On Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Relaterede dokumenter
On new inequalities of Hermite Hadamard Fejer type for harmonically convex functions via fractional integrals

Hermite-Hadamard-Fejer Type Inequalities for s Convex Function in the Second Sense via Fractional Integrals

Some results for the weighted Drazin inverse of a modified matrix

University of Copenhagen Faculty of Science Written Exam April Algebra 3

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3

University of Copenhagen Faculty of Science Written Exam - 8. April Algebra 3

Project Step 7. Behavioral modeling of a dual ported register set. 1/8/ L11 Project Step 5 Copyright Joanne DeGroat, ECE, OSU 1

On the Relations Between Fuzzy Topologies and α Cut Topologies

PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU

Exercise 6.14 Linearly independent vectors are also affinely independent.

Noget om Riemann integralet. Noter til Matematik 2

1 What is the connection between Lee Harvey Oswald and Russia? Write down three facts from his file.

Teaching infinitesimal calculus in high school with infinitesimals

Userguide. NN Markedsdata. for. Microsoft Dynamics CRM v. 1.0

E-PAD Bluetooth hængelås E-PAD Bluetooth padlock E-PAD Bluetooth Vorhängeschloss

Vina Nguyen HSSP July 13, 2008

Basic statistics for experimental medical researchers

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Sign variation, the Grassmannian, and total positivity

Skriftlig Eksamen Beregnelighed (DM517)

DK - Quick Text Translation. HEYYER Net Promoter System Magento extension

DET KONGELIGE BIBLIOTEK NATIONALBIBLIOTEK OG KØBENHAVNS UNIVERSITETS- BIBLIOTEK. Index

Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium

IBM Network Station Manager. esuite 1.5 / NSM Integration. IBM Network Computer Division. tdc - 02/08/99 lotusnsm.prz Page 1

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

On the complexity of drawing trees nicely: corrigendum

Bidrag Til Den Danske Literaturs Historie: Det Lærde Tidsrum (Danish Edition) By Niels Matthias Petersen READ ONLINE

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

Kunstig intelligens. Thomas Bolander, Lektor, DTU Compute. Siri-kommissionen, 17. august Thomas Bolander, Siri-kommissionen, 17/8-16 p.

Boligsøgning / Search for accommodation!

Beretning Om Fante-Eller Landstrygerfolket I Norge. 2Et Opl - Primary Source Edition (Swedish Edition) By Eilert Lund Sundt

Pontryagin Approximations for Optimal Design of Elastic Structures

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen

Skriftlig Eksamen Beregnelighed (DM517)

Trolling Master Bornholm 2016 Nyhedsbrev nr. 6

Linear Programming ١ C H A P T E R 2

Trolling Master Bornholm 2016 Nyhedsbrev nr. 8

Intro to: Symposium on Syntactic Islands in Scandinavian and English

Trolling Master Bornholm 2015

Matematik 2 AL. Opgave 2 (20p)

Da beskrivelserne i danzig Profile Specification ikke er fuldt færdige, foreslås:

Sunlite pakke 2004 Standard (EC) (SUN SL512EC)

To the reader: Information regarding this document

Løsning af skyline-problemet

Opera Ins. Model: MI5722 Product Name: Pure Sine Wave Inverter 1000W 12VDC/230 30A Solar Regulator

Trolling Master Bornholm 2016 Nyhedsbrev nr. 7

LED STAR PIN G4 BASIC INFORMATION: Series circuit. Parallel circuit HOW CAN I UNDERSTAND THE FOLLOWING SHEETS?

Multivariate Extremes and Dependence in Elliptical Distributions

DM547 Diskret Matematik

Computing the constant in Friedrichs inequality

E K S T R A O R D I N Æ R G E N E R A F O R S A M L I N G E X T R A O R D I N A R Y G E N E R A L M E E T I N G. Azanta A/S. J.nr.

