kvartal og pct. i andet kvartal. Ingen signifikante sæsonudsving i tredje og fjerde kvartal. at priserne på ejerlejligheder stiger i omegnen pct. i første kvartal og pct. i andet kvartal. Sæsoneffekten i. kvartal er på grænsen til at være signifikant positiv på pct., og der er en indikation af en negativ priseffekt på 0,5 pct. i fjerde kvartal. Store historiske udsving på boligmarkedet Boligpriserne har historisk set være præget af store udsving. På mellemlangt sigt (-5 år) har priserne været præget af kraftige stigninger og fald, mens de kortsigtede fluktuationer fra kvartal til kvartal også bidrager med betydelige udsving. På figur nedenfor fremgår udviklingen i priserne på parcel- og rækkehuse samt ejerlejligheder i perioden 99 og frem til i dag. Derudover fremgår BNP-væksten for at belyse den realøkonomiske sammenhæng.
2 Figur. Historisk udvikling i boligmarkedspriserne Indeks (000=00) Anm.: 99K 99K4 99K 994K 995K 995K4 996K 997K Boligmarkedsstatistikken(udgives af Finansrådet, Realkreditforeningen, Realkreditrådet og Dansk Ejendomsmæglerforening) og Danmarks Statistik. BNP-vækst (sæsonkorrigeret) BNP-vækstrater er år-til-år baseret på faste priser, mens boligpriserne er angivet i løbende priser. 998K 998K4 999K 000K 00K 00K4 00K 00K 004K 004K4 005K 006K 007K 007K4 008K 009K 00K 00K4 0K 0K Figuren viser blandt andet, at økonomiske højkonjunkturer er tæt forbundet med prisstigninger på boligmarkedet. Efterspørgslen på boligmarkedet er i høj grad et spejl af den aktuelle konjunktursituation, fordi beslutninger om at investere i en bolig i høj grad er bundet op på forventningerne til fremtiden, husholdningernes disponible indkomst, risikoen for at miste sit job osv. 8% 6% 4% % 0% -% -4% -6% -8% Side Figur. Kvartalvise ændringer i boligpriser 0% 8% 6% 4% % 0% -% -4% -6% -8% -0% 99K 99K 99K4 994K 995K Boligmarkedsstatistikken. For at belyse de kortsigtede effekter, er de kvartalsvise ændringer i procent opgjort i figur. 996K 996K4 997K 998K 999K 999K4 000K 00K 00K 00K4 00K 004K 005K 005K4 006K 007K 008K 008K4 009K 00K 0K 0K4 0K
3 Som det fremgår, er der betydelige udsving fra kvartal til kvartal i boligpriserne. Disse ændringer kan være forårsaget af mange forhold, herunder de realøkonomiske variable, som også antages at påvirke boligpriserne på mellemlangt sigt. Side Eksempelvis må det forventes, at en stigning i de disponible indkomster eller et fald i renten påvirker boligefterspørgslen med relativ kort forsinkelse. Derudover må det forventes, at der er en betydelig effekt af årstiderne. Dette kan skyldes, at husholdninger finder det mest belejligt at flytte på en bestemt tid af året. Dertil kommer effekter af ferier, studiestart osv. På figuren nedenfor ses de gennemsnitlige kvartalsvise vækstrater for boligpriserne gennem perioden Figur. Forskel på kvartalsvise vækstrater 4% % % % 0% -%. kvt.. kvt.. kvt. 4. kvt. Finansrådets boligmarkedsstatistik Estimation af simpel boligmarkedsmodel For at give et mere præcist bud på de sæsonbetingede effekter på boligpriserne opstilles en statistisk model, der adskiller årsagerne til boligprisændringerne i sæsonbetingede og realøkonomiske. På denne måde kan den isolerede sæsoneffekt identificeres. Nationalbanken har i en tidligere analyse udviklet en kompliceret model for udviklingen på boligmarkedet. Analysen har primært til formål at identificere de realøkonomiske faktorers bidrag til boligprisændringerne med særlig fokus på indførslen af afdragsfrihed og skattestop. Til det formål anvendes en kompliceret model med en lang række realøkonomiske variable (herunder usercost, førsteårsydelse, disponibel indkomst, demografi mv.). Dette har til formål at kontrollere bedst muligt for alle effekter for herved at kunne identificere effekten af de politiske indgreb. Se Udviklingen på ejerboligmarkedet i de senere år Kan boligpriserne forklares?, Nationalbanken, Kvartalsoversigt. kvartal 0 del.
