Henstock-Kurzweil Laplace Transform

Størrelse: px
Starte visningen fra side:

Download "Henstock-Kurzweil Laplace Transform"

Transkript

1 Chper 5 Hensock-Kurzweil Lplce Trnsform 5.1 Inroducion The Lplce rnsform of funcion f : [, ) R, s C, is defined s he inegrl [15] e s f() d. (5.1) Mny uhors, in some previous decdes, showed heir ineres in sudying he Lplce rnsform in clssicl sense; by clssicl mening Lebesgue inegrl nd/or Riemnn inegrl on he rel line. In his chper, we focus on n inegrl rnsform h generlizes he clssicl Lplce rnsform. Here he generlizion is given by he replcemen, in he definiion of Lplce rnsform, i.e., in (5.1), of Lebesgue inegrl wih Hensock-Kurzweil (HK) inegrl. The Hensock-Kurzweil inegrl is defined in erms of Riemnn sums bu wih sligh modificion, ye i includes he Riemnn, improper Riemnn, nd Lebesgue inegrls s specil cses. This inegrl is equivlen o he Denjoy nd Perron inegrls. 117

2 The firs quesion rises is h wheher (or in which condiions) he Lplce rnsform when reed s HK inegrl mke sense. The sufficien condiion for he exisence of Lplce rnsform is h he funcion f is loclly inegrble on [, ), becuse he produc of loclly inegrble funcion nd bounded mesurble funcion is loclly inegrble. Since Hensock- Kurzweil inegrl llows nonbsolue convergence, i mkes n idel seing for he Lplce rnsform. I ws proved [9] h, on compc inervl, he produc of nonbsolue inegrble funcion nd bounded vriion funcion is sill nonbsolue inegrble nd his remins vlid in cse of n unbounded inervl [1]. We observed in (5.1) h he kernel funcion e s, s C, is no bounded vriion funcion on [, ) hence we cnno clim (s in he clssicl sense) h he HK Lplce rnsform exiss for ny HK inegrble funcion. The convoluion plys n imporn role in pure nd pplied mhemics, pproximion heory, differenil nd inegrl equions nd mny oher res. Lplce rnsform hs he propery h i cn inerc wih convoluions so we obin vrious resuls on convoluion. We give necessry nd sufficien condiions so h he convoluion operor s HK inegrl is coninuous. Finlly we solve he problem of inversion by using generlized differeniion. The resuls in his chper re ppered in [, 14]. 5. Exisenil Condiions In his secion, we ckle he problem of exisence of Lplce rnsform s HK inegrl. According o Zyed [16], he clssicl sufficien condiion for he exisence 118

3 of Lplce rnsform is h he funcion f is loclly inegrble on [, ), i.e., f L loc [, ). This is becuse he muliplier for he Lebesgue inegrble funcions is bounded mesurble funcion nd he funcion e s, s C, is bounded mesurble funcion. We know h he mulipliers for HK inegrble funcions re precisely he funcions of bounded vriion [1]. Noe h in (5.1), he funcion e s, s C, is no of bounded vriion on [, ) bu i is of bounded vriion on ny compc inervl J R. Hence we cn no consider (5.1) s HK inegrl direcly. So we cnno ge ny specific condiion for he exisence of Lplce rnsform s HK inegrl. However we do hve he following differen condiions. Theorem Le f : [, ) R be ny coninuous funcion such h F (x) = x f, x <, is bounded on [, ). Then he Lplce rnsform L{f}(s), i.e., L{f}(s) = e s f() d, Re.s > exiss. Proof. Le < x <, s = σ + iω, σ, ω R. We hve (F () e s ) = s F () e s + f() e s. Since e s is of bounded vriion on ny compc inervl, sy [, b] nd F () is bounded on [, ). Then F () e s is HK inegrble on [, b]. Therefore s F () e s is inegrble over I = [, b]. Now (e s ) d = s e s d = = σ + ω e σ d σ + ω [e σ e σb ]. σ Wihou loss of generliy le us ke =. Therefore (e s ) σ + ω d = [1 e σb ] <. σ 119

4 Hence (e s ) is bsoluely inegrble over [, b]. Now by Hke s heorem [1], we cn wrie lim (e s ) σ + ω d = lim [1 e σb ] b b σ σ + ω =, σ > σ σ + ω =, Re.s >. σ This shows h (e s ) is bsoluely inegrble on [, ). Agin lim e s =, Re.s >. Hence he funcion e s : [, ) R is coninuous on [, ) wih lim e s = nd (e s ) is bsoluely inegrble over [, ) nd we hve ssumed h f : [, ) R is coninuous funcion such h F (x) = x f, x <, is bounded on [, ). Therefore by Dedekind s es [1], we cn sy h he inegrl e s f() d exiss for Re.s >. Remrk 5... The bove resul cn lso be proved by using Du-Bois Reymond s es [1] s follows: Tke φ() = e s, s = σ + iω, J = [, ). Then clerly φ() is differenible nd φ L 1 (J). Since F is bounded, we hve lim F () e s =, Re.S >. Hence F (x) = x f, x < is bounded on J, e s is differenible on J, (e s ) L 1 (J) nd F () e s s, Re.s >. Therefore by Du-Bois Reymond s es, f()e s HK(J). Th is, he Lplce rnsform of f(), e s f() d exiss, Re.s >. 1

5 Theorem If he Lplce rnsform of f(), e s f() d exiss for Re.s >, hen he funcion f HK loc. Proof. Suppose he inegrl e s f() d exiss for Re.s >. Noe h he funcion e s, s C, s funcion of rel vrible, is no of bounded vriion on [, ) bu is of bounded vriion on ny compc inervl I = [, b]. By Hke s heorem [1], we cn wrie e s f() d = lim b e s f() d. Since he limis on R.H.S. exis, we cn sy h he HK inegrl e s f()d exiss, Re.s > for some compc inervl [, b]. Hence he funcion f() is HK inegrble necessrily on he compc inervl I = [, b], h is, f HK loc. Theorem Le f HK([, )). Define F (x) = f() d. Then x L{f}(s) exiss if nd only if e s F () d exiss s C. Proof. Le T >. The funcion e s, s C, is of bounded vriion on compc inervl [, T ] nd he funcion f is HK inegrble on [, ). Hence e s f(), s C, is HK inegrble on [, T ] nd by inegring by prs, we ge T T e s f() d = e st F (T ) F () + s e s F () d. Since he funcion f is HK inegrble on [, ), F () is finie, sy A nd by [9.1(), [5]], F is coninuous funcion such h lim F (T ) =. T Therefore by Hke s heorem [1], T { T } lim e s f() d = lim e st F (T ) F () + s e s F () d. T T 11

6 Hence e s f() d = s e s F () d A. This shows h L{f}(s) exiss if nd only if e s F () d exiss s C, Re.s >. Theorem (Uniqueness heorem) Le L{f}(s) = e s f() d nd L{g}(s) = e s g() d. If f() = g().e. on [, ), hen L{f}(s) = L{g}(s). 5.3 Bsic Properies The usul elemenry properies such s lineriy, dilion, modulion, rnslion re remins sme for he HK Lplce rnsform, he proofs of which re quie similr o h of clssicl ones. Also here re some oher resuls h re nlogous o he clssicl one wih some modificion in he hypohesis which we discuss below. Theorem (HK Lplce rnsform of derivive) Le f : [, ) f() R be funcion which is in ACG δ (R) such h lim =. Then for Re.s > e s boh L{f}(s) nd L{f }(s) fil o exis or L{f }(s) = s L{f}(s) f(). Proof. Le T >. Consider he inegrl J = T e s f () d. This inegrl is vlid since he funcion e s, s C, is bounded vriion on ny compc inervl [, T ] nd he funcion f is HK inegrble on R. By inegring by prs, we ge By Hke s heorem [1], T lim T J = e st f(t ) f() + s T e s f() d. T e s f () d = lim T e st f(t ) f() + lim s e s f() d T 1

7 Therefore = s e s f () d = s Th is, L{f }(s) = s L{f}(s) f(). e s f() d f(). e s f() d f(). Remrk The bove resul cn be generlize by imposing he condiions on f s: For k =, 1,,..., (n 1), f (k) f re in ACG δ (R) nd lim (k) =, Re.s >. e s Then L{f (n) }(s) nd L{f}(s) fils o exis or L{f (n) }(s) = s n L{f}(s) s n 1 f() s n f ()... f (n 1) (). Theorem (Differeniion of HK Lplce rnsform) Le f : [, ) R be funcion such h L{f}(s) exiss on compc inervl, sy J = [α, β], α, β R. Define g() = f() nd ssume h g HK(R + ). Then L{g}(s) exiss nd L{g}(s) = (L{f}(s)).e. Here s R. Proof. Suppose L{f}(s) = Define g() = f(). e s f() d exiss on [α, β], α, β R. We know he necessry nd sufficien condiion for differeniing under he HK inegrl is h for ll [, b] [α, β] [1]. Now e s f() ds d = = s= s= = e s f() ds d = = s= = e s f() d ds (5.) (e e b )f() d 13

8 = L{f}() L{f}(b) which exiss. Therefore he double HK inegrl = s= e s f() ds d exiss. Hence by [lemm 5(), [13]], he equliy in (5.) holds nd we cn differenie under he HK inegrl. By (5.), we hve s= = e s f() d ds = L{f}() L{f}(b) = (L{f}(s)) ds. Therefore e s f() d ds = s= = for ll [, b] [α, β]. Which implies h (L{f}(s)) ds e s f() d = (L{f}(s)).e. on [α, β]. Th is, L{ f()}(s) = (L{f}(s)).e. on [α, β]. Hence he derivive of he HK Lplce rnsform of f() exiss.e. on [α, β]. Remrk Le G(s) = L{ f()}(s) nd H(s) = L{f()}(s). Then (H(s)) = G(s).e. on [α, β]. And, we know h [5], A funcion f : [, b] R is HK inegrble on [, b] if nd only if here exiss n ACG δ funcion F on [, b] such h F = f.e. on [, b]. Agin, by fundmenl heorem of clculus [1], (H(s)) is HK inegrble, i.e., every derivive is HK inegrble. Hence G(s) is lso HK inegrble. Consequenly, he funcion H(s) is ACG δ on [α, β]. Coninuing in his wy n-imes, we cn sy h if n f() is HK inegrble, hen ny order of derivive of L{f}(s) exiss.e. So L{f}(s) is nlyic.e. 14