Status på det trådløse netværk

GUIDE TIL BREVSKRIVNING

Portal Registration. Check Junk Mail for activation . 1 Click the hyperlink to take you back to the portal to confirm your registration

Aarhus Universitet, Science and Technology, Computer Science. Exam. Wednesday 27 June 2018, 9:00-11:00

Trolling Master Bornholm 2014

Trolling Master Bornholm 2016 Nyhedsbrev nr. 5

Nyhedsmail, december 2013 (scroll down for English version)

Blackwire 215/225. Analog headset med ledning. Brugervejledning

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov.

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 19. juni 2003 kl Alle hjælpemidler er tilladt

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A +

Trolling Master Bornholm 2013

The complete construction for copying a segment, AB, is shown above. Describe each stage of the process.

USERTEC USER PRACTICES, TECHNOLOGIES AND RESIDENTIAL ENERGY CONSUMPTION

Trolling Master Bornholm 2014

User Manual for LTC IGNOU

SAS Corporate Program Website

Our activities. Dry sales market. The assortment

Timetable will be aviable after sep. 5. when the sing up ends. Provicius timetable on the next sites.

Help / Hjælp

Black Jack --- Review. Spring 2012

DM549 Diskrete Metoder til Datalogi

Trolling Master Bornholm 2014

Avancerede bjælkeelementer med tværsnitsdeformation

Central Statistical Agency.

Critical exponent for semilinear wave equation with critical potential

FAST FORRETNINGSSTED FAST FORRETNINGSSTED I DANSK PRAKSIS

Tema: Pets Fag: Engelsk Målgruppe: 4. klasse Titel: Me and my pet Vejledning Lærer

Vejledning til Sundhedsprocenten og Sundhedstjek

MM501 forelæsningsslides

3D NASAL VISTA TEMPORAL

DENCON ARBEJDSBORDE DENCON DESKS

Aktivering af Survey funktionalitet

Design til digitale kommunikationsplatforme-f2013

MM501 forelæsningsslides

Grøn Open Access i Praksis

Danish Language Course for International University Students Copenhagen, 12 July 1 August Application form

Particle-based T-Spline Level Set Evolution for 3D Object Reconstruction with Range and Volume Constraints

Pattern formation Turing instability

Indendørsluft Del 18: Påvisning og antalsbestemmelse af skimmelsvampe Prøvetagning ved impaktion

Noter til kursusgang 8, IMAT og IMATØ

Trolling Master Bornholm 2016 Nyhedsbrev nr. 3

Get Instant Access to ebook Udleveret PDF at Our Huge Library UDLEVERET PDF. ==> Download: UDLEVERET PDF

Shooting tethered med Canon EOS-D i Capture One Pro. Shooting tethered i Capture One Pro 6.4 & 7.0 på MAC OS-X & 10.8

X M Y. What is mediation? Mediation analysis an introduction. Definition

Subject to terms and conditions. WEEK Type Price EUR WEEK Type Price EUR WEEK Type Price EUR WEEK Type Price EUR

Bibliotheca Danica: Systematisk Fortegnelse Over Den Danske Literatur Fra 1482 Til 1830, Efter Samlingerne I Det Store Kongelige Bibliothek I...

Special VFR. - ved flyvning til mindre flyveplads uden tårnkontrol som ligger indenfor en kontrolzone

Financial Literacy among 5-7 years old children

Transkript:

Mthemtic Morvic Vol. 1, No. 1 (017), 105 13 On Hermite-Hdmrd-Fejér type inequlities for convex functions vi frctionl integrls Adullh Akkurt nd Hüsey ın Yıldırım Astrct. In this pper, we hve estlished some generlized integrl inequlities of Hermite-Hdmrd-Fejér type for generlized frctionl integrls. The results presented here would provide generliztions of those given in erlier works. 1. Introduction Let f : I R R e convex function define on n intervl I of rel numers, nd, I with <. Then the following inequlities hold: (1) f ( ) 1 f (x) dx f () f (). It ws first discovered y Hermite in 1881 in the Journl Mthesis. This inequlity (1) ws nowhere mentioned in the mthemticl literture untill 1893. In 4, Beckench, leding expert on the theory of convex functions, wrote tht the inequlity (1) ws proved y Hdmrd in 1893. In 1974, Mitrinovič found Hermite nd Hdmrd s note in Mthesis. Tht is why, the inequlity (1) ws known s Hermite-Hdmrd inequlity. We note tht Hermite-Hdmrd s inequlity my e regrded s refinements of the concept of convexity nd it follows esily from Jensen s inequlity. This inequlity (1) hs een received renewed ttention in recent yers nd remrkle vriety of refinements nd generliztions hve een found in 4-16, 18, 0. The most well known inequlities connected with the integrl men of convex functions re Hermite-Hdmrd inequlities or its weighted versions, the so-clled Hermite-Hdmrd-Fejěr inequlity. In 10, Fejér estlished the following Fejér inequlity which is the weighted generliztion of Hermite-Hdmrd inequlities (1): 010 Mthemtics Suject Clssifiction. Primry: 6A33, 6A51; Secondry: 6D15. Key words nd phrses. Integrl inequlities, Frctionl integrls, Hermite-Hdmrd- Fejér Inequlity. 105 c 017 Mthemtic Morvic

106 On Hermite-Hdmrd-Fejér type inequlities for convex... Theorem 1.1. Let f : I R e convex on I nd let, I with <. Then the inequlity () f ( ) g(x)dx 1 f() f() f(t)g(x)dt g(x)dx. holds, where f :, R is nonnegtive, integrle, nd symmetric to. In 11, Sriky et l. represented Hermite Hdmrd s inequlities in frctionl integrl forms s follows. Theorem 1.. Let f :, R e positive function with 0 < nd f L,. If f is convex function on,, then the following inequlities for frctionl integrls holds (3) f ( ) Γ (α 1) ( ) α J α f() J α f() with α > 0. In 5 Set et. l. otined the following lemm. f() f(), Lemm 1.1. Let f :, R e differentile mpping on (, ) with < nd let g :, R. If f, g L,, then the following identity for frctionl integrls holds: (4) where f ( ) J α g() J α ( ) ( g() ) J α (gf) () J α (fg) () ( ) ( ) k(t) = (s ) α1 g(s)ds, t ( s) α1 g(s)ds, t = 1 k(t)df(t),,,,. We give some necessry definitions nd mthemticl preliminries of frctionl clculus theory which re used throughout this pper. Definition 1.1. Let h (x) e n incresing nd positive monotone function on 0, ), lso derivtive h (x) is continuous on 0, ) nd h (0) = 0.

Adullh Akkurt nd Hüsey ın Yıldırım 107 The spce X p h (0, ) (1 p < ) of those rel-vlued Leesque mesurle functions f on 0, ) for which 1 (5) f X p = h 0 f(t) p h (x) dt p <, 1 p nd for the cse p = (6) f X = ess sup f(t)h (x). h 1t< Definition 1.. (6). In prticulr, when h (x) = x (1 p < ) the spce X p h (0, ) coincides with the L p0, )spce ( f X = f h ) nd lso if we tke h (x) = xk1 k 1 (k 0) the spce Xp h (0, ) coincides with the L p,k 0, )spce. Definition 1.3. (1). Let (, ) e finite intervl of the rel line R nd α > 0. Also let h (x) e n incresing nd positive monotone function on (,, hving continuous derivtive h (x) on (, ). The left- nd rightsided frctionl integrls of function f with respect to nother function h on, re defined y ) (7) (J α,h f (x) := 1 x h (x) h (t) α1 h (t) f (t) dt, x nd (8) (J α,h f ) (x) := 1 x h (t) h (x) α1 h (t) f (t) dt, x. Definition 1.4. If we tke h(x) = x, then the equlities (7) nd (8) will e (9) (J α f) (x) = 1 Γ(α) nd (10) (J α f) (x) = 1 Γ(α) x x (x t) α1 f(t)dt, x > (t x) α1 f(t)dt, > x. These integrls re clled left-sided Riemnn-Liouville frctionl integrl nd right-sided Riemnn-Liouville frctionl integrl respectively 1-3, 6, 17. In this pper, we hve estlished some generlized frctionl integrl inequlities. The results presented here would provide generliztions of those given in erlier works.