4 I denne analyse tages der udgangspunkt i den samme metodik, men i en mere forsimplet form. Årsagen er, at et mindre sæt af kontrolvariable vil være tilstrækkeligt til at give et fornuftigt skøn over sæsoneffekterne, som er denne analyses primære fokus. Derudover er Nationalbankens model baseret på reale boligpriser, hvor denne model beskæftiger sig med de nominelle boligpriser. Årsagen hertil er, at vi er interesseret i netop at undersøge prisudsvingene i sæsonerne. En inflationskorrektion ville skævvride sæsoneffekterne, hvorfor dette er udeladt. Det understreges derfor, at sæsoneffekterne er inklusive den generelle inflation. Side 4 Selve modelrammen er nærmere beskrevet i boks. Boks. Modelramme til brug i estimation Den estimerede model tager udgangspunkt i følgende: P i, t Realøkonom7 iske 4effekter Sæson7 effekter = β + P + β user + β ydelse + β bnp + α K + α K + α K + ε 0 i, t t hvor P i,t angiver kvadratmeterpriser for boligtypen i (parcel- og rækkerhuse eller ejerlejligheder) til tiden t. Variablen user dækker over de brugeromkostninger, der er forbundet ved boliginvesteringen, mens ydelse dækker over den laveste aktuelle førsteårsydelse, hvor der tages højde for variable renter og afdragsfrihed. Begge variable er angivet i kvartalsvise ændringer. For at samle konjunktureffekter indgår variablen BNP, som er den sæsonkorrigerede bnp-vækst fra kvartal til kvartal. Disse tre realøkonomiske variable udvælges hver især efter mest signifikante lag. Derudover indgår tre dummyvariable (K, K og K ) som fanger sæsonudsving. Sæsonudsvinget i fjerde kvartal vil repræsenteres af konstanten β 0. Den isolerede effekt i de tre første kvartaler vil derfor være parameterestimaterne tillagt konstanten. Modellen tager form, således at den beskriver kortsigtsdynamikken for boligpriserne. Alternativt kunne man have udformet modellen ved en VAR-model, hvilken i højere grad ville tage hensyn til ligevægtstilpasningen. Alle modeller estimeres med robuste Newey-West fejlled, ε t. I modellen indgår en række kontrolvariable, som har til formål at fange de boligpriseffekter, som er forårsaget af enten makroøkonomiske stød (eksempelvis en renteændring) og forskellige policy-tiltag (eksempelvis afdragsfrihed og boligskatter). Nationalbanken har i deres boligmarkedsmodel anvendt variablene usercost og førsteårsydelse. Dataserierne er venligst stillet til rådighed i denne analyse. Begge variable forventes at påvirke boligpriserne negativt, idet de begge er udtryk for de procentvise omkostninger ved at investere i en bolig. Dertil kommer BNP-væksten, som dækker mere bredt over konjunktursituationen. Konjunkturerne forventes at påvirke prisændringerne positivt via efterspørgselseffekterne. Se detaljeret beskrivelse i Nationalbanken (0).