9 Theorem (Muliplicion by 1 ) Le f : [, ) R be funcion { } such h L{f}(s) exiss nd ssume h f() HK(R + ). Then L f() (s) exiss nd Here s R. { } f() L (s) = Proof. Assume h f() HK(R + ). s L{f}(u) du. Since he funcion e s is of bounded vriion on ny compc inervl I = [, b], we hve e s f() HK([, b]). Th is, e s f() d exiss. Wihou loss of generliy, le us ke = so h e s f() d exiss. By Hke s heorem [1], lim } Hence L (s) exiss. { f() Now consider he inegrls I 1 = s b e s f() d exiss. e u f() du d, I = I 1 = = Therefore I 1 exiss on R R. [e s ] f() d s f() e d which exiss. s e u f() d du. Also, noe h he funcion e s is of bounded vriion on ny compc inervl J R. Therefore R V J(e s ) d < M J, for some consn M J >. Hence by [lemm 5(), [13]], I exiss on R R nd I 1 = I on R R. So Th is, L s f() e d = = s { } f() (s) = L{f}(u) du. s s e u f() d du L{f}(u) du. 15

10 Theorem (HK Lplce rnsform of inegrl) Le f : [, ) R { } be HK inegrble funcion such h L{f}(s) exiss. Then L f(u) du (s) { } exiss nd L f(u) du (s) = 1 L{f}(s). s Proof. Define F () = f(u) du, R+. Then F () = f().e. on R + [9.1(b), [5]]. Since f HK(R + ), he inegrl Th is, lim Hence lim F () is bounded on R +. Now for T >, consider T f(u) du exiss on R +. f(u) du exiss on R +. e s f() d = T e s F () d. This inegrl exiss since e s is of bounded vriion on [, T ] nd he funcion f() is HK inegrble on R +. By inegring by prs, we ge T T e s f() d = e st F (T ) + s e s F () d. Since lim F (T ) is bounded on R, se lim F (T ) = A. T T By Hke s heorem [1], we cn wrie T e s f() d = lim e s f() d T = lim T e st F (T ) + s lim = s T T e s F () d Re.s >. e s F () d 16

11 Therefore Th is, e s F () d = 1 s e s f() d, Re.s >. e s f(u) du d = 1 L{f}(s), Re.s >. s { } Hence L f(u) du = 1 L{f}(s), Re.s >. s 5.4 Convoluion In his secion we shll discuss some clssicl resuls of Lplce convoluion in he HK inegrl seing, clled HK-convoluion. Firs we give wo resuls bou he exisence of HK-convoluion. Theorem Le f HK(R + ) nd g BV(R + ). Then we hve f g exiss on R +. Proof. By definiion [4], f g() = f( τ) g(τ) dτ which exiss s HK-inegrl by muliplier heorem [1]. By inegring by prs, we ge Hence f g exiss on R +. f g() A f { } inf g + V R + [,] g(τ). Theorem Le f HK loc nd g BV such h he suppor of g is in he compc inervl I = [, b]. Then } f g() A f [ b, ] {inf g + V [,b] g(τ). [,b] 17

12 Proof. Suppose supp(g) [, b]. Then we hve f g() = f( τ)g(τ) dτ. Inegre by prs, we ge f g() g(τ) b f( τ) dτ + f( τ) dg(τ) inf g(τ) b b τ [,b] f( τ) dτ + f( τ) dτ V [,b] g(τ) { } inf g(τ) + V [,b] g(τ) sup τ [,b] f(u) du. [ b, ] b Therefore } f g() A f [ b, ] {inf g + V [,b] g(τ). [,b] The following resul shows h he HK-convoluion is bounded. Theorem Le f HK(R + ) nd g L 1 (R + ) BV(R + ). Then we hve A f g A f g 1. Proof. For < b, we hve Le f g() d = f( τ)g(τ) dτ d. I 1 = Consider f( τ)g(τ) dτ d nd I = I = f( τ)g(τ) d dτ. Since f HK(R + ), we hve f( τ) d exiss nd finie. Le b f(τ) dτ = M. 18 f( τ)g(τ) d dτ.

13 Therefore I M g(τ) dτ. Since g L 1 (R + ), we hve for some finie K, g(τ) dτ = K. So I MK nd hence I exiss on R + R +. Now s g L 1 (R + ), we hve g 1 K 1 nd lso V R + [,] g M 1. Therefore by [lemm 5, [13]], I 1 = I on R + R +. Hence f g() d sup b f(u) du g(τ) dτ [, b] A f [, b] g 1. Therefore sup [,b] Th is, A f g A f g 1. f g() d A f [, b] g 1. Now we give some bsic elemenry properies of HK-convoluion. Theorem Suppose f HK(R + ) nd g BV(R + ). Then he following holds: I) f g() = g f() for ll R +. II) (λf) g = f (λg) = λ(f g) for some λ C. III) (f g) x () = f x g() = f g x (). IV) h (f + g)() = h f() + h g() for some h HK(R + ). Proof. The proof is similr o h of he clssicl cse. 19

14 The ssociive propery of HK-convoluion is given in he nex heorem. Theorem If f HK(R + ), g BV(R + ) nd h L 1 (R + ), hen (f g) h() = f (g h)(), R +. Proof. Consider (f g) h() = τ By chnging he order of inegrion, we ge Now Consider nd Le (f g) h() = I 1 = I = = ξ= ξ= f(ξ) f(ξ) g(τ ξ) h( τ) dξ dτ. ξ f(ξ) g h( ξ) dξ = f (g h)(). τ=ξ ξ= J = ξ= g(u) h( u ξ) du dξ f(ξ) g(τ ξ) h( τ) dξ dτ f(ξ) g(τ ξ) h( τ) dτ dξ. τ=ξ τ=ξ g(τ ξ) h( τ) dτ. Inegre by prs, we ge J g( ξ) u h( τ) dτ + h( τ) dτ dg(τ ξ) τ=ξ τ=ξ τ=ξ inf g [ξ,] h( τ) dτ + h( τ) dτ V [ξ,] g(τ ξ) inf [ξ,] g τ=ξ τ=ξ h( τ) dτ + τ=ξ τ=ξ inf [ξ,] g h 1 + h 1 V [ξ,] g(τ ξ) 13 h( τ) dτ V [ξ,] g(τ ξ)

15 Therefore } h 1 {inf g + V [ξ,] g(τ ξ). [ξ,] I sup R + f(ξ) dξ { h 1 { inf A f h 1 {inf [ξ,] g + V [ξ,] g(τ ξ) }} g + V [ξ,] g(τ ξ) [ξ,] }. Hence I exiss on R + R +. And, by [lemm 5, [13]] we re hrough. Now we show h he HK-Lplce rnsform of convoluion of wo funcions is he produc of heir HK-Lplce rnsforms. Theorem Le f 1 HK(R + ), f L 1 (R + ) BV(R + ). Then f g exiss nd if L {f 1 ()} nd L {f ()} exis s C, hen L {f 1 f ()} exiss s C nd L {f 1 f ()} (s) = L {f 1 ()} (s) L {f ()} (s). Proof. Consider L {f 1 f ()} (s) = = e s f 1 f () d By inerchnging he iered inegrls, we hve L {f 1 f ()} (s) = τ= Bu by hypohesis boh he inegrls = e sτ f 1 (τ)e s( τ) f ( τ) dτ d. e sτ f 1 (τ) e sτ f 1 (τ) dτ =τ e s( τ) f ( τ) d dτ e su f (u) du. e sτ f 1 (τ) dτ nd e sτ f (τ) dτ exis s C. Therefore L {f 1 f ()} exiss s C nd 131

16 L {f 1 f ()} (s) = L {f 1 ()} (s) L {f ()} (s). Now i remins o show he jusificion for inerchnging he iered inegrls. Since he funcion f L 1 (R + ), K I such h f 1 < K I, where I = [, b] R + is ny compc inervl. Clerly, V [,b] e s( τ) f ( τ) e σu V [ b, ] f (τ) + f (τ) e σr for some rels u nd r nd so V [ b, ] e sτ f (τ) dτ e σu V [ b, ] f (τ) dτ +e σr f (τ) dτ. Therefore V [ b, ] e sτ f (τ) dτ e σu V [ b, ] f (τ) dτ + K I e σr. Since f BV(R + ), here exiss consn M I such h Then V [ b, ] f (τ) dτ < M I. V [ b, ] e sτ f (τ) dτ e σu M I + K I e σr. Thus for ech compc inervl I = [, b] R +, he inegrl is finie nd f 1 K I. Hence he inegrl V [ b, ] e sτ f (τ) dτ τ= =τ e s f 1 (τ) f ( τ) d dτ exiss on R + R +. And, by [lemm 5, [13]], we cn inerchnge he iered inegrls. 13

