Audio Power Amplifier Techniques With Energy Efficient Power Conversion



Relaterede dokumenter
PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU

ECE 551: Digital System * Design & Synthesis Lecture Set 5

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Project Step 7. Behavioral modeling of a dual ported register set. 1/8/ L11 Project Step 5 Copyright Joanne DeGroat, ECE, OSU 1

Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Small Autonomous Devices in civil Engineering. Uses and requirements. By Peter H. Møller Rambøll

Basic Design Flow. Logic Design Logic synthesis Logic optimization Technology mapping Physical design. Floorplanning Placement Fabrication

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

CONNECTING PEOPLE AUTOMATION & IT

Gusset Plate Connections in Tension

GAMPIX: a new generation of gamma camera for hot spot localisation

Central Statistical Agency.

Privat-, statslig- eller regional institution m.v. Andet Added Bekaempelsesudfoerende: string No Label: Bekæmpelsesudførende

Byg din informationsarkitektur ud fra en velafprøvet forståelsesramme The Open Group Architecture Framework (TOGAF)

Learnings from the implementation of Epic

ME6212. High Speed LDO Regulators, High PSRR, Low noise, ME6212 Series. General Description. Typical Application. Package

Richter 2013 Presentation Mentor: Professor Evans Philosophy Department Taylor Henderson May 31, 2013

Black Jack --- Review. Spring 2012

PEMS RDE Workshop. AVL M.O.V.E Integrative Mobile Vehicle Evaluation

F o r t o l k n i n g e r a f m a n d a l a e r i G I M - t e r a p i

Selection of a Laser Source for Magnetic Field Imaging Using Magneto-optical Films

UNISONIC TECHNOLOGIES CO.,

CHAPTER 8: USING OBJECTS

Improving Interdisciplinary Education of Anatomy, Practical Sports using Non-Profit Software

Design til digitale kommunikationsplatforme-f2013

SOFTWARE PROCESSES. Dorte, Ida, Janne, Nikolaj, Alexander og Erla

Den nye Eurocode EC Geotenikerdagen Morten S. Rasmussen

ก ก. ก (System Development) 5.7 ก ก (Application Software Package) 5.8 ก (System Implementation) Management Information System, MIS 5.

INTEL INTRODUCTION TO TEACHING AND LEARNING AARHUS UNIVERSITET

Statistical information form the Danish EPC database - use for the building stock model in Denmark

Last Lecture CS Amp. I D V B M 2. I bias. A v. V out. V in. Simplified Schematic. Practical Implementation V GS

Improving data services by creating a question database. Nanna Floor Clausen Danish Data Archives

Knowledge FOr Resilient

Øjnene, der ser. - sanseintegration eller ADHD. Professionshøjskolen UCC, Psykomotorikuddannelsen

what is this all about? Introduction three-phase diode bridge rectifier input voltages input voltages, waveforms normalization of voltages voltages?

Finn Gilling The Human Decision/ Gilling September Insights Danmark 2012 Hotel Scandic Aarhus City

Procuring sustainable refurbishment

En god Facebook historie Uddannelser og valgfag målrettet datacenterindustrien!?

The GAssist Pittsburgh Learning Classifier System. Dr. J. Bacardit, N. Krasnogor G53BIO - Bioinformatics

2a. Conceptual Modeling Methods

CONNECTING PEOPLE AUTOMATION & IT

Molio specifications, development and challenges. ICIS DA 2019 Portland, Kim Streuli, Molio,

Basic statistics for experimental medical researchers

FACULTY OF SCIENCE :59 COURSE. BB838: Basic bioacoustics using Matlab

1 s01 - Jeg har generelt været tilfreds med praktikopholdet

LED STAR PIN G4 BASIC INFORMATION: Series circuit. Parallel circuit HOW CAN I UNDERSTAND THE FOLLOWING SHEETS?