108 On Hermite-Hdmrd-Fejér type inequlities for convex.... Min Results Lemm.1. Let f :, R e differentile mpping on (, ) with < nd let g :, R. If f, g X p h,, then the following identity for frctionl integrls holds: f ( h ( )) J α g(h()) J α g(h()) ( ) ( ) J α (g (f h)) () J α (g (f h)) () (11) ( ) ( ) = 1 k(t)df(h(t)) where k(t) = Proof. It suffices to note tht I = = (h(s) h()) α1 g(s)h (s)ds, (h() h(s)) α1 g(s)h (s)ds, k(t)df(h(t)) = I 1 I. By integrtion y prts, we get I 1 = = t t,,,. (h(s) h()) α1 g(s)h (s)ds df(h(t)) (h() h(s)) α1 g(s)h (s)ds df(h(t)) (h(s) h()) α1 g(s)h (s)ds df(h(t)) (h(s) h()) α1 g(s)h (s)ds f(h(t))

Adullh Akkurt nd Hüsey ın Yıldırım 109 = f ( h ( )) = nd similrly I = = (h(t) h()) α1 g(t)f(h(t))h (t)dt (h(s) h()) α1 g(s)h (s)ds (h(t) h()) α1 g(t)f(h(t))h (t)dt f ( h ( )) J α g(h()) J α (g (f h)) () ( ) ( ) (h() h(s)) α1 g(s)h (s)ds df(h(t)) (h(s) h()) α1 g(s)h (s)ds f(h(t)) = f ( h ( )) = Thus, cn write I = I 1 I = (h() h(t)) α1 g(t)f(h(t))h (t)dt (h() h(s)) α1 g(s)h (s)ds (h() h(t)) α1 g(t)f(h(t))h (t)dt f ( h ( f ( h ( )) J α g(h()) J α (g (f h)) (). ( ) ( ) )) J α ( ) g(h()) J α ( g(h()) ) J α ( ) (g (f h)) () J α ( ) (g (f h)) ().

110 On Hermite-Hdmrd-Fejér type inequlities for convex... Multiplying the oth sides () 1, we otin (11) which compltes the proof. Remrk.1. If we choose h(x) = x in Lemm.1, then the inequlity (11) reduces to (1.4). Remrk.. If we choose h(x) = x, g(x) = 1 nd α = 1 in Lemm.1, we otin Lemm.1 in 1. Theorem.1. Let f : I R e differentile mpping on I nd f X p h, with < nd g :, R is continuous. If f is convex on,, then the following inequlity for frctionl integrls holds: (1) f ( h ( with α > 0. )) J α ( ) g(h()) J α ( ) g(h()) J α (g (f h)) () J α (g (f h)) () ( ) ( ) g X h,, (h()h())γ(α1) f (h( (h()) )h())α1 α1 (h() h()) f (h()) f (h()) f (h()) f (h()) (h( )h())α α (h( )h())α α h,, (h()h())γ(α1) (h()h( ))α1 α1 (h() h()) (h()h( ))α α Proof. If f is convex on,, we know tht for t, f (h(t)) ( = h() h(t) f h() h() h() h(t) h() h() h() h(t) h() h() h() h()) f (h()) h(t) h() h() h() From Lemm.1, we hve f ( h ( )) J α g(h()) J α g(h()) ( ) ( ) (h()h( ))α α f (h()).

Adullh Akkurt nd Hüsey ın Yıldırım 111 J α (g (f h)) () J α (g (f h)) () ( ) ( ) 1 (h(s) h()) α1 g(s)h (s)ds f (h(t)) h (t)dt h,, (h() h()) (h() h(s)) α1 g(s)h (s)ds f (h(t)) h (t)dt (h(s) h()) α1 h (s)ds ( h() h(t) f (h()) ) h (t)dt (h(s) h()) α1 h ( (s)ds h(t) h() f (h()) ) h (t)dt (h() h(s)) α1 h (s)ds h,, (h() h()) ( h() h(t) f (h()) ) h (t)dt (h() h(s)) α1 h ( (s)ds h(t) h() f (h()) ) h (t)dt. h,, (h() h()) Γ (α 1) (h(t) h()) α ( h() h(t) f (h()) ) h (t)dt (h(t) h()) α1 f (h()) h (t)dt h,, (h() h(t)) α1 f (h()) h (t)dt (h() h()) Γ (α 1)