17 Theorem In ddiion o he hypohesis of he bove heorem if f 1 f () is in HK(R + ) nd f is coninuous, hen f 1 f () is coninuous wih respec o he Alexiewicz norm. Proof. Choose ny δ > such h < δ 1 (The cse for negive δ is nlogous). Define D(, δ) = f 1 f ( + δ) f 1 f () = I 1 + I. Where I 1 = f 1 (τ) [f ( + δ τ) f ( τ)] dτ, I = Since f BV(R + ), f is bounded on R +. +δ So here exiss M such h f (x) M, for ll x R +. Then +δ I M f 1 (τ) dτ. Bu f 1 HK(R + ) implies h lim δ Therefore I s δ. Now consider I 1 = +δ f 1 (τ) dτ. f 1 (τ) [f ( + δ τ) f ( τ)] dτ. f 1 (τ)f (+δ τ) dτ. By inegring by prs, we ge I 1 [f ( + δ τ) f ( τ)] f 1 (τ) dτ u + f 1 (τ) dτ d(f (u + δ τ) f (u τ)) f ( + δ τ) f ( τ) sup f 1 (τ) dτ R + u + sup f 1 (τ) dτ d(f (u + δ τ) f (u τ)) u R + 133

18 = f ( + δ τ) f ( τ) sup f 1 (τ) dτ R + u + sup f 1 (τ) dτ f (u + δ τ) f (u τ). u R + Therefore I 1 f ( + δ τ) f ( τ) sup f 1 (τ) dτ R + u + sup f 1 (τ) dτ f (u + δ τ) f (u τ). u R + Since f is coninuous on R +, for given ɛ > here exiss η > such h I 1 ɛ, δ < η. Therefore D(, δ) I 1 + I < ɛ, δ < η. Th is, for given ɛ > here exiss η > such h D(, δ) < ɛ, δ < η. Hence f 1 f is coninuous R +. Now, le α, β R +. Consider β α [f 1 f ( + δ) f 1 f ()] d = α+δ α f 1 f () d β+δ β f 1 f () d. Wrie F 1, (x) = x f 1 f () d. Then β sup [f 1 f ( + δ) f 1 f ()] d sup F 1, (α + δ) F 1, (α) α, β R + α R + α + sup β R + F 1, (β + δ) F 1, (β). Since F 1, is n indefinie HK inegrl of f 1 f on R +, i is coninuous on R + [5]. Therefore for given ɛ > here exiss η > such h Hence we hve F 1, (ξ + δ) F 1, (ξ) < ɛ, δ < η nd for ll ξ R+. sup α, β R + β α [f 1 f ( + δ) f 1 f ()] d < ɛ, δ < η. 134

19 Thus for given ɛ > here exiss η > such h A f 1 f (+δ) f 1 f () < ɛ, δ < η. This shows h f 1 f () is coninuous R + wih respec o he Alexiewicz norm. The following resul concerns wih necessry nd sufficien condiions on f n nd g n : [, ] R so h he HK-convoluion s n operor is coninuous. I involves eiher uniform boundedness or uniform convergence of he indefinie HK inegrl of f n. Theorem Le {f n } be sequence of HK-inegrble funcions, f n : [, ] R, n such h f n = f s n for some HK-inegrble funcion f : [, ] R. Define F n (x) = x f n, F (x) = x f. Le {g n } be sequence of uniform bounded vriion funcions, g n : [, ] R, n, such h g n g poinwise on [, ], where g : [, ] R. Then f n g n () f g() s n if nd only if i) F n F uniformly on [, ] s n. ii) F n F poinwise on [, ], {F n } is uniformly bounded nd V (g n g). Proof. i) Suppose F n F uniformly on [, ] s n. By ssumpion nd muliplier heorem [1], f n g n () exiss R + nd f n g n () = f n (u) g n ( u) du nd f g() = Consider f n g n () f g() = I 1 + I, where I 1 = [f n (u) f(u)] g n ( u) du, I = f(u) g( u) du. [g n ( u) g( u)] f(u) du. 135

20 By inegring by prs, we ge Then I 1 = g n ( u) [f n (u) f(u)] du = g n ( u)[f n () F ()] I 1 Mx u F n(u) F (u) s n Hence I 1 s n. And by inegring by prs, we ge y [F n (u) F (u)] dg n. [f n (u) f(u)] dg n dg n + M F n () F () (Since F n F uniformly). I = {g n ( u) g( u)} f F dg n + F dg. By ssumpion he firs erm ends o nd since F is coninuous nd ech g n is of bounded vriion wih g n g s n, so we hve F dg n F dg. Hence I s n. Therefore f n g n () f g() s n. Now for he converse pr, suppose h eiher F n F on [, ] or F n F no uniformly on [, ]. Then here is sequence {x i } i Λ in [, ] on which F n F uniformly. So, by Bolzno-Weiersrss heorem [7], we cn find subsequence {y i } i Γ of {x i } i Λ, Γ Λ, such h F n (y i ) F (y i ) for ll i nd y i y s i, i.e., F n (y i ) F (y i ). Le us ssume wihou loss of generliy h < y n y. Le H be Heviside sep funcion. Define H(u y n ), g n ( u) = H(u y), n Γ oherwise 136

21 nd g( u) = H(u y). Then we hve, for n Γ, f n g n () = F n () F n (y n ) nd f g() = F () F (y). Since F n (y n ) F (y n ) s n, y n y s n nd F is coninuous, we hve F n (y n ) F (y). Bu F n () F () s n. Therefore f n g n () f g() s n which is conrdicion. Hence we mus hve F n F uniformly on [, ]. ii) Suppose F n F poinwise on [, ], F n is uniformly bounded nd V (g n g). Consider f n g n () f g() = I 1 + I, where I 1 = f n (u) [g n ( u) g( u)] du, I = By inegring by prs, we ge I 1 = [g n ( u) g( u)] f n = [g n ( u) g( u)] F n () Therefore y [f n (u) f(u)] g( u) du. f n d(g n g) F n (y) d(g n g). I 1 g n ( u) g( u) F n () + F n (y) V (g n g). Since {F n } is uniformly bounded, we hve F n M, n nd for some consn M. Therefore I 1 g n ( u) g( u) M + M V (g n g). By ssumpion g n g s n nd lso V (g n g). Hence I 1 s n. Agin by inegring by prs, we wrie I = g( u) {F n () F ()} 137 (F n F ) dg. (5.3)

22 By ssumpion F n () F (), so he firs erm ends o. And, since F n M, F n F nd g is of bounded vriion, by he domined convergence heorem for Riemnn-Sieljes inegrl [6], we hve F n dg F dg s n. Therefore by (5.3), I s n. Hence f n g n () f g() s n. Now for he converse pr suppose here is c (, b) such h F n (c) F (c) s n. Le g n ( x) = g( x) = H(x c). Then f n (u) g n ( u) du = F n () F n (c), f(u) g( u) du = F () F (c). Since F n () F () nd F n (c) F (c), we hve F n () F n (c) F () F (c) s n. Th is, f n g n () f g() s n which is conrdicion. Hence we mus hve F n F poinwise on [, ]. Now if {F n } is no uniformly bounded, hen here is sequence {x i } i Λ in [, ] on which F n. Therefore by Bolzno-Weiersrss heorem [7], we cn find subsequence {y i } i Γ of {x i } i Λ, Γ Λ, such h F n (y i ) 1 for ll n nd F n (y i ) nd y i y. Wihou loss of generliy le us ke y i y. Define g n ( u) = H(u y i). Fn(yi ) Then V (g n ) 1, g = nd V (g n g) = nd f n (u) g n ( u) du = 138 f n (u) H(u y i) Fn (y i ) du

23 f n (u) = y i Fn (y i ) du = F n() Fn (y i ) F n (y i ). Therefore nd f n (u)g n ( u) du s n f(u)g( u) du =. Hence f n g n f g s n which is conrdicion nd so we mus hve {F n } is uniformly bounded sequence. 5.5 Inversion Since in cse of Hensock-Kurzweil inegrl, he inegrion process nd differeniion process re inverse of ech oher. Here we shll esblish he inverse of Hensock-Kurzweil Lplce rnsform by using Pos s generlized differeniion mehod [8]. For his we shll need following lemms: Lemm Le η be such h < η < b, nd h(x) C ( x + η), h () =, h () <, h(x) is nonincresing on (, b]. Then ( π e k h(x) dx e k h() k h () k. Proof. Since h(x) C ( x + η), h (x) is coninuous. Le ɛ > be such h < ɛ < h (). Choose δ >, δ < η such h h (x) h () < ɛ, x + δ. Th is, h () ɛ < h (x) < h () + ɛ, x + δ. (5.4) 139

24 Consider he inegrl We wrie I k = I k + I k, where I k = +δ I k = e k [h(x) h()] dx. e k [h(x) h()] dx, I k = e k [h(x) h()] dx. +δ Since h is nonincresing on (, b], we hve h(x) h( + δ) for ll x > + δ. Therefore nd Hence I k Now consider s k. I k e k [h(+δ) h()] dx +δ I k e k [h(+δ) h()] (b δ). I k = +δ By Tylor s series wih reminder, we hve Therefore h(x) h() h (ξ) So by (5.4), we cn wrie +δ Th is, I k = e k [h () ɛ] (x ) dx +δ +δ e k [h(x) h()] dx. (x ), ξ + δ. e k h (ξ) (x ) dx. +δ e k h (ξ) (x ) dx e k [h ()+ɛ] (x ) dx. Consider +δ +δ e k [h () ɛ] (x ) dx I k e k [h ()+ɛ] (x ) dx. (5.5) J = +δ e k [h () ɛ] (x ) dx. 14

25 Afer subsiuing x = u, we ge Therefore +δ Similrly, +δ J = = = δ e k [h () ɛ] u du 1 k (h () ɛ) k 1 (h () ɛ) 1 π k (h () ɛ) ( e k [h () ɛ] (x ) dx = ( e k [h ()+ɛ] (x ) dx = δ k (h () ɛ) Therefore (5.5) becomes ( ( π I k (h k () ɛ) Since ɛ > is rbirry, we hve ( π I k h k () Hence So Th is, ( I k π k h () ( e k [h(x) h()] dx e u du e u du s k s k. π k (h () ɛ) π k (h () + ɛ) ( π k h () ( e k h(x) dx e k h() π k h () π k (h () + ɛ) π. k h () s k. s k. s k.. s k. s k. 141