Avancerede bjælkeelementer med tværsnitsdeformation

Fundamentals of HVAC Control Systems

GNSS/INS Product Design Cycle. Taking into account MEMS-based IMU sensors

Breaking Industrial Ciphers at a Whim MATE SOOS PRESENTATION AT HES 11

netværk: : Integrerede lavenergiløsninger til nye bygninger

Matematikken former morgendagens satellitter

Information Meeting for DE5 and DE3 Further Study Possibilities

Motorway effects on local population and labor market

What s Our Current Position? Uddannelsesstruktur i AUE. What Can You Choose After DE5? Uddannelsesstruktur i AUE

Elektriske apparater til husholdningsbrug o.l. Sikkerhed Del 1: Generelle krav

University of Copenhagen Faculty of Science Written Exam April Algebra 3

Roskilde Universitet Jeanette Lindholm PHD-.student

Business Opening. Very formal, recipient has a special title that must be used in place of their name

Linear Programming ١ C H A P T E R 2

Business Opening. Very formal, recipient has a special title that must be used in place of their name

RAVE. The New Radar Motion Sensor Rated IP67: Optimized for Harsh Outdoor Applications

Bilag. Resume. Side 1 af 12

Application form for access to data and biological samples Ref. no

Bilag 8. TDC technical requirements for approval of splitterfilters and inline filters intended for shared access (ADSL or VDSL over POTS).

Engineering of Chemical Register Machines

PARATHOM / PARATHOM PRO MR16 Electric Transformer Compatibility

Studieordning del 3,

Childhood motor performance as predictor of physical activity and physical activity related injuries

Family of R744 control valves and suggestions for efficient testing

Challenges for the Future Greater Helsinki - North-European Metropolis

Afslutningsskema. 1. Projekttitel Muligheder for anvendelse af Compressed. 2. Projektidentifikation Energinet.dk projektnr. 6567

Udfordringer med indeklima ved energirenovering

OG-3600 Series Fiber Optic Transport for opengear card frame platform w/ SNMP Management

l i n d a b presentation CMD 07 Business area Ventilation

Possibilities for Reuse of Calcium Carbonate Pellets from Drinking Water Softening

Lovkrav vs. udvikling af sundhedsapps

IBM Software Group. SOA v akciji. Srečko Janjić WebSphere Business Integration technical presales IBM Software Group, CEMA / SEA IBM Corporation

Danish Language Course for International University Students Copenhagen, 12 July 1 August Application form

Agenda. The need to embrace our complex health care system and learning to do so. Christian von Plessen Contributors to healthcare services in Denmark

To the reader: Information regarding this document

Automatic Code Orchestration from Descriptive Implementations

Verilog HDL. Presented by: Amir Masoud Gharehbaghi

Eksempel på eksamensspørgsmål til caseeksamen

Danske Bank Leadership Communication

Integrated Engine, Vehicle, and Underhood Model of a Light Duty Truck for VTM Analysis

Semco Maritime - Vækst under vanskelige vilkår. Offshoredag 2009 Vice President Hans-Peter Jørgensen

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen

RentCalC V Soft-Solutions

Sport for the elderly

GÅ-HJEM-MØDE OM FM OG INNOVATION

PERSPECTIVES ON MARKETING OF GREEN ELECTRICITY:

The effects of occupant behaviour on energy consumption in buildings

Sustainable use of pesticides on Danish golf courses

User Manual for LTC IGNOU

talk outline sea bed network deployment issues; energy distribution seabed network issues;

Mission and Vision. ISPE Nordic PAT COP Marts Jesper Wagner, AN GROUP A/S, Mejeribakken 8, 3540 Lynge, Denmark

Tilmelding sker via stads selvbetjening indenfor annonceret tilmeldingsperiode, som du kan se på Studieadministrationens hjemmeside

KALK- OG TEGLVÆRKSFORENINGEN. CPR Sustainable Construction

Transkript:

Audio Power Amplifier Techniques With Energy Efficient Power Conversion Volume I Ph.D. Thesis Karsten Nielsen Department of Applied Electronics, Building 451 Technical University of Denmark DK-2800 Lyngby April 30, 1998