5 Idet variablene ovenfor fanger de væsentligste årsager til prisændringerne på boligmarkedet, er det resterende sæt af dummyvariable i stand til at isolere sæsoneffekterne på boligmarkedet. Side 5 I tabel nedenfor ses de væsentligste estimationsresultater i modelleringen af prisændringerne på markedet for parcel- og rækkehuse. Tabel. Modellering af boligpriserne Forklaret variabel P parcel- og rækkehuse P t Førsteårsydelse (lag ) Usercost (lag ) BNP-vækst (lag ) K K K Konstant [] [] [] [4] ,67 *** (0,09) -,6 ** - - -,0 *** (0,7) (0,7) - -,97 * - - (,9) - - 0,49 ** - (0,4),48 *,66 **,78 **,8 ** (0,86) (0,84) (0,8) (0,6),8 ***,00 ***,0 ***,66 *** (0,74) (0,74) (0,76) (0,6) 0, 0,7 0,7 -,89 *** (0,7) (0,7) (0,7) (0,6) 0,0 0,0-0,4-0,07 (0,56) (0,55) (0,6) (0,44) Observationer R 0,5 0,4 0,7 0,59 Finansrådets beregninger på baggrund af data fra Boligmarkedsstatistikken, Danmarks Statistik og Nationabanken. Anm.: Estimationerne er foretaget over perioden Symbolerne *, ** og *** angiver signifikansniveauer på hhv. 0, 5 og pct. Modellerne testes først (i model [] til []) med de respektive kontrolvariable hver for sig. Dette skyldes, at disse variable er korrigeret indbyrdes, og der opstår derfor multikolinearitet, hvilket forstyrrer fortolkningen af parameterestimaterne. Resultaterne viser, at BNP-væksten påvirker prisdannelsen med forventet positivt fortegn, mens de to variable for omkostningerne usercost og førsteårsydelsen som forventet påvirker prisen negativt. Kvartalsdummyerne viser, at der for alle modellerne er signifikante positive sæsoneffekter i kvartal og. Ligeledes står det klart, sæsoneffekten i andet kvartal er næsten dobbelt så stor som i første kvartal. Det vil altså sige, at kvadratmeterprisen på parcel- og rækkehuse - alt andet lige - stiger med,5 pct. i første kvartal pct. i andet kvartal. Dette er vel at mærke, når man korrigerer for de realøkonomiske effekter, der er forårsaget af rente-, policy- og konjunkturændringer. Baseret på gennemsnittet af parameterestimaterne i model [] til [].
6 Sæsoneffekterne i tredje og fjerde kvartal er ikke signifikant forskellige fra 0, men det indikeres, at prisændringerne generelt større i tredje end fjerde kvartal. Side 6 I model [4] er robustheden af modellen testet ved at inddrage den laggede værdi af prisændringen. Den endelige model er estimeret ud fra en generalto-specific metode, hvor insignifikante lags frasorteres successivt. De tre realøkonomiske variable bliver ikke signifikante i samme model, på grund af den høje grad af samvariation (renten eksempelvis en del af førsteårsydelsen og usercost, ligesom den er naturlig forbundet med BNP). Parameterestimaterne er robuste over for dette, og modellens forklaringsgrad styrkes markant. Inddragelsen af den laggede prisændring gør dog, at man ikke kan fortolke sæsoneffekter direkte af parameterestimaterne på kvartalsdummyerne. Dette skyldes, at K nu indgår implicet i udtrykket for prisændringen i K via sin repræsentation i den laggede prisændring. Kvartalsdummyerne er robuste over for inddragelsen, da de holder det relative niveau over for hinanden, man måtte forvente 4. Tabel. Modellering af boligpriserne Forklaret variabel P ejerlejligheder P t Førsteårsydelse (lag ) Usercost (lag ) BNP-vækst (lag 0) K K K Konstant [] [] [] [4] ,69 *** (0,0) -,67 ** - - -,04 ** (,0) (0,80) - -,65 ** - - (,4) - - 0,70 ** - (0,9),46 ***,7 **,50 ***,4 *** (0,9) (0,96) (0,9) (0,64),4 ***,6 ***,5 ***,9 *** (0,84) (0,87) (0,8) (0,77),4,79 *,56 0,4 (0,97) (0,9) (0,98) (0,79) -0,5-0,56-0,70 -,6 (0,6) (0,66) (0,68) (0,5) Observationer R 0,4 0,4 0,4 0,60 Finansrådets beregninger på baggrund af data fra Boligmarkedsstatistikken, Danmarks Statistik og Nationabanken. Anm.: Estimationerne er foretaget over perioden Symbolerne *, ** og *** angiver signifikansniveauer på hhv. 0, 5 og pct. 4 Dummyerne i model 4 kan tolkes som springet i sæsoneffekterne sammenlignet med kvartalet før. K er derfor steget, fordi sæsoneffekten er relativ stor i forhold til K 4. Parameterestimaterne bekræfter de relative forhold mellem sæson-effekterne, som model []-[] illustrerer. 5 I denne model indgår. lag af førsteårsydelsen.