26 Lemm Le η be such h < η < b, nd h(x) C (b η x b), h (b) =, h (b) <, h(x) is nonincresing on [, b). Then ( e k h(x) dx e k h(b) π s k. k h (b) Proof. The proof is similr o h of previous lemm. Lemm Le η be such h < η < b, nd h(x) C ( x + η), h () =, h () <, h(x) is nonincresing on (, b]. Suppose φ(x) HK([, b]). Then ( φ(x) e k h(x) dx φ() e k h() π k h () s k. Proof. Since h(x) C ( x + η), we hve h (x) is coninuous. Le ɛ > be such h < ɛ < h (). Choose δ >, δ < η such h h (x) h () < ɛ, x + δ. Th is, Consider he inegrl h () ɛ < h (x) < h () + ɛ, x + δ. I k = We show h I k s k. Le We clim h g k s k. [φ(x) φ()] e k [h(x) h()] dx. e k [h(x) h()], x [, b] g k (x) =, x =. Since h is nonincresing on (, b], we hve h(x) h() < for ll x (, b]. Therefore g k (x) = e k [h(x) h()] s k. Se g(x) = for ll x [, b]. Then g k (x) = e k [h(x) h()] = g(x) for ll x [, b], s k. 14

27 Since φ(x) HK([, b]), he inegrl [φ(x) φ()] dx exiss. Observe h he sequence {g k (x)} is of uniform bounded vriion on [, b] wih g k (x) s k. Then by [Cor.3., [11]], we hve [φ(x) φ()] e k [h(x) h()] dx [φ(x) φ()] dx s k s k. Therefore Th is, φ(x) e k [h(x) h()] dx = φ() Bu by lemm (5.5.1), we hve Therefore φ(x) e k h(x) dx = φ() ( π e k h(x) dx e k h() k h () e k [h(x) h()] dx. e k h(x) dx. ( π φ(x) e k h(x) dx φ() e k h() k h () s k. s k. Lemm Le η be such h < η < b, nd h(x) C (b η x b), h (b) =, h (b) <, h(x) is nonincresing on [, b) nd suppose φ(x) HK([, b]). Then ( π φ(x) e k h(x) dx φ(b) e k h(b) k h (b) 143 s k.

28 Proof. The proof is similr o h of he previous lemm. Now we re redy o obin he inversion heorem for Hensock-Kurzweil Lplce rnsform. Theorem (Inversion Theorem) If f() HK(R + ) nd if he HK- Lplce rnsform of f(), L{f}(s) exiss, hen lim k 1 k! ( ) k+1 k e ku u k f(u) du = f(). Proof. The inversion heorem follows immediely, if we cn prove he following: I) II) lim k lim k I) We hve he relion 1 k! 1 k! ( ) k+1 k e ku u k f(u) du = f() (5.6) ( ) k+1 k e ku u k f(u) du = f(). (5.7) ( π f(x) e k φ(x) dx f() e k φ() k φ () Tke = nd φ(x) = ln(x) x Therefore Th is, f(x) e k [ln(x) x ] dx f() e k [ln() 1] ( s k. for ll x [, ). Then we hve π k ( 1 ) ( f(x) x k e kx π dx f() k e k k s k. s k. f(x) x k e kx dx f() k+1 e k ( π k s k. 144

29 Therefore s k, we hve 1 k! ( ) k+1 k b f(x) x k e kx dx = 1 k! = ( k e ( ) k+1 k ( π f() k+1 e k k ) k k ( π k! f(). k The Sirling s formul is given by ( ) n n e πn n!, using his we cn wrie 1 k! ( ) k+1 k b f(x) x k e kx dx = k f() πk = f() ( π k s k. s k This is rue for every b R, b >. Therefore by Hke s heorem [1], we hve lim k 1 k! ( ) k+1 k f(x) x k e kx dx = f(). II) Agin we hve he relion ( π f(x) e k φ(x) dx f(b) e k φ(b) k φ (b) s k. Tke b = nd φ(x) = ln(x) x, for ll x (, ]. Then we ge lim k 1 k! By Hke s heorem [1], we hve lim k 1 k! ( ) k+1 k f(x) x k e kx dx = f(). ( ) k+1 k f(x) x k e kx dx = f(). Therefore from (5.6) nd (5.7), we cn wrie lim k 1 k! ( ) k+1 k f(x) x k e kx dx = f(). 145

30 5.6 Exmples Here we shll give some exmples of HK-Lplce rnsformble funcions whose clssicl Lplce rnsform do no exis. However we could no ble o find he exc form of he HK-Lplce rnsform of hese funcions. Exmple Consider he funcion g() = e s sin ln(+), s C. Le f() = e s sin nd φ() = 1 ln(+). Observe h he funcion φ() is differenible on R + nd φ L 1 (R + ) nd if F () = e su sin u du, Re.s >, hen F () M for ll (, ), Re.s > for some consn M >. Now Then { e s (s sin cos ) F () φ() = s } s ln( + ). { e s (s sin cos ) lim F () φ() = lim + 1 } 1 s + 1 s + 1 ln( + ). Therefore lim F () φ() exiss. Hence by Du-Bois-Reymond s es [1], we hve e s sin ln(+) HK(R + ), Re.s >. Th is, e s sin ln( + ) d exiss, Re.s >. Hence he HK-Lplce rnsform of he funcion g() =. Exmple Consider he funcion f() = cos. We hve F () = cos u u du = cos u du. sin ln(+) exiss, Re.s > 146

31 Le φ() = e s, s C. Then φ () = s e s L 1 (R + ), Re.s >. Now Then F () φ() = e s cos u du. lim F () φ() = lim e s = lim e s lim =, Re.s >. cos u du cos u du Therefore by Du-Bois-Reymond s es [1], we hve f() φ() HK(R + ), Re.s >. Hence he HK-Lplce rnsform of he funcion f() = cos exiss for Re.s >. Exmple Le φ() = e σ, R +, σ >. This funcion is coninuous on R + nd φ( + 1) = 1 ( + 1) e < 1 = φ() for ll σ(+1) R+ eσ 1 nd lso lim φ() = lim =, σ >. e σ Therefore φ() is decresing o zero s. Observe h he inegrl diverges. e σ d, σ > Now le n N be such h < (1 + 4n ) π 4ω. For R, we hve sin ω 1 if nd only if ω n=n [(1 + 4n) π 4, (3 + 4n) π 4 ]. 147

32 If n N, hen (3 + 4n) π < (1 + n) π. 4 (1+n)π e σ sin d = n (3+4j) π 4 e σ j=n (1+4j) π 4 n (3+4j) π 4 e σ j=n 1 = 1 (1+4j) π 4 n (3+4j) π 4 j=n n (1+4j) π 4 j=n 4 sin ω d 1 d 1 (3 + 4j) π 4 eσ(3+4j) π 4 (3 + 4j) π e s(3+4j) π 4 π n 1 (1 + j) π e. σ(1+j)π j=n π d On he oher hnd, we hve (1+n)π e σ Bu since e σ d = = = n π e σ n π e σ n π e σ n π e σ HK(R + ), we hve Therefore j=n e σjπ jπ =. So e σ sin ω / L 1 (R + ), σ >. Similrly, e σ cos ω / L 1 (R + ), σ >. Now le f() = sin ω, φ() = e σ, R. d + d + d + (1+n)π e σ d n π n (1+j)π e σ j=n jπ n (1+j)π e σjπ j=n jπ n d + e σjπ jπ π. j=n e σ d =. Observe h φ() is monoone funcion nd φ() s. And sin ωu du, ω for ll ω R+. Th is, F is bounded. Therefore by Chrier-Dirichle s es [1], we hve e σ sin ω HK(R + ). 148 jπ d d

33 Similrly, e σ cos ω HK(R + ). Hence e σ {cos ω i sin ω} HK(R + ). Th is, Thus e s e σ e iω d exiss, σ >. d exiss, Re.s > s HK inegrl, where s = σ + iω. 149

34 References [1] Brle R. G., A Modern Theory of Inegrion, Grd. Sud. Mh. 3, Amer. Mh. Soc. Providence, 1. [] Chudhry M. S., Tikre S. A., On Guge Lplce Trnsform, In. Journl of Mh. Anlysis, Vol. 5, No. 35 (11), [3] Erdelyi A., Tbles of Inegrl rnsforms, Vol. 1, McGrw Hill Book Compny, Inc [4] Gsque C., P. Wiomski P., Fourier nlysis nd pplicions, Springer- Verlg, New York, Inc [5] Gordon R. A., The Inegrls of Lebesgue, Denjoy, Perron, nd Hensock, Grd. Sud. Mh. 4, Amer. Mh. Soc. Providence, [6] McLeod R. M., The Generlized Riemnn Inegrl, Crus Mh. Monogrphs, No., The Mhemicl Associion of Americ, Wshingon DC, 198. [7] Nnson I. P., Theory of funcions of rel vrible, Vol. 1, Frederick Unger Publishing Co. New York, [8] Pos E. L., Generlized differeniion, Trns. Amer. Mh. Soc. Vol. 3 (193),

35 [9] Sks S., Theory of he Inegrl, Dover Publicions, New York, [1] Swrz C., Inroducion o Guge Inegrls, World Scienific Publishing Co. Singpore, 1. [11] Tlvil E., Limis nd Hensock inegrls of producs, Rel Anl. Exchnge 5 (1999-), [1] Tlvil E., Necessry nd sufficien condiions for differeniing under he inegrl sign, Amer. Mh. Monhly, 18 (1), [13] Tlvil E., Hensock-Kurzweil Fourier rnsforms, Ill. Jour. Mh. Vol. 46, No. 4(), [14] Tikre S. A., Chudhry M. S., On some resuls of HK-convoluion, In. Elecron. J. Pure Appl. Mh. Vol., No. (1), [15] Widder D. V., The Lplce rnsform, Princeon Universiy Press, Princeon, [16] Zyed A. I., The Hndbook of Funcion nd Generlized Funcion rnsformions, CRC Press, Inc

Hermite-Hadamard-Fejer Type Inequalities for s Convex Function in the Second Sense via Fractional Integrals

Hermite-Hadamard-Fejer Type Inequalities for s Convex Function in the Second Sense via Fractional Integrals Filom 30: 06), 33 338 DOI 0.98/FIL63S Published by Fculy o Sciences nd Mhemics, Universiy o Niš, Serbi Avilble : hp://www.pm.ni.c.rs/ilom Hermie-Hdmrd-Fejer Type Ineuliies or s Convex Funcion in he Second

Læs mere

Fractional Wavelet Transform in Terms of Fractional Convolution

Fractional Wavelet Transform in Terms of Fractional Convolution Progr. Frc. Differ. Appl., No. 3, 20-20 205 20 Progress in Frcionl Differeniion nd Applicions An Inernionl Journl hp://dx.doi.org/0.2785/pfd/00305 Frcionl Wvele Trnsform in Terms of Frcionl Convoluion

Læs mere

Exercise 6.14 Linearly independent vectors are also affinely independent.