11 On Hermite-Hdmrd-Fejér type inequlities for convex... (h() h(t)) α1 ( h(t) h() f (h()) ) h (t)dt h,, f (h()) (h() h()) Γ (α 1) (h( ) h())α f (h()) α h,, (h() h()) Γ (α 1) (h() h( ))α α f (h()) f (h()) (h( ) h())α1 α 1 (h( ) h())α α (h() h()) (h() h( ))α1 α 1 (h() h( ))α α (h() h()). This completes the proof. Remrk.3. If we choose h(x) = x in Theorem.1, we otin Theorem 6 in 5. Remrk.4. If we choose h(x) = x, g(x) = 1 nd α = 1 in Theorem.1, we otin Theorem. in 1. Theorem.. Let f : I R e differentile mpping on I nd f X p h, with < nd g :, R is continuous. If f q is convex on,, q 1 then the following inequlity for frctionl integrls holds: (13) f ( h ( )) J α ( J α ( ) (g (f h)) () J α ( h,, (h() h()) 1 q ) g(h()) J α ( ) g(h()) ( h ( (g (f h)) () ) ) ) 1 1 h() q f (h()) q α (α 1) (h( ) h())α1 (h() h()) α 1 f (h()) q (h( ) 1 h())α q α (h( ) h())α α ( h,, h () h( ) ) 1 1 q f (h()) q (h() h()) 1 q α (α 1)

with α > 0. Adullh Akkurt nd Hüsey ın Yıldırım 113 (h() h( ))α1 (h() h()) (h() h( ))α α 1 α f (h()) 1 q (h() h( ))α q. α Proof. If f q is convex on,, we know tht for t, f (h(t)) ( ) q = h() h(t) f h(t) h() q h() h() h() h() h() h() h() h(t) f (h()) q h(t) h() f (h()) q. h() h() h() h() From Lemm.1, power men inequlity nd the convexity of f q, it follows tht f ( h ( )) J α g(h()) J α g(h()) ( ) ( ) J α (g (f h)) () J α (g (f h)) () ( ) ( ) 1 t 11/q (h(s) h()) α1 g(s)h (s)ds h (t)dt 1 h,, 1/q (h(s) h()) α1 g(s)h (s)ds f (h(t)) q h (t)dt (h() h(s)) α1 g(s)h (s)ds h (t)dt 11/q 1/q (h() h(s)) α1 g(s)h (s)ds f (h(t)) q h (t)dt (h(s) h()) α1 h (s)ds h (t)dt 11/q

114 On Hermite-Hdmrd-Fejér type inequlities for convex... h,, 1/q (h(s) h()) α1 h (s)ds f (h(t)) q h (t)dt h,, (h() h()) 1 q (h() h(s)) α1 h (s)ds h (t)dt 11/q 1/q (h() h(s)) α1 h (s)ds f (h(t)) q h (t)dt. (h(s) h()) α1 h (s)ds ( h() h(t) f (h()) q ) h (t)dt (h(s) h()) α1 h ( (s)ds h(t) h() f (h()) q ) h (t)dt h,, t (h() h()) 1 (h() h(s)) α1 h (s)ds q ( h() h(t) f (h()) q ) h (t)dt (h() h(s)) α1 h ( (s)ds h(t) h() f (h()) q ) h (t)dt h,, (h() h()) 1 q ( h ( ) h() α (α 1) ) 11/q f (h()) q (h( ) h())α1 (h() h()) α 1 f (h()) q (h( ) h())α α f (h()) q (h( ) 1 h())α q α 1 q 1 q