7 I tabel er en tilsvarende estimation foretaget på prisændringerne for ejerlejligheder. Side 7 Det samme mønster gør sig gældende i modelleringen af prisændringerne for ejerlejligheder. Sæsoneffekterne fordeler sig dog en smule anderledes i forhold til hinanden, end hvad der var tilfældet for parcel- og rækkehuse. Sæsoneffekten i andet kvartal er stadig den mest markante liggende på ca. pct., og effekten i andet kvartal er på næsten pct. Derudover bemærkes det, at sæson effekten i tredje kvartal er på grænsen til at være signifikant med en værdi i omegnen af pct. Der er ikke nogen signifikant effekt i fjerde kvartal, men en indikation af en negativ sæsoneffekt på 0,5 pct. Opsummering Resultaterne i ovenstående estimationer giver en god indikation af omfanget og signifikansen af sæsoneffekterne på boligmarkedet. Effekterne er opsummeret i figur 4 nedenfor. Figur. Opsummering af sæsoneffekter på boligmarkedet Sæson-effekt (pct.) 4 Signifikant Insignifikant 0 -. kvartal. kvartal. kvartal 4. kvartal Anm.: Boligmarkedsstatistikken, Nationalbanken, Danmarks Statistik samt egne beregninger. Sæsoneffekten for. kvartal og ejerlejligheder er angivet som signifikant, fordi parameterestimaterne har et signifikansniveau i omegnen af 0 pct. Helt overordnet viser estimationen, at sæsoneffekterne er mest iøjefaldende i. og. kvartal, med sidstnævnte størst i omfang. Det bemærkes, at priseffekterne er estimeret ud fra de nominelle boligpriser, og de må derfor forventes at indeholde en del af den generelle inflation. Effekterne giver dog en god indikation af de relative prisstigninger for hvert kvartal, som er betinget af den pågældende årstid.
Københavnske ejerlejlighedspriser en meget begrænset indikator for hele landets boligmarked
N O T A T Københavnske ejerlejlighedspriser en meget begrænset indikator for hele landets boligmarked Baggrund og resume Efter i årevis at have rapporteret om et fastfrosset boligmarked, har de danske
Rentefølsomhed og lånefordelingen - Parcelhuse vs ejerlejligheder og København vs Aarhus
15. april 2016 Rentefølsomhed og lånefordelingen - Parcelhuse vs ejerlejligheder og København vs Aarhus Priserne på ejerlejligheder er som bekendt steget væsentligt mere end på resten af boligmarkedet
EFFEKTER PÅ DANSK ØKONOMI VED BOLIGPRISFALD
27. marts 2006 af Martin Windelin direkte tlf. 33557720 og Frederik I. Pedersen direkte tlf. 33557712 EFFEKTER PÅ DANSK ØKONOMI VED BOLIGPRISFALD Hvis boligpriserne over de kommende syv år falder nominelt
Kapitalisering af grundskylden i enfamiliehuse
Mads Rahbek Jørgensen Anne Kristine Høj Kapitalisering af grundskylden i enfamiliehuse I dette notat redegøres for resultaterne af estimationen af kapitaliseringen af grundskylden i ejendomspriserne som
Indkomster i de sociale klasser i 2012
Indkomster i de sociale klasser i 2012 Denne analyse er den del af baggrundsanalyserne til bogen Klassekamp fra oven. Analysen beskriver indkomstforskellene i de fem sociale klasser og udviklingen i indkomster
Gældsudgifter i husholdninger med udløb af afdragsfrihed og høj belåningsgrad
Et stigende antal husholdninger skal i perioden fra 2013 påbegynde afdrag på deres realkreditgæld eller omlægge til et nyt lån med afdragsfrihed. En omlægning af hele realkreditgælden til et nyt afdragsfrit
Bachelorafhandling.. En!teoretisk!og!empirisk!analyse!af!boligmarkedet!