Exercise 6.14 Linearly independent vectors are also affinely independent. Affine sets Linear Inequality Systems Definition 6.12 The vectors v 1, v 2,..., v k are affinely independent if v 2 v 1,..., v k v 1 is linearly independent; affinely dependent, otherwise. We first check

Læs mere

A known plaintext attack on the ISAAC keystream generator

A known plaintext attack on the ISAAC keystream generator A known plinex ck on he ISAAC keysrem generor Mrin Pudovkin mrip@online.ru Moscow Engineering Physics Insiue (Technicl Universiy) Deprmen of Crypology nd Discree Mhemics Absrc. Srem ciphers re ofen used

Læs mere

Pontryagin Approximations for Optimal Design of Elastic Structures

Pontryagin Approximations for Optimal Design of Elastic Structures Pontryagin Approximations for Optimal Design of Elastic Structures Jesper Carlsson NADA, KTH jesperc@nada.kth.se Collaborators: Anders Szepessy, Mattias Sandberg October 5, 2005 A typical optimal design

Læs mere

On Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

On Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals Mthemtic Morvic Vol. 1, No. 1 (017), 105 13 On Hermite-Hdmrd-Fejér type inequlities for convex functions vi frctionl integrls Adullh Akkurt nd Hüsey ın Yıldırım Astrct. In this pper, we hve estlished some

Læs mere

Large time behavior of solutions for a complex-valued quadratic heat equation

Large time behavior of solutions for a complex-valued quadratic heat equation Nonlinear Differ. Equ. Appl. 5, 5 45 c 5 Springer Basel -97/5/55-4 published online March 5, 5 DOI.7/s3-5-3-7 Nonlinear Differenial Equaions and Applicaions NoDEA Large ime behavior of soluions for a complex-valued

Læs mere

AALBORG UNIVERSITY. Spectral Analysis of a δ-interaction in One Dimension Defined as a Quadratic Form

AALBORG UNIVERSITY. Spectral Analysis of a δ-interaction in One Dimension Defined as a Quadratic Form AALBOG UNIVESITY Specral Analysis of a δ-ineracion in One Dimension Defined as a Quadraic Form by Peer Jensen February 9h, 008 Maser Thesis Deparmen of Mahemaical Sciences Aalborg Universiy Fredrik Bajers

Læs mere

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 19. juni 2003 kl Alle hjælpemidler er tilladt

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 19. juni 2003 kl Alle hjælpemidler er tilladt SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 7. semester Torsdag den 9. juni 23 kl. 9.-3. Alle hjælpemidler er tilladt OPGAVE f(x) x Givet funktionen f(x) x, x [, ] Spørgsmål (%)

Læs mere

MONOTONE POSITIVE SOLUTIONS FOR p-laplacian EQUATIONS WITH SIGN CHANGING COEFFICIENTS AND MULTI-POINT BOUNDARY CONDITIONS

MONOTONE POSITIVE SOLUTIONS FOR p-laplacian EQUATIONS WITH SIGN CHANGING COEFFICIENTS AND MULTI-POINT BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 22, No. 22, pp. 2. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MONOTONE POSITIVE SOLUTIONS FOR

Læs mere

Critical exponent for semilinear wave equation with critical potential

Critical exponent for semilinear wave equation with critical potential Nonlinear Differ. Equ. Appl. (13), 1379 1391 c 1 Springer Basel 11-97/13/31379-13 published online December 16, 1 DOI 1.17/s3-1-14-x Nonlinear Differential Equations and Applications NoDEA Critical exponent

Læs mere

Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium

Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium Kurver og flader Aktivitet 15 Geodætiske kurver, Isometri, Mainardi-Codazzi, Teorema Egregium Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet Kurver og Flader 2013 Lisbeth Fajstrup (AAU)

Læs mere

Sign variation, the Grassmannian, and total positivity

Sign variation, the Grassmannian, and total positivity Sign variation, the Grassmannian, and total positivity arxiv:1503.05622 Slides available at math.berkeley.edu/~skarp Steven N. Karp, UC Berkeley FPSAC 2015 KAIST, Daejeon Steven N. Karp (UC Berkeley) Sign

Læs mere

Basic statistics for experimental medical researchers

Basic statistics for experimental medical researchers Basic statistics for experimental medical researchers Sample size calculations September 15th 2016 Christian Pipper Department of public health (IFSV) Faculty of Health and Medicinal Science (SUND) E-mail:

Læs mere

Computing the constant in Friedrichs inequality

Computing the constant in Friedrichs inequality Computing the constant in Friedrichs inequality Tomáš Vejchodský vejchod@math.cas.cz Institute of Mathematics, Žitná 25, 115 67 Praha 1 February 8, 212, SIGA 212, Prague Motivation Classical formulation:

Læs mere

Chapter 6. Hydrogen Atom. 6.1 Schrödinger Equation. The Hamiltonian for a hydrogen atom is. Recall that. 1 r 2 sin 2 θ + 1. and.

Chapter 6. Hydrogen Atom. 6.1 Schrödinger Equation. The Hamiltonian for a hydrogen atom is. Recall that. 1 r 2 sin 2 θ + 1. and. Chapter 6 Hydrogen Atom 6. Schrödinger Equation The Hamiltonian for a hydrogen atom is Recall that Ĥ = h e m e 4πɛ o r = r ) + r r r r sin θ sin θ ) + θ θ r sin θ φ and [ ˆL = h sin θ ) + )] sin θ θ θ

Læs mere

INTERVAL VALUED FUZZY IDEALS OF GAMMA NEAR-RINGS

INTERVAL VALUED FUZZY IDEALS OF GAMMA NEAR-RINGS BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 8(2018), 301-314 DOI: 10.7251/BIMVI1802301C Former BULLETIN

Læs mere

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3

University of Copenhagen Faculty of Science Written Exam - 3. April Algebra 3 University of Copenhagen Faculty of Science Written Exam - 3. April 2009 Algebra 3 This exam contains 5 exercises which are to be solved in 3 hours. The exercises are posed in an English and in a Danish

Læs mere

264.. Cox, Daio Jang (23) Grandell (1976). 1.1 (Ω, F, {F, [, ]}, P). N λ, λ F, 1 2 u R, λ d < a... E{e iu(n 2 N 1 ) F λ 2 } = e {(eiu 1) 2 1 λ d}, F λ

264.. Cox, Daio Jang (23) Grandell (1976). 1.1 (Ω, F, {F, [, ]}, P). N λ, λ F, 1 2 u R, λ d < a... E{e iu(n 2 N 1 ) F λ 2 } = e {(eiu 1) 2 1 λ d}, F λ 212 6 Chinee Journal of Applied Probabiliy and Saiic Vol.28 No.3 Jun. 212 Lévy (,, 2156),, Lévy.., (Credi Defaul Swap). :,,,. : O211.6. 1.,.,.,,.,, O Kane urnbull (23), Jamhidian (24), Crepey, Jeanblanc

Læs mere

Nøgleord og begreber. l Hospitals regel 2. Test l Hospitals regel. Uegentlige integraler 2. Test uegentlige integraler. Sammenligning.

Nøgleord og begreber. l Hospitals regel 2. Test l Hospitals regel. Uegentlige integraler 2. Test uegentlige integraler. Sammenligning. Oversig [S] 4.5, 5. Nøgleord og begreber Ubeseme udryk l Hospils regel l Hospils regel 2 Tes l Hospils regel Uegenlige inegrler Tes uegenlige inegrler Uegenlige inegrler 2 Tes uegenlige inegrler Smmenligning

Læs mere

University of Copenhagen Faculty of Science Written Exam April Algebra 3

University of Copenhagen Faculty of Science Written Exam April Algebra 3 University of Copenhagen Faculty of Science Written Exam - 16. April 2010 Algebra This exam contains 5 exercises which are to be solved in hours. The exercises are posed in an English and in a Danish version.