Contents Preface Abstract Resumé på dansk Chapter 1 Introduction... 1 Introduction... 1 1.1 Audio power stage topologies... 2 1.1.1 Power and energy efficiency... 3 1.1.2 Energy efficiency considerations... 5 1.1.3 The switching (Class D) power stage topology... 8 1.2 The Pulse Modulation Amplifier (PMA)... 9 1.2.1 Design problems and challenges... 10 1.2.2 Other considerations... 11 1.3 Thesis structure... 12 Chapter 2 Analog Pulse Modulation... 15 2.1 Fundamental pulse modulation methods... 15 2.2 Analog Pulse Density Modulation (PDM)... 17 2.3 Analog Pulse Width Modulation... 18 2.3.1 Analysis methodology... 20 2.4 DFS synthesis for NPWM methods... 24 2.4.1 Analysis and comparison... 25 2.5 Phase Shifter Carrier PWM (PSCPWM)... 33 2.5.1 PSCPWM control algorithms... 34 2.5.2 Control algorithms for balanced PSCPWM... 37 2.6 PSCPWM analysis... 40 2.6.1 DFS synthesis for NS and ND... 40 2.6.2 Spectral characteristics... 41 2.6.3 Balanced PSCPWM type 1 (BNS1/BND1)... 46 2.6.4 Spectral characteristics for Balanced PSCPWM Type 1.... 47 2.6.5 Balanced PSCPWM type 2 (BNS2/BND2)... 51 2.6.6 Spectral characteristics for Balanced PSCPWM Type 2... 52 2.6.7 Balanced PSCPWM type 3 (BNS3/BND3)... 55 2.6.8 Spectral characteristics for Balanced PSCPWM Type 3... 56 2.7 Selection of PSCPWM method... 59 2.8 Other Multilevel PWM methods... 60 2.8.1 Multiple Leveled Carrier PWM (MLCPWM)... 60 2.8.2 MLCPWM spectral characteristics... 62 2.9 Summary... 64 2.9.1 PWMSIM GUI based toolbox for MATLAB... 65 I

Chapter 3 Digital Pulse Modulation...67 3.1 The digital PMA paradox...67 3.2 Digital Pulse modulation methods...68 3.2.1 Digital PDM...68 3.2.2 Digital PWM...69 3.3 UPWM analysis...70 3.3.1 UPWM harmonic distortion...73 3.3.2 UPWM HF characteristics...76 3.3.3 Uniformly sampled PSCPWM...76 3.4 Enhanced digital PWM methods...79 3.4.1 Interpolation and noise shaping (INS) topology...79 3.4.2 Improving modulator linearity...79 3.4.3 Precompensation methods...80 3.4.4 Direct compensation methods...82 3.4.5 Feedback linearization...83 3.4.6 Method selection...83 3.5 LPWM spectral analysis...84 3.5.1 LPWM distortion...89 3.6 LPWM modulator synthesis...92 3.6.1 Interpolation...92 3.7 Noise shaping...93 3.7.1 Analysis...93 3.7.2 Linear modeling...94 3.7.3 Noise Transfer function (NTF) filter synthesis for digital LPWM...95 3.7.4 NTF(z) signal band requirements...97 3.7.5 Realizing the modified NTF(z) prototype...98 3.8 LPWM modulator design methodology...102 3.8.1 Modulator synthesis example...103 3.9 Summary...106 3.9.1 DPWMSIM A Digital Modulator design toolbox for MATLAB...107 Chapter 4 - Error Sources...109 4.1 Power conversion...110 4.2 Switching devices...111 4.2.1 The vertical n + pn - n + Power MOSFET architecture...111 4.3 Switching leg characteristics...113 4.3.1 Reverse recovery effects...118 4.4 Categorization of error sources...118 4.5 Pulse Timing Errors (PTE) analysis...119 4.5.1 Blanking effects...119 4.5.2 Other PAE error sources...123 4.6 Pulse Amplitude Error (PAE) analysis...126 4.6.1 Power supply perturbations...126 4.6.2 PAE case example : Non-stabilized supply...128 4.6.3 Finite switch impedance effects...130 4.6.4 Other contributions to PAE...135 4.7 Analog PMA modulator error sources...135 4.7.1 Parametric analysis of PSCPWM modulator error sources...137 4.8 Summary...138 II