h,, (h() h()) 1 q Adullh Akkurt nd Hüsey ın Yıldırım 115 ( h () h( ) α (α 1) ) 11/q f (h()) q (h() h( ))α1 (h() h()) α 1 (h() h( ))α α f (h()) q (h() h( ))α α 1 q. Remrk.5. If we choose h(x) = x in Theorem., we otin Theorem 7 in 5. Lemm.. Let f :, R e differentile mpping on (, ) with < nd let g :, R. If f, g X p h,, then the following identity for frctionl integrls holds: f ( h ( )) J α g(h()) J α g(h()) (14) where J α ( ) g(h()) J α ( ) g(h()) 1 (h() h()) α1 g(s)h (s)ds J α (g (f h)) () J α (g (f h)) () J α (g (f h)) () J α (g (f h)) () ( ) ( ) 1 = 1 k(t)df(h(t)) k(t) = (h() h()) α1 g(t)f(h(t))h (t)dt (h() h()) α1 (h() h(s)) α1 (h(s) h()) α1 g(s)h (s)ds t,, (h() h(s)) α1 (h(s) h()) α1 (h() h()) α1 g(s)h (s)ds t,.

116 On Hermite-Hdmrd-Fejér type inequlities for convex... Proof. It suffices to note tht I = = k(t)df(h(t)) t t = I 1 I. By integrtion y prts, we get (h() h()) α1 (h() h(s)) α1 (h(s) h()) α1 g(s)h (s)ds df(h(t)) (h() h(s)) α1 (h(s) h()) α1 (h() h()) α1 g(s)h (s)ds df(h(t)) I 1 = t (h() h()) α1 (h() h(s)) α1 (h(s) h()) α1 g(s)h (s)ds df(h(t)) = t (h() h()) α1 (h() h(s)) α1 (h(s) h()) α1 g(s)h (s)ds f(h(t)) (h() h()) α1 (h() h(t)) α1 (h(t) h()) α1 g(t)f(h(t))h (t)dt = f ( h ( )) (h() h()) α1 (h() h(s)) α1. (h(s) h()) α1 g(s)h (s)ds

Adullh Akkurt nd Hüsey ın Yıldırım 117 nd similrly I = = t (h() h()) α1 (h() h(t)) α1 (h(t) h()) α1 g(t)f(h(t))h (t)dt = f ( h ( )) J α g(h()) J α ( ) g(h()) t 1 (h() h()) α1 g(s)h (s)ds J α (g (f h)) () J α ( ) (g (f h)) () 1 (h() h()) α1 g(t)f(h(t))h (t)dt (h() h(s)) α1 (h(s) h()) α1 (h() h()) α1 g(s)h (s)ds df(h(t)) (h() h(s)) α1 (h(s) h()) α1 (h() h()) α1 g(s)h (s)ds f(h(t)) (h() h(t)) α1 (h(t) h()) α1 (h() h()) α1 g(t)f(h(t))h (t)dt = f ( h ( )) (h() h(s)) α1 (h(s) h()) α1 (h() h()) α1 g(s)h (s)ds

118 On Hermite-Hdmrd-Fejér type inequlities for convex... = (h() h(t)) α1 (h(t) h()) α1 Thus, cn write (h() h()) α1 g(t)f(h(t))h (t)dt f ( h ( J α ( I 1 I = )) J α ( ) g(h()) J α g(h()) 1 (h() h()) α1 g(s)h (s)ds ) (g (f h)) () J α (g (f h)) () 1 f ( h ( (h() h()) α1 g(t)f(h(t))h (t)dt. )) J α g(h()) J α g(h()) J α ( ) g(h()) J α ( ) g(h()) 1 1 (h() h()) α1 g(s)h (s)ds J α (g (f h)) () J α (g (f h)) () (h() h()) α1 g(s)h (s)ds J α ( ) (g (f h)) () J α ( ) (g (f h)) () 1 1 (h() h()) α1 g(t)f(h(t))h (t)dt (h() h()) α1 g(t)f(h(t))h (t)dt