Læs mere

Eric Nordenstam 1 Benjamin Young 2. FPSAC 12, Nagoya, Japan

Eric Nordenstam 1 Benjamin Young 2. FPSAC 12, Nagoya, Japan Eric 1 Benjamin 2 1 Fakultät für Matematik Universität Wien 2 Institutionen för Matematik Royal Institute of Technology (KTH) Stockholm FPSAC 12, Nagoya, Japan The Aztec Diamond Aztec diamonds of orders

Læs mere

The LWR Model in Lagrangian coordinates

The LWR Model in Lagrangian coordinates The LWR Model in Lagrangian coordinaes ACI-NIM: Mah Models on Traffic Flow Ludovic Leclercq, LICIT (ENTPE/INRETS) Jorge Laval, Georgiaech Universiy 31 ocober 2007 INRETS Ouline Lagrangian resoluion of

Læs mere

One-dimensional chemotaxis kinetic model

One-dimensional chemotaxis kinetic model Nonlinear Differ. Equ. Appl. 18 (211), 139 172 c 21 Springer Basel AG 121-9722/11/2139-34 published online November 11, 21 DOI 1.17/s3-1-88-8 Nonlinear Differential Equations and Applications NoDEA One-dimensional

Læs mere

x t X t, t 1 τ =0 A t,τ (ξ t )x t τ = h t (ξ t )

x t X t, t 1 τ =0 A t,τ (ξ t )x t τ = h t (ξ t ) POLYHEDRAL RISK MEASURES IN SOCHASIC PROGRAMMING A. EICHHORN AND W. RÖMISCH Absrac. Sochasic programs ha do no only minimize expeced cos bu also ake ino accoun risk are of grea ineres in many applicaion

Læs mere

Aktivering af Survey funktionalitet

Aktivering af Survey funktionalitet Surveys i REDCap REDCap gør det muligt at eksponere ét eller flere instrumenter som et survey (spørgeskema) som derefter kan udfyldes direkte af patienten eller forsøgspersonen over internettet. Dette

Læs mere

Deepak Kumar Dubey, V. K. Jain RATE OF APPROXIMATION FOR INTEGRATED SZASZ-MIRAKYAN OPERATORS

Deepak Kumar Dubey, V. K. Jain RATE OF APPROXIMATION FOR INTEGRATED SZASZ-MIRAKYAN OPERATORS DEMONSTRATIO MATHEMATICA Vol. XLI No 4 8 Deepak Kumar Dubey, V. K. Jai RATE OF APPROXIMATION FOR INTEGRATED SZASZ-MIRAKYAN OPERATORS Absrac. Recely Jai e al. [3] proposed a iegral modificaio of Szasz-Mirakya

Læs mere

Outline. Chapter 6: (cont d) Qijin Chen. November 21, 2013 NH = =6 CH = 15 4

Outline. Chapter 6: (cont d) Qijin Chen. November 21, 2013 NH = =6 CH = 15 4 Chapter 6: Qjn Chen Department of Physcs, Zhejang Unversty November 1, 013 Copyrght c 013 by Qjn Chen; all rghts reserved. ω 3 4 1. (cont d) 1 3 n3n3n 3n (x 1, y 1, z 1 )(x, y, z ) (x 1 x ) + (y 1 y )

Læs mere

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 30. juni 2005, kl Alle hjælpemidler er tilladt

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 30. juni 2005, kl Alle hjælpemidler er tilladt SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 3. juni 5, kl. 8.3-.3 Alle hjælpemidler er tilladt OPGAVE u = y B u = u C A x c u = D u = Figuren viser en homogen

Læs mere

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y). Analyse 2 Øvelser Rasmus Sylvester Bryder 17. og 20. september 2013 Supplerende opgave 1 Lad λ være Lebesgue-målet på R og lad A B(R). Definér en funktion f : [0, ) R ved f(x) = λ(a [ x, x]). Vis, at f(x)

Læs mere

Nodal set of strongly competition systems with fractional Laplacian

Nodal set of strongly competition systems with fractional Laplacian Nonlinear Differ. Equ. Appl. 22 (2015), 1483 1513 c 2015 Springer Basel 1021-9722/15/051483-31 published online June 2, 2015 DOI 10.1007/s00030-015-0332-3 Nonlinear Differential Equations and Applications

Læs mere

what is this all about? Introduction three-phase diode bridge rectifier input voltages input voltages, waveforms normalization of voltages voltages?

what is this all about? Introduction three-phase diode bridge rectifier input voltages input voltages, waveforms normalization of voltages voltages? what is this all about? v A Introduction three-phase diode bridge rectifier D1 D D D4 D5 D6 i OUT + v OUT v B i 1 i i + + + v 1 v v input voltages input voltages, waveforms v 1 = V m cos ω 0 t v = V m

Læs mere

yt () p0 cos( t) OPGAVE 1

yt () p0 cos( t) OPGAVE 1 SKRIFTLIG EKSAMEN I SVINGNINGSTEORI Bygge- og Anlægskonstruktion, 8.semester Fredag den 22. juni 2 kl. 9.-3. Alle hjælpemidler er tilladt OPGAVE B yt ) p cos t) l x A Konstruktionen på figuren er lodret

Læs mere

Danish and English. Standard Field Analysis (Diderichsen) Standard Field Analysis (Diderichsen)

Danish and English. Standard Field Analysis (Diderichsen) Standard Field Analysis (Diderichsen) Danish and English Some major poins of synacic conrass [Righ click for speaker s noes] Sandard Field nalysis (Diderichsen) Main clause able fel Forfel (Fundamenfel) Nexusfel ndholdsfel og Hvorfor Søren

Læs mere

Multivariate Extremes and Dependence in Elliptical Distributions

Multivariate Extremes and Dependence in Elliptical Distributions Multivariate Extremes and Dependence in Elliptical Distributions Filip Lindskog, RiskLab, ETH Zürich joint work with Henrik Hult, KTH Stockholm I II III IV V Motivation Elliptical distributions A class

Læs mere

CHAPTER 6 Derive differential Continuity, Momentum and Energy equations form Integral equations for control volumes.

CHAPTER 6 Derive differential Continuity, Momentum and Energy equations form Integral equations for control volumes. CHAPER 6 Derie differenil Conini, Momenm nd Energ eions form Inegrl eions for onrol olmes. imlif hese eions for -D sed, isenroi flo ih rible densi CHAPER 8 Wrie he D eions in erms of eloi oenil reding

Læs mere

Probabilistic properties of modular addition. Victoria Vysotskaya

Probabilistic properties of modular addition. Victoria Vysotskaya Probabilistic properties of modular addition Victoria Vysotskaya JSC InfoTeCS, NPK Kryptonite CTCrypt 19 / June 4, 2019 vysotskaya.victory@gmail.com Victoria Vysotskaya (Infotecs, Kryptonite) Probabilistic

Læs mere

A C 1,α partial regularity result for non-autonomous convex integrals with discontinuous coefficients

A C 1,α partial regularity result for non-autonomous convex integrals with discontinuous coefficients Nonlinear Differ. Equ. Appl. (015), 1319 1343 c 015 Springer Basel 101-97/15/051319-5 published online April 9, 015 DOI 10.1007/s00030-015-034-3 Nonlinear Differential Equations and Applications NoDEA

Læs mere

Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent

Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent Nonlinear Differ. Equ. Appl. 1 (014, 885 914 c 014 Springer Basel 101-97/14/060885-30 published online April 18, 014 DOI 10.1007/s00030-014-071-4 Nonlinear Differential Equations and Applications NoDEA

Læs mere

University of Copenhagen Faculty of Science Written Exam - 8. April 2008. Algebra 3

University of Copenhagen Faculty of Science Written Exam - 8. April 2008. Algebra 3 University of Copenhagen Faculty of Science Written Exam - 8. April 2008 Algebra 3 This exam contains 5 exercises which are to be solved in 3 hours. The exercises are posed in an English and in a Danish

Læs mere

DoodleBUGS (Hands-on)

DoodleBUGS (Hands-on) DoodleBUGS (Hands-on) Simple example: Program: bino_ave_sim_doodle.odc A simulation example Generate a sample from F=(r1+r2)/2 where r1~bin(0.5,200) and r2~bin(0.25,100) Note that E(F)=(100+25)/2=62.5

Læs mere

Global attractor for the Navier Stokes equations with fractional deconvolution

Global attractor for the Navier Stokes equations with fractional deconvolution Nonlinear Differ. Equ. Appl. 5), 8 848 c 4 Springer Basel -97/5/48-38 published online December 5, 4 DOI.7/s3-4-35-y Nonlinear Differential Equations and Applications NoDEA Global attractor for the Navier

Læs mere

since a p 1 1 (mod p). x = 0 1 ( 1) p 1 (p 1)! (mod p) (p 1)! 1 (mod p) for p odd and for p = 2, (2 1)! = 1! = 1 1 (mod 2).

since a p 1 1 (mod p). x = 0 1 ( 1) p 1 (p 1)! (mod p) (p 1)! 1 (mod p) for p odd and for p = 2, (2 1)! = 1! = 1 1 (mod 2). 5 Sice φ = ϕ is multiplicative, if = m j= pα j j is the stadard factorisatio, m φ() = φ(p α j j ). j= Theorem so ( φ(p α ) = p α ) p φ() = ( ). p p Proof. Cosider the atural umbers i the iterval j p α.