Chapter 5 Efficiency Optimization... 139 5.1 Efficiency in power conversion... 139 5.2 Conduction losses... 140 5.3 Switching losses... 143 5.4 Demodulation filter losses... 146 5.4.1 Conduction losses... 147 5.4.2 Core losses... 147 5.5 Generalization to BPSC and PSC... 148 5.6 Case example... 149 5.6.1 Implementation with a simple switching leg... 149 5.6.2 BPSC realization (N=2)... 151 5.6.3 BPSC realization (N=4)... 153 5.6.4 BPSC in high power realizations... 155 5.7 Summary... 156 5.7.1 PSOT A MATLAB toolbox for power stage optimization... 156 Chapter 6 Robust Linear Control... 159 6.1 Terminology... 160 6.1.1 Evaluating control system performance... 161 6.1.2 Control system representation and optimization... 162 6.2 Robust control system design for PMAs... 163 6.2.1 System model... 163 6.2.2 Uncertainty and robustness... 164 6.2.3 Defining the Uncertainty Set (US)... 165 6.3 Control system design methodology... 166 6.3.1 Generalized controller synthesis and verification... 168 6.3.2 Generalized performance considerations... 169 6.3.3 General loop shaping constraints... 169 6.3.4 Definition of linear control structures... 171 6.4 Voltage Feedback Control Topology 1 (VFC1)... 173 6.4.1 Loop shaping... 174 6.4.2 VFC1 Case example synthesis... 175 6.5 Voltage Feedback Control Topology 2 (VFC2)... 185 6.5.1 Loop shaping... 185 6.5.2 VFC2 case example... 186 6.6 Current Voltage Feedback Control Topology (CVFC)... 192 6.6.1 Current loop analysis... 192 6.6.2 The voltage analysis... 194 6.6.3 Current and voltage loop shaping... 194 6.6.4 CVFC Case example... 195 6.7 Summary... 205 6.7.1 LCONDIM design toolbox for MATLAB... 206 Chapter 7 - Optimized Linear Control... 207 7.1 Multivariable Enhanced Cascade Control (MECC)... 207 7.1.1 Loop prototype based MECC(N) synthesis... 210 7.1.2 MECC(N) properties... 211 7.1.3 MECC(N) loop shaping... 213 7.1.4 MECC(N) case example... 214 III

7.2 MECC(N,M)...225 7.2.1 Loop prototype based MECC(N,M) synthesis...225 7.2.2 MECC(N,M) properties...226 7.2.3 MECC(N,M) loop shaping...227 7.2.4 MECC(N,M) case example...228 7.3 Summary...234 7.3.1 MECCDIM A GUI controlled toolbox for MATLAB...236 Chapter 8 Non-Linear Control...237 8.1 Non-linear One Cycle Control...238 8.1.1 Fundamental limitations...239 8.2 Enhanced non-linear control...240 8.2.1 TOCC synthesis...241 8.2.2 TOCC non-linear modeling and simulation...241 8.2.3 TOCC case example...242 8.2.4 TOCC extensions...246 8.3 Summary on non-linear control...247 Chapter 9 Pulse Referenced Control...249 9.1 Fundamental considerations...250 9.2 Pulse Edge Delay Error Correction (PEDEC)...251 9.2.1 Control function specification...252 9.2.2 Realizing the control function...254 9.3 Applying PEDEC to Digital PMA systems...256 9.3.1 Defining control structures...256 9.4 PEDEC VFC1...257 9.4.1 Analysis...257 9.4.2 PEDEC VFC1 loop shaping...259 9.4.3 Case example...260 9.5 PEDEC VFC2...268 9.5.1 Analysis...268 9.5.2 PEDEC VFC2 loop shaping...270 9.5.3 Case example...270 9.6 PEDEC VFC3...273 9.6.1 Analysis...273 9.6.2 PEDEC VFC3 Loop shaping...273 9.6.3 Case example...274 9.7 Extensions...275 9.8 Summary...277 9.8.1 PEDECDIM - GUI based PEDEC design toolbox for MATLAB...278 Chapter 10 Practical Evaluation...279 10.1 Power Stage Implementation...280 10.1.1 The switching leg building block...280 10.1.2 Power distribution network considerations...281 10.1.3 Hybrid IC Optimized power stage realization...283 10.1.4 Power stage performance...284 10.2 PSCPWM Evaluation...287 10.3 VFC1/VFC2 evaluation...290 10.4 CVFC Evaluation...292 IV