Adullh Akkurt nd Hüsey ın Yıldırım 119 Multiplying the oth sides () 1, we otin (14) which completes the proof. Remrk.6. If we choose h(x) = x in Lemm., we hve f ( ) J α g() J α g() J α g() J α g() ( ) ( ) ( )α1 g(s)ds J α (gf) () J α (gf) () where J α (gf) () J α ( )α1 (gf) () ( ) ( ) = 1 k(t)df(t) k(t) = ( )) α1 ( s) α1 (s ) α1 g(s)ds, t ( s) α1 (s ) α1 ( ) α1 g(s)ds, t g(t)f(t)dt,,,. Remrk.7. If we choose h(x) = x nd g(x) = 1 in Lemm., we hve f ( ) ( ( ) α 1 1 ( )) 1 α α J α f() J α f() J α f() J α ( )α1 f() f(t)dt ( ) ( ) = 1 k(t)df(t) where k(t) = ( ) α1 ( s) α1 (s ) α1 ds, t,, ( s) α1 (s ) α1 ( ) α1 ds, t,.

10 On Hermite-Hdmrd-Fejér type inequlities for convex... Remrk.8. If we choose h(x) = x, α = 1 nd g(x) = 1 in Lemm., we otin Lemm.1 in 1 1 ( 1 = ( ) f(t)dt f ( ) 0 1 tf (t (1 t))dt 1 ) (t 1) f (t (1 t))dt. Theorem.3. Let f : I R e differentile mpping on I nd f X p h, with < nd g :, R is continuous. If f is convex on,, then the following inequlity for frctionl integrls holds: f ( g,, ( ) ) J α g() J α g() J α ( ) g() J α ( )α1 g() g(s)ds ( ) J α (gf) () J α (gf) () J α (gf) () ( ) J α ( )α1 (gf) () ( ) g,, ( ) with α > 0. t g(t)f(t)dt ( ) α1 ( s) α1 (s ) α1 ds ( ( t) f () (t ) f () ) dt ( s) α1 (s ) α1 ( ) α1 g(s)ds ( ( t) f () (t ) f () ) dt Proof. If f is convex on,, we know tht for t, f (t) ( = t f t ) t f () t f ().

Adullh Akkurt nd Hüsey ın Yıldırım 11 From Remrk.6, we hve f ( 1 ) J α g() J α g() J α ( ) g() J α ( ) g() ( )α1 g(s)ds J α (gf) () J α (gf) () J α (gf) () J α ( )α1 (gf) () ( ) ( ) 1 ( ) g(t)f(t)dt ( ) α1 ( s) α1 (s ) α1 g(s)ds f (t) dt ( s) α1 (s ) α1 ( ) α1 ds g(s) f (t) dt t g,, ( ) ( ) α1 ( s) α1 (s ) α1 g(s)ds ( ( t) f () (t ) f () ) dt t t g,, ( ) ( s) α1 (s ) α1 ( ) α1 g(s)ds ( ( t) f () (t ) f () ) dt ( ) α1 ( s) α1 (s ) α1 ds ( ( t) f () (t ) f () ) dt ( s) α1 (s ) α1 ( ) α1 g(s)ds ( ( t) f () (t ) f () ) dt