Læs mere

Eksamen i Signalbehandling og matematik

Eksamen i Signalbehandling og matematik Opgave. (%).a. Figur og afbilleder et diskret tid signal [n ] og dets DTFT. [n] bruges som input til et LTI filter med en frekvens amplitude respons som vist på figur. Hvilket af de 4 output signaler (y

Læs mere

Løsningsforslag til opgavesæt 5

Løsningsforslag til opgavesæt 5 Matematik F Matematik F Løsningsforslag til opgavesæt 5 Opgave : Se kursushjemmesiden. Opgave : a) π dθ 5 + 4 sin θ = e iθ, = ie iθ dθ, dθ = i sin θ = eiθ e iθ i = i(5 + 4( / )) = i = + 5i Integranden

Læs mere

Fremkomsten af mængdelæren. Stig Andur Pedersen

Fremkomsten af mængdelæren. Stig Andur Pedersen Fremkomsten f mængdelæren Stig Andur Pedersen 1 Fourier række for f(x)=x x n 1 ( 1) 2 sin( nx) n n= 1 sin(2 x) sin(3 x) sin(4 x) = 2 sin( x) + + 2 3 4 De første 15 led er tget med på kurven. 2 Fourierrække

Læs mere

Gribskov kommune Tisvilde By, Tibirke

Gribskov kommune Tisvilde By, Tibirke Birkevænget 1 10 cx 2036 2 Birkevænget 2 10 cp 2836 2 Birkevænget 3 10 cz 2010 2 Birkevænget 5 10 cy 2085 2 Birkevænget 6 10 cr 2953 4 Samlet 10 cs 2940 ejendom Birkevænget 7 10 cn 2045 2 Birkevænget 9

Læs mere

Uniform central limit theorems for kernel density estimators

Uniform central limit theorems for kernel density estimators Probab. Theory elat. Fields (2008) 141:333 387 DOI 10.1007/s00440-007-0087-9 Uniform central limit theorems for kernel density estimators Evarist Giné ichard Nickl eceived: 12 December 2006 / evised: 5

Læs mere

Løsningsforslag til opgavesæt 5

Løsningsforslag til opgavesæt 5 Matematik F Matematik F Løsningsforslag til opgavesæt 5 Opgave : Se kursushjemmesiden. Opgave : a) π dθ 5 + 4 sin θ = e iθ, = ie iθ dθ, dθ = i sin θ = eiθ e iθ i = i(5 + 4( / )) = i = + 5i Integranden

Læs mere

Asymptotic analysis of a non-linear non-local integro-differential equation arising from bosonic quantum field dynamics

Asymptotic analysis of a non-linear non-local integro-differential equation arising from bosonic quantum field dynamics Nonlinear Differ. Equ. Appl. 21 (214), 51 61 c 213 Springer Basel 121-9722/14/151-11 published online May 8, 213 DOI 1.17/s3-13-237-y Nonlinear Differenial Equaions and Applicaions NoDEA Asympoic analysis

Læs mere

Besvarelser til Lineær Algebra Reeksamen Februar 2017

Besvarelser til Lineær Algebra Reeksamen Februar 2017 Besvarelser til Lineær Algebra Reeksamen - 7. Februar 207 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US

Generalized Probit Model in Design of Dose Finding Experiments. Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US Generalized Probit Model in Design of Dose Finding Experiments Yuehui Wu Valerii V. Fedorov RSU, GlaxoSmithKline, US Outline Motivation Generalized probit model Utility function Locally optimal designs

Læs mere

OPGAVE 1. Spørgsmål 1 (15%) Opstil bevægelsesligningen med tilhørende begyndelsesbetingelser for massen i punkt D.

OPGAVE 1. Spørgsmål 1 (15%) Opstil bevægelsesligningen med tilhørende begyndelsesbetingelser for massen i punkt D. SKRIFTLIG EKSMEN I STRUKTUREL DYNMIK ygge- og nlægskonstruktion, 7. semester Onsdg den 9. jnur 25 kl. 9.-3. lle hjælpemidler er tilldt OPGVE ft) ft) EI, µ = EI, µ = C EI, µ = D m f t Figuren viser en vndret,

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

Integration m.h.t. mål med tæthed

Integration m.h.t. mål med tæthed Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.

Læs mere

Spørgsmål 1 (5%) Forklar med relevant argumentation, at den stationære temperaturfordeling i områdets indre er bestemt ved følgende randværdiproblem

Spørgsmål 1 (5%) Forklar med relevant argumentation, at den stationære temperaturfordeling i områdets indre er bestemt ved følgende randværdiproblem SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 9. juni 006, kl. 09.00-3.00 Alle hjælpemidler er tilladt OPGAVE y u = 0 isoleret rand r u = u 0 θ 0 θ c c u = 0

Læs mere

Semi-smooth Newton method for Solving Unilateral Problems in Fictitious Domain Formulations

Semi-smooth Newton method for Solving Unilateral Problems in Fictitious Domain Formulations Semi-smooth Newton method for Solving Unilateral Problems in Fictitious Domain Formulations Jaroslav Haslinger, Charles University, Prague Tomáš Kozubek, VŠB TU Ostrava Radek Kučera, VŠB TU Ostrava SNA

Læs mere

UGESEDDEL 9 LØSNINGER. Sydsæter Theorem 1. Sætning om implicitte funktioner for ligningen f(x, y) = 0.

UGESEDDEL 9 LØSNINGER. Sydsæter Theorem 1. Sætning om implicitte funktioner for ligningen f(x, y) = 0. UGESEDDEL 9 LØSNINGER Sydsæter 531 Theorem 1 Sætning om implicitte funktioner for ligningen f(x, y) = 0 Lad f(x, y) være C 1 i mængden A R n og lad (x 0, y 0 ) være et indre punkt i A hvor f(x 0, y 0 )

Læs mere

Additive Property of Drazin Invertibility of Elements in a Ring

Additive Property of Drazin Invertibility of Elements in a Ring Filomat 30:5 (2016), 1185 1193 DOI 10.2298/FIL1605185W Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Additive Property of Drazin

Læs mere

Hydrogen Burning in Stars-II

Hydrogen Burning in Stars-II ydrogen Burning in Stars-II ydrogen in induced reaction have lowest oulomb barrier highest reaction rate Reaction chain with lowest Z elements are the -chains -chains limited by weak interaction based

Læs mere

Some results for the weighted Drazin inverse of a modified matrix

Some results for the weighted Drazin inverse of a modified matrix International Journal of Applied Mathematics Computation Journal homepage: www.darbose.in/ijamc ISSN: 0974-4665 (Print) 0974-4673 (Online) Volume 6(1) 2014 1 9 Some results for the weighted Drazin inverse

Læs mere

BJB 06012-0018 5. T e l: 050-35 4 0 61 - E-m a il: in fo @ n ie u w la n d.b e - W e b s it e : - Fa x :

BJB 06012-0018 5. T e l: 050-35 4 0 61 - E-m a il: in fo @ n ie u w la n d.b e - W e b s it e : - Fa x : D a t a b a n k m r in g R a p p o r t M A a n g e m a a k t o p 17 /09/2007 o m 17 : 4 3 u u r I d e n t if ic a t ie v a n d e m S e c t o r BJB V o lg n r. 06012-0018 5 V o o r z ie n in g N ie u w

Læs mere

Combined concave convex effects in anisotropic elliptic equations with variable exponent

Combined concave convex effects in anisotropic elliptic equations with variable exponent Nonlinear Differ. Equ. Appl. 22 (205), 39 40 c 204 Springer Basel 02-9722/5/03039-20 published online October 4, 204 DOI 0.007/s00030-04-0288-8 Nonlinear Differential Equations and Applications NoDEA Combined

Læs mere

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen. og

Engelsk. Niveau D. De Merkantile Erhvervsuddannelser September Casebaseret eksamen.  og 052431_EngelskD 08/09/05 13:29 Side 1 De Merkantile Erhvervsuddannelser September 2005 Side 1 af 4 sider Casebaseret eksamen Engelsk Niveau D www.jysk.dk og www.jysk.com Indhold: Opgave 1 Presentation

Læs mere

A B C D E Hjemmeværnmuseet's arkiv/depot Søgaard Distrikter - LMD. Reol/hylde Region/distrikt/m.m. Kasse nr. Indhold 2C3 Flyverhjemmeværne 1

A B C D E Hjemmeværnmuseet's arkiv/depot Søgaard Distrikter - LMD. Reol/hylde Region/distrikt/m.m. Kasse nr. Indhold 2C3 Flyverhjemmeværne 1 0 A B C D E Hjemmeværnmuseet's arkiv/depot Søgaard LMK Distrikter - LMD. Reol/hylde Region/distrikt/m.m. Kasse nr. Indhold C Flyverhjemmeværne Flyverhjemmeværnet LMD Odense Nyt fra stabseskadrillen -.

Læs mere

On the complexity of drawing trees nicely: corrigendum

On the complexity of drawing trees nicely: corrigendum Acta Informatica 40, 603 607 (2004) Digital Object Identifier (DOI) 10.1007/s00236-004-0138-y On the complexity of drawing trees nicely: corrigendum Thorsten Akkerman, Christoph Buchheim, Michael Jünger,

Læs mere

The Size of the Selberg Zeta-Function at Places Symmetric with Respect to the Line Re(s)= 1/2

The Size of the Selberg Zeta-Function at Places Symmetric with Respect to the Line Re(s)= 1/2 Results Math 7 16, 71 81 c 15 Springer Basel 14-6383/16/171-11 published online July, 15 DOI 117/s5-15-486-7 Results in Mathematics The Size of the Selberg Zeta-Function at Places Symmetric with Respect

Læs mere

DM549 Diskrete Metoder til Datalogi

DM549 Diskrete Metoder til Datalogi DM549 Diskrete Metoder til Datalogi Spørgsmål 1 (8%) Hvilke udsagn er sande? Husk, at symbolet betyder går op i. Which propositions are true? Recall that the symbol means divides. Svar 1.a: n Z: 2n > n

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

On the Fučik spectrum of non-local elliptic operators

On the Fučik spectrum of non-local elliptic operators Nonlinear Differ. Equ. Appl. 21 (2014), 567 588 c 2014 Springer Basel 1021-9722/14/040567-22 published online January 7, 2014 DOI 10.1007/s00030-013-0258-6 Nonlinear Differential Equations and Applications

Læs mere

Gamle eksamensopgaver (MASO)

Gamle eksamensopgaver (MASO) EO 1 Gamle eksamensopgaver (MASO) Opgave 1. (Vinteren 1990 91, opgave 1) a) Vis, at rækken er divergent. b) Vis, at rækken er konvergent. Opgave 2. (Vinteren 1990 91, opgave 2) Gør rede for at ligningssystemet

Læs mere

Formale Systeme 2 Sommer 2012 Prof. P. H. Schmitt

Formale Systeme 2 Sommer 2012 Prof. P. H. Schmitt Formale Systeme 2 Sommer 2012 Prof. P. H. Schmitt I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Læs mere