10.5 MECC evaluation... 294 10.6 Enhanced Non-linear Control (TOCC)... 298 10.7 PEDEC based Digital PMA... 301 10.7.1 Open loop performance... 302 10.8 Summary... 306 Chapter 11 Summary and Conclusions... 307 Bibliography... 311 V

VI

Preface This thesis is submitted to the Technical University of Denmark in partial fulfillment of the requirements for the Doctor of Philosophy degree (PhD degree). The work has been carried out at the Department of Applied Electronics, DTU (until 1/12-1997 Institute of Automation) and at Bang&Olufsen A/S, Denmark during the period April 1. 1995 to April 30. 1998. The project has involved four cooperating parties: Department of Applied Electronics, Bang&Olufsen A/S, CETEC and The Danish Energy Agency. All parties are thanked for the optimal working conditions in the project. After receiving the M.Sc.E.E. degree in October 1994 at the Technical University of Denmark, I was recommended for the present project by assoc. professors Michael A. E. Andersen and John. Aa. Sørensen. I am deeply grateful for the confidence that made my participation in this exiting project possible. Michael A. E. Andersen has functioned as main supervisor in the project, and is thanked for the never failing support, and for sharing his knowledge in power electronics. I should like to thank a number of people at Bang & Olufsen A/S for their contributions, help and support. Senior Technology Manager Palle Nissen is thanked for providing everything I needed during my stays at B&O. Audio Design Manager Egon Bjerre is thanked for sharing his invaluable knowledge on analog design. Everybody at the Electroacoustics R&D department are thanked for providing a stimulating frame during the numerous stays there. Especially, the assistance with practical implementation and subjective evaluation of various concepts has been of great value to the research. My students at DTU during three years, in particular Frank. S. Christensen, Thomas Frederiksen, Thomas Taul, Poul Ciok, Søren Due, Niels Anderskouv and Claus Neesgaard are thanked for their contributions to the present work. All have helped with the implementation and evaluation of various ideas and concepts during their M. Sc. and graduate projects. Furthermore, I am grateful to a number of other experts in the field with whom I have had enlightening discussions. Professor Keyue Smedley and Ph.D student Mark Smith Jr. are thanked for many interesting discussions on various topics at the University of California, Irvine during the four months I spent there in 1997. Professor John Vanderkooy, University of Waterloo, Canada, is thanked for inspiring discussions on various subjects in the field during his stay at B&O. My friend Mohammad Shajaan is thanked for his assistance in proofreading the manuscript. Lastly, I should like to thank my fiancée and family or years of support and patience. This foundation has been of primary importance during the three years. Lyngby, April 30, 1998 Karsten Nielsen VII