1 On Hermite-Hdmrd-Fejér type inequlities for convex... g,, ( ) g,, ( ) ( ) α1 ( s) α1 (s ) α1 ds ( ( t) f () (t ) f () ) dt t ( s) α1 (s ) α1 ( ) α1 g(s)ds ( ( t) f () (t ) f () ) dt. This completes the proof. References 1 A.A. Kils, H.M. Srivstv, J.J. Trujillo, Theory nd Applictions of Frctionl Differntil Equtions, Elsevier B.V., Amsterdm, 006. A. Akkurt, H. Yıldırım, On Feng Qi Type Integrl Inequlities For Generlized Frctionl Integrls, IAAOJ, Scientific Science, 1(), (013), -5. 3 A. Akkurt, Z. Kırty, H. Yıldırım, Generlized Frctionl Integrls Inequlities for Continuous Rndom Vriles, Journl of Proility nd Sttistics, Volume 015 (015), Article ID 958980, 7 pges, http://dx.doi.org/10.1155/015/958980. 4 E. F. Beckench, Convex functions, Bull. Amer. Mth. Soc., 54 (1948) 439-460. http://dx.doi.org/10.1090/s000-9904-1948-08994-7 5 E. Set, İ. İşcn, M. E. Özdemir nd M. Z. Srıky, On new Hermite-Hdmrd-Fejer type inequlities for convex functions vi frctionl integrls, Applied Mthemtics nd Computtion, 59(015), 875 881. 6 H. Yıldırım, Z. Kırty, Ostrowski Inequlity for Generlized Frctionl Integrl nd Relted Inequlities, Mly Journl of Mtemtik: Volume, Issue 3, 014, pp. 3-39. 7 İ. İşcn, Hermite Hdmrd Fejér type inequlities for convex functions vi frctionl integrls, Stud. Univ. Beş-Bolyi Mth. 60 (015), No. 3, 355-366 8 J. Prk, Inequlities of Hermite-Hdmrd-Fejér Type for Convex Functions vi Frctionl Integrls,Interntionl Journl of Mthemticl Anlysis,Vol. 8, 014, no. 59, pp. 97-937, http://dx.doi.org/10.1988/ijm.014.411378. 9 K. L. Tseng, S. R. Hwng, S. S. Drgomir, Fejér-type inequlities (I), J. Inequl. Appl., 010 (010), Art ID: 531976, 7 pges. http://dx.doi.org/10.1155/010/531976. 10 L. Fejér, Uerdie Fourierreihen, II, Mth. Nturwise. Anz Ungr. Akd., Wiss 4 (1906) 369 390 (in Hungrin).

Adullh Akkurt nd Hüsey ın Yıldırım 13 11 M.Z. Sriky, E. Set, H. Yldız, N. Bşk, Hermite Hdmrd s inequlities for frctionl integrls nd relted frctionl inequlities, Mth. Comput.Modell. 57 (9) (013) 403 407. 1 M. E. Özdemir, M. Avic, H. Kvurmci, Hermite-Hdmrd type inequlities for s- convex nd s-concve functions vi frctionl integrls, Turkish Journl of Science 1 (016): 8-40. 13 M. Z. Sriky, On new Hermite Hdmrd Fejér type integrl inequlities, Stud. Univ. Bes-Bolyi Mth. 57(3) (01) 377-386. 14 M. Tunç, On some new inequlities for convex functions, Turk. J. Mth., 35 (011), 1-7. 15 M. Z. Sriky, S. Erden, On the Hermite-Hdmrd-Fejér type integrl inequlity for convex function, Turk. J. Anl. Numer Theory (3) (014) 85 89. 16 M. Z. Sriky, A. Sğlm nd H. Yıldırım, On some Hdmrd-type inequlities for h-convex functions, J. Mth. Ineq., (3) (008), 335-341. 17 S.G. Smko, A.A. Kils, nd O.I. Mrichev, Frctionl Integrls nd Derivtives - Theory nd Applictions, Gordon nd Brech, Linghorne, 1993. 18 S. Belri, Z. Dhmni, On some new frctionl integrl inequlities, J. Ineq. Pure Appl. Mth. 10 (3) (009). Art. 86. 19 S. Kılınç, H. Yıldırım, Generlized Frctionl Integrl Inequlities Involving Hipergeometric Opertors, IJPAM., vol.101 no.1 (015) pp.71-8. 0 Z. Dhmni, On Minkowski nd Hermite-Hdmrd integrl inequlities vi frctionl integrtion, Ann. Funct. Anl. 1(1) (010) 51-58. 1 U.S. Kırmcı, Inequlities for differentile mppings nd pplictions to specil mens of rel numers nd to midpoint formul, Appl. Mth. Comput. 147 (1) (004) 137 146. Adullh Akkurt Deprtment of Mthemtics University of Khrmnmrş Sütçü İmm Khrmnmrş 46100 Turkey E-mil ddress: dullhmt@gmil.com Hüsey ın Yıldırım Deprtment of Mthemtics University of Khrmnmrş Sütçü İmm Khrmnmrş 46100 Turkey E-mil ddress: hyildir@ksu.edu.tr