AARHUS UNIVERSITY BUSINESS & SOCIAL SCIENCES DEPARTMENT OF ECONOMICS & BUSINESS HATop'up HOLD41'SUPL Bachelorafhandling.. Enteoretiskogempiriskanalyseafboligmarkedet Studerende: SteffenMøllerMellerup Studienummer:201400104
Demografi giver medvind til københavnske huspriser
2. januar 2012 Demografi giver medvind til københavnske huspriser Københavnsområdet har gennem en årrække oplevet, at flere og flere danskere har fundet det attraktivt at bosætte sig her set i forhold
Voldsom stigning i gruppen af meget fattige danskere
Voldsom stigning i gruppen af meget fattige danskere Antallet af personer, der er meget fattige og har en indkomst på under pct. af fattigdomsgrænsen, er steget markant, og der er nu 106.000 personer med
Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere
DET ØKONOMISKE RÅD S E K R E T A R I A T E T d. 20. maj 2005 SG Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere Baggrundsnotat vedr. Dansk Økonomi, forår 2005, kapitel
Stor prisforvirring på boligmarkedet under finanskrisen
N O T A T Stor prisforvirring på boligmarkedet under finanskrisen Med introduktionen af den nye boligmarkedsstatistik fra Realkreditforeningen og tre andre organisationer er en række interessante tal blevet
Klar sammenhæng mellem børns og forældres livsindkomst
Klar sammenhæng mellem børns og forældres livsindkomst Der er stor forskel på størrelsen af den livsindkomst, som 3-årige danskere kan se frem til, og livsindkomsten hænger nøje sammen med forældrenes
SAMFUNDSØKONOMISK AFKAST AF UDDANNELSE
20. juni 2005 Af Mikkel Baadsgaard, direkte tlf.: 33557721 Resumé: SAMFUNDSØKONOMISK AFKAST AF UDDANNELSE Investeringer i uddannelse er både for den enkelte og for samfundet en god investering. Det skyldes
Sundhedstilstand for forskellige befolkningsgrupper I dette afsnit er befolkningens sundhedstilstand
Kapitel 7. Social ulighed i sundhed Den sociale ulighed i befolkningens sundhedstilstand viser sig blandt andet ved, at ufaglærte i alderen 25-64 år har et årligt medicinforbrug på 2.2 kr., mens personer
Analyse. Kontanthjælpsreformen har fået flere unge i uddannelse eller beskæftigelse men forbliver de der? 29. april 2015
Analyse 29. april 215 Kontanthjælpsreformen har fået flere unge i uddannelse eller beskæftigelse men forbliver de der? Af Kristian Thor Jakobsen og Katrine Marie Tofthøj Kontanthjælpsreformen, der blev
Figur 1. Udviklingen i boligpriserne ifølge AEs prognose, oktober 2008. Danmarks Statistik enfamilieshuse
6. oktober 2008 Jeppe Druedahl, Martin Madsen og Frederik I. Pedersen (33 55 77 12) Resumé: AERÅDETS PROGNOSE FOR BOLIGMARKEDET, OKTOBER 2008: BOLIGPRISFALD VIL PRESSE VÆKST OG BESKÆFIGELSE Priserne på
N O T A T. Antallet af bankfilialer i Danmark falder i takt med at flere og flere danskere anvender bankernes digitale løsninger.
N O T A T Filial eller netbank 24. oktober 2013 Antallet af bankfilialer i Danmark falder i takt med at flere og flere danskere anvender bankernes digitale løsninger. Ved seneste opgørelse i 2012 brugte
Syddanmark 2007 2011. Monitorering og effektmåling Strukturfondsindsatsen i
Monitorering og effektmåling Strukturfondsindsatsen i Syddanmark 2007 Design og kreative erhverv Energieffektivisering Offshore Sundheds- og velfærdsinnovation Turisme Brede indsatser DEN EUROPÆISKE UNION
Stor ulighed blandt pensionister
Formuerne blandt pensionisterne er meget skævt fordelt. Indregnes de forbrugsmuligheder, som formuerne giver i indkomsten, så er uligheden blandt pensionister markant større end uligheden blandt de erhvervsaktive.