VIII

Abstract The audio power amplifier pays an essential role in every system that generates audible sound. General power amplifies are voluminous, heavy, expensive, unreliable and have very poor energy utilization, all due to a low efficiency. Solutions to this very fundamental problem are the topic of the present thesis. The ultimate goal is to develop practical methods for power amplification with a significantly higher efficiency at all levels of operation without compromises on the audio performance. The problem is addressed by investigating new methods for efficient power amplification using pulse modulation techniques. A general Pulse Modulation Amplifier (PMA) consists of a pulse modulator (analog or digital), a switching power stage for power conversion and a control system. A fundamental study of both analog and digital pulse modulation methods is carried out. A novel class of multi-level pulse modulation methods - Phase Shifted Carrier Pulse Width Modulation (PSCPWM) - is introduced and show to have several advantageous features, primarily caused by the much improved synthesis of the modulating signal. Enhanced digital pulse modulation methods for digital PMA systems are investigated, and a simple methodology for digital PWM modulator synthesis is devised. It is concluded, that the modulator performance is not a limitation in the system, regardless of the domain of modulator implementation. Power conversion in PMA systems is addressed from the perspectives of both linearity and efficiency optimization. Based on detailed studies of the distortion mechanisms in the power conversion stage it is concluded, that this is the fundamental limitation on system performance due to several physical limitations. The analysis of general power stage efficiency concludes that dramatic improvements in energy efficiency are possible with PMA systems that are optimized for efficiency. Control systems have been a focal point in the research. A control system design methodology is devised as a platform for synthesis of robust control systems. Investigations of three fundamental control structures show that even simple control systems offer a remarkable value, although the considered topologies also have their limitations, which is verified by practical evaluation in hardware. A novel control method is introduced - Multivariable Enhanced Cascade Control (MECC). Essentially, the topology offers a practical method for higher order control system implementation by an enhanced cascade structure. MECC provides flexible control over all essential system parameters and is furthermore simple in realization. Practical evaluation of a MECC based PMA shows state-of-the-art performance. The application of non-linear control methods is investigated with the introduction of an enhanced non-linear control/modulator topology. Although the non-linear controller is theoretically interesting, the method proves to suffer from various practical limitations. As a contribution to the field of digital PMA systems, a novel pulse referenced control method Pulse Edge Delay Error Correction (PEDEC) is introduced for enhanced amplification of an already pulse modulated signal. The principle proves to force equivalence between the digital modulator output and the digital PMA output. PEDEC is believed to be the first documented method for practical, efficient and high quality digital PMA realization including compensation for the non-linear power conversion. IX

X

Resumé på dansk Audio effektforstærkeren er en helt grundlæggende komponent overalt hvor der skal laves hørbar lyd. Generelle effektforstærkere er volumiøse, tunge, kostbare og har tillige en meget dårlig energivirkningsgrad, altsammen som følge af en dårlig effektivitet. Løsninger på dette helt fundamente problem er emnet for denne afhandling. Målet med projektet er således at udvikle pratiske metoder til effektforstærkning med et signifikant lavere effekttab i alle brugssituationer uden at kompromitere kvaliteten. Problemet angribes ved at undersøge nye methoder for effektiv effekforstærkning baseret på pulsmodulationsteknikker. En generel Pulse Modulation Amplifier (PMA) er opbygget af en puls modulator (analog eller digital), en switchende effektsomsætningsenhed og et reguleringssystem. En fundamental analyse analoge og digitale pulsmodulationsmetoder gennemføres. En ny klasse af multi-niveau pulse bredde modulation methoder - Phase Shifted Carrier Pulse Width Modulation (PSCPWM) introduceres herunder og viser at have flere fordelagtige egenskaber, primært skabt som følge af den meget forbedrede synthese af det modulerende signal. Metoder til realisering af digital pulsmodulation undersøges endvidere, og der udvikles en simpel design metodologi til digital PWM modulator syntese. Det konkluderes generelt, at modulatoren ikke er en begrænsning i systemet uanset hvilket domæne der vælges for implementeringen. Effektomsætning til PMA systemer analyseres udfra såvel et linearitets- og effektivitetsperspektiv. På basis af detaljerede analyser af forvrængningskilder i effektomsætningen konkluderes det at dette element er den væsentlige begrænsning is systemet, som følge af en række fysiske begrænsninger. Analyserne af udgangstrin omfatter også en generaliseret teoretisk analysis af effektiviten i effektomsætningen. Det komkluderes, det der kan opnås dramatiske forbedringer i energi effektivitet i PMA systemer optimeret mht. effektivitet. Reguleringsmetoder udgør en helt central del af undersøgelserne. En metodologi til design af reguleringmetoder introduceres som en platform for syntese af robuste reguleringssystemer. Der undersøges tre basale reguleringstopologier, og det konkluderes at selv simple reguleringssystemer giver markante forbedringer af PMA systemet, selvom en evaluering af de tre metoder i hardware viser visse begrænsninger. Et nyt generelt reguleringsprincip introduceres Multivariable Enhanced Cascade Control (MECC). Princippet er en praktisk fremgangmåde til realisering af højere orders reguleringssystemer under anvendelse af en enhanced cascade struktur. MECC giver flexibel kontrol over all væsentlige system parametre og er envidere simpel mht. realisering. Praktisk evaluering af en MECC baseret system viser state-of-the-art specifikationer. Anvendelsen af ikke-lineære reguleringssystemer undersøges, ved introduktionen af et ikke lineært reguleringssystem der også fungerer som modulator. Til trods for teoretiske interessante egenskaber, viser metoden sig at lide under væsentlige fysiske begrænsninger. Som et bidrag til området digitale PMA systemer, præsenteres en ny puls refereret reguleringsmetode Pulse Edge Delay Error Correction (PEDEC) for forbedret forstærkning af et allerede pulse moduleret signal. Det vises at at princippet fremtvinger ækvivalens mellem det puls modulerede indgangssignal og udgangssignalet. PEDEC menes at være den første dokumenterede methode for praktisk og effektiv realisering af højkvalitets digitale PMA systemer, der inkluderer kompensation for den ikke lineære effektomsætning. XI

XII

List of Abbreviations The thesis defines a range of important abbreviations to ease the discussion and comparison of principles and methods. The abbreviations are described below for reference. Abbreviation Description PMA Pulse Modulation (power) Amplifier. General definition of a system where the amplification is based on pulse modulation techniques and a switching power conversion stages. There are two alternatives: Analog PMA or Digital PMA referring to the use of analog or digital pulse modulation techniques. NADS Natural sampling AD Single Sided NBDS Natural sampling BD Single Sided NADD Natural sampling AD Double Sided NBDD Natural sampling BD Double Sided UADS Uniform sampling AD Single Sided UBDS Uniform sampling BD Single Sided UADD Uniform sampling AD Double Sided UBDD Uniform sampling BD Double Sided LADS Hybrid sampling AD Single Sided LBDS Hybrid sampling BD Single Sided LADD Hybrid sampling AD Double Sided LBDD Hybrid sampling BD Double Sided PSCPWM Phase Shifted Carrier Pulse Width Modulation. MLCPWM Multiple Leveled Carrier Pulse Width Modulation NS / US Naturally sampled Single Sided PSCPWM ND / UD Naturally sampled Double Sided PSCPWM BNDX / BUDX Balanced Naturally/Uniformly sampled Double Sided PSCPWM BNSX / BUSX Balanced Naturally/Uniformly sampled Single Sided PSCPWM PSC Power stage circuit topology for PSCPWM BPSC Balanced PSC power stage circuit topology for the balanced PSCPWM methods US Uncertainty set NS Nominal Stability NP Nominal Performance RS Robust Stability RP Robust Performance SRI Slew Rate Instability VFC1 Voltage Feedback Control topology 1 VFC2 Voltage Feedback Control topology 2 CVFC Current Voltage Feedback Control topology PEDEC Pulse Edge Delay Error Correction. PEDEC VFCX PEDEC Voltage Feedback topology X (X = 1, 2 and 3) TOCC Three level One Cycle Controller PAE Pulse Amplitude Errors PTE Pulse Timing Errors XIII

XIV