Notat. Notat om produktivitet og lange videregående uddannelser. Martin Junge. Oktober
Notat Oktober Notat om produktivitet og lange videregående uddannelser Martin Junge Oktober 21 Notat om produktivitet og lange videregående uddannelser Notat om produktivitet og lange videregående uddannelser
Bilag 5: Økonometriske analyser af energispareindsatsens. (Cointegration) Energistyrelsen. Marts 2015
Marts 2015 Bilag 5: Økonometriske analyser af energispareindsatsens nettoeffekt (Cointegration) Indholdsfortegnelse 1. Cointegrationsanalyse 3 Introduktion til anvendte cointegrationsmodel og data 3 Enhedsrodstest
ANALYSE: Aktuelle boligpriser ryster ikke den finansielle stabilitet
ANALYSE: Aktuelle boligpriser ryster ikke den finansielle stabilitet De lave renter har løftet boligpriserne, men der er ikke tegn på en dansk boligboble. En stigning i renterne må dog ventes at medføre
Forældrekøb giv dit barn en god studiestart
22. juli 2008 Forældrekøb giv dit barn en god studiestart Snart kommer det længe ventede brev ind af postsprækken hos de mange unge, der har søgt ind på en videregående uddannelse, og dermed skydes højsæsonen
Markante forskelle i den stigende fattigdom i Nordsjælland
Markante forskelle i den stigende fattigdom i Nordsjælland Både fattigdommen og antallet af fattige børn i Danmark stiger år efter år, og særligt yderkantsområderne er hårdt ramt. Zoomer man ind på Nordsjælland,
SUPPLEMENT TIL EVALUERING AF DE NATIONALE TEST RAPPORT
Til Undervisningsministeriet (Kvalitets- og Tilsynsstyrelsen) Dokumenttype Rapport Dato August 2014 SUPPLEMENT TIL EVALUERING AF DE NATIONALE TEST RAPPORT NATIONALE TEST RAPPORT INDHOLD 1. Indledning og
Om boligpriserne. Danmarks Statistik MODELGRUPPEN Dan Knudsen. Arbejdspapir* 12. februar 2009
Danmarks Statistik MODELGRUPPEN Dan Knudsen Arbejdspapir* 12. februar 2009 Om boligpriserne Resumé: ADAM s boligprisindeks er Danmarks Statistiks prisindeks for 1-familiehuse. Indekset afspejler prisudviklingen
TEST AF KOINTEGRATION MELLEM VERDENSMARKEDET OG DANMARK, SAMT MELLEM RÅVARER
TEST AF KOINTEGRATION MELLEM VERDENSMARKEDET OG DANMARK, SAMT MELLEM RÅVARER NOTAT NR. 1512 Analyse af svinepriser og råvarepriser viser ingen sammenhæng mellem input og output for de danske svineproducenter.
Boligudvalget BOU alm. del - Svar på Spørgsmål 46 Offentligt
Boligudvalget BOU alm. del - Svar på Spørgsmål 46 Offentligt Socialministeriet ØSK-bolig J.nr. 5215-5 avr 23. juni 2006 Notat om Sammenligning af boligomkostninger mellem boligtyperne til brug for besvarelsen
Tidsseriemodeller for bilpark og årskørsel per bil
Tidsseriemodeller for bilpark og årskørsel per bil Mogens Fosgerau Danmarks TransportForskning [email protected] 1 Indledning Dette papir omhandler en del af en aggregeret prognosemodel for dansk vejtrafik, kaldet
Store gevinster af at uddanne de tabte unge
Store gevinster af at uddanne de tabte unge Gennem de senere år har der været stor diskussion om, hvor stor gevinsten vil være ved at uddanne den gruppe af unge, som i dag ikke får en uddannelse. Nye studier
Stor gevinst ved arbejde for LO-par
Fakta om økonomi Stor gevinst ved arbejde for LO-par En lavtlønnet LO-familie, der bor til leje med tre, har en gevinst ved at være i arbejde på næsten 6. kr. om måneden sammenlignet med en situation,