Nonlinear Nonhomogeneous Dirichlet Equations Involving a Superlinear Nonlinearity

Nonlinear Nonhomogeneous Dirichlet Equations Involving a Superlinear Nonlinearity Results. Math. 70 2016, 31 79 c 2015 Springer Basel 1422-6383/16/010031-49 published online May 19, 2015 DOI 10.1007/s00025-015-0461-3 Results in Mathematics Nonlinear Nonhomogeneous Dirichlet Equations

Læs mere

On the Relations Between Fuzzy Topologies and α Cut Topologies

On the Relations Between Fuzzy Topologies and α Cut Topologies S Ü Fen Ed Fak Fen Derg Sayı 23 (2004) 21-27, KONYA On the Relations Between Fuzzy Topologies and α Cut Topologies Zekeriya GÜNEY 1 Abstract: In this study, some relations have been generated between fuzzy

Læs mere

Rotational Properties of Bose - Einstein Condensates

Rotational Properties of Bose - Einstein Condensates Rotational Properties of Bose - Einstein Condensates Stefan Baumgärtner April 30, 2013 1 / 27 Stefan Baumgärtner Rotational Properties of Bose - Einstein Condensates Outline 2 / 27 Stefan Baumgärtner Rotational

Læs mere

Funktionsundersøgelse. Rasmus Sylvester Bryder

Funktionsundersøgelse. Rasmus Sylvester Bryder Funktionsundersøgelse Rasmus Sylvester Bryder 7. november 2008 Dette projekt aeveres i forbindelse med LA T EX 2ε-kurset vejledningsuge 2, 2008-09 på KU; til projektet benyttes noter givet til opgaveløsning.

Læs mere

Decomposition theorem for the cd-index of Gorenstein* posets

Decomposition theorem for the cd-index of Gorenstein* posets J Algebr Comb (2007) 26:225 251 DOI 10.1007/s10801-006-0055-y Decomposition theorem for the cd-index of Gorenstein* posets Richard Ehrenborg Kalle Karu Received: 20 June 2006 / Accepted: 15 December 2006

Læs mere

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen

The X Factor. Målgruppe. Læringsmål. Introduktion til læreren klasse & ungdomsuddannelser Engelskundervisningen The X Factor Målgruppe 7-10 klasse & ungdomsuddannelser Engelskundervisningen Læringsmål Eleven kan give sammenhængende fremstillinger på basis af indhentede informationer Eleven har viden om at søge og

Læs mere

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov.

Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov. På dansk/in Danish: Aarhus d. 10. januar 2013/ the 10 th of January 2013 Kære alle Chefer i MUS-regi! Vores mange brugere på musskema.dk er rigtig gode til at komme med kvalificerede ønsker og behov. Og

Læs mere

Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8.

Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8. Anlyse Øvelser Rsmus Sylvester Bryder. og 5. oktober 3 Supplerende opgve Ld C([, b], C) betegne rummet f lle kontinuerte funktioner f : [, b] C, hvor < b, og definér et indre produkt på C([, b], C) ved

Læs mere

PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU

PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU PARALLELIZATION OF ATTILA SIMULATOR WITH OPENMP MIGUEL ÁNGEL MARTÍNEZ DEL AMOR MINIPROJECT OF TDT24 NTNU OUTLINE INEFFICIENCY OF ATTILA WAYS TO PARALLELIZE LOW COMPATIBILITY IN THE COMPILATION A SOLUTION

Læs mere

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September 2005. Casebaseret eksamen. www.jysk.dk og www.jysk.com.

Engelsk. Niveau C. De Merkantile Erhvervsuddannelser September 2005. Casebaseret eksamen. www.jysk.dk og www.jysk.com. 052430_EngelskC 08/09/05 13:29 Side 1 De Merkantile Erhvervsuddannelser September 2005 Side 1 af 4 sider Casebaseret eksamen Engelsk Niveau C www.jysk.dk og www.jysk.com Indhold: Opgave 1 Presentation

Læs mere

Symplectic and contact properties of the Mañé critical value of the universal cover

Symplectic and contact properties of the Mañé critical value of the universal cover Nonlinear Differ. Equ. Appl. 21 (214), 679 78 c 214 Springer Basel 121-9722/14/5679-3 published online January 7, 214 DOI 1.17/s3-13-262-x Nonlinear Differential Equations and Applications NoDEA Symplectic

Læs mere

Eksamen i Mat F, april 2006

Eksamen i Mat F, april 2006 Eksamen i Mat F, april 26 Opgave 1 Lad F være et vektorfelt, givet i retvinklede koordinater som: F x x F = F x i + F y j + F z k = F y = 2z F z y Udregn F og F: F = F x + F y + F z = 1 + +. F = F z F

Læs mere

User Manual for LTC IGNOU

User Manual for LTC IGNOU User Manual for LTC IGNOU 1 LTC (Leave Travel Concession) Navigation: Portal Launch HCM Application Self Service LTC Self Service 1. LTC Advance/Intimation Navigation: Launch HCM Application Self Service

Læs mere

Frequency Dispersion: Dielectrics, Conductors, and Plasmas

Frequency Dispersion: Dielectrics, Conductors, and Plasmas 1/23 Frequency Dispersion: Dielectrics, Conductors, and Plasmas Carlos Felipe Espinoza Hernández Professor: Jorge Alfaro Instituto de Física Pontificia Universidad Católica de Chile 2/23 Contents 1 Simple

Læs mere

The fundamental solution of compressible and incompressible fluid flow past a rotating obstacle

The fundamental solution of compressible and incompressible fluid flow past a rotating obstacle The fundamental solution of compressible and incompressible fluid flow past a rotating obstacle JSPS-DFG Japanese-German Graduate Externship Kickoff Meeting Waseda University, Tokyo, June 17-18, 2014 Reinhard

Læs mere

19.3. Second Order ODEs. Introduction. Prerequisites. Learning Outcomes

19.3. Second Order ODEs. Introduction. Prerequisites. Learning Outcomes Second Order ODEs 19.3 Introduction In this Section we start to learn how to solve second-order differential equations of a particular type: those that are linear and that have constant coefficients. Such

Læs mere

Erratum to: Closed-Range Composition Operators on A 2 and the Bloch Space

Erratum to: Closed-Range Composition Operators on A 2 and the Bloch Space Integr. Equ. Oper. Theory 76 (2013), 131 143 DOI 10.1007/s00020-013-2043-7 Published online March 9, 2013 c Springer Basel 2013 Integral Equations and Operator Theory Erratum Erratum to: Closed-Range Composition

Læs mere

Satisability of Boolean Formulas

Satisability of Boolean Formulas SAT exercises 1 March, 2016 slide 1 Satisability of Boolean Formulas Combinatorics and Algorithms Prof. Emo Welzl Assistant: (CAB G36.1, cannamalai@inf.ethz.ch) URL: http://www.ti.inf.ethz.ch/ew/courses/sat16/

Læs mere

Adaptive Algorithms for Blind Separation of Dependent Sources. George V. Moustakides INRIA, Sigma 2

Adaptive Algorithms for Blind Separation of Dependent Sources. George V. Moustakides INRIA, Sigma 2 Adaptive Algorithms for Blind Separation of Dependent Sources George V. Moustakides INRIA, Sigma 2 Problem definition-motivation Existing adaptive scheme-independence General adaptive scheme-dependence

Læs mere

p-laplacian problems with nonlinearities interacting with the spectrum

p-laplacian problems with nonlinearities interacting with the spectrum Nonlinear Differ. Equ. Appl. 20 (2013), 1701 1721 c 2013 Springer Basel 1021-9722/13/051701-21 published online March 24, 2013 DOI 10.1007/s00030-013-0226-1 Nonlinear Differential Equations and Applications

Læs mere

On a multidimensional moving boundary problem governed by anomalous diffusion: analytical and numerical study

On a multidimensional moving boundary problem governed by anomalous diffusion: analytical and numerical study Nonlinear Differ. Equ. Appl. 22 (215), 543 577 c 214 Springer Basel 121-9722/15/4543-35 published online December 16, 214 DOI 1.17/s3-14-295-9 Nonlinear Differential Equations and Applications NoDEA On

Læs mere

ATEX direktivet. Vedligeholdelse af ATEX certifikater mv. Steen Christensen stec@teknologisk.dk www.atexdirektivet.

ATEX direktivet. Vedligeholdelse af ATEX certifikater mv. Steen Christensen stec@teknologisk.dk www.atexdirektivet. ATEX direktivet Vedligeholdelse af ATEX certifikater mv. Steen Christensen stec@teknologisk.dk www.atexdirektivet.dk tlf: 7220 2693 Vedligeholdelse af Certifikater / tekniske dossier / overensstemmelseserklæringen.

Læs mere

E-PAD Bluetooth hængelås E-PAD Bluetooth padlock E-PAD Bluetooth Vorhängeschloss

E-PAD Bluetooth hængelås E-PAD Bluetooth padlock E-PAD Bluetooth Vorhängeschloss E-PAD Bluetooth hængelås E-PAD Bluetooth padlock E-PAD Bluetooth Vorhängeschloss Brugervejledning (side 2-6) Userguide (page 7-11) Bedienungsanleitung 1 - Hvordan forbinder du din E-PAD hængelås med din

Læs mere

Our activities. Dry sales market. The assortment

Our activities. Dry sales market. The assortment First we like to start to introduce our activities. Kébol B.V., based in the heart of the bulb district since 1989, specialises in importing and exporting bulbs world-wide. Bulbs suitable for dry sale,

Læs mere

Integration m.h.t. mål med tæthed

Integration m.h.t. mål med tæthed Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.

Læs mere

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A +

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A + Strings and Sets: A string over Σ is any nite-length sequence of elements of Σ The set of all strings over alphabet Σ is denoted as Σ Operators over set: set complement, union, intersection, etc. set concatenation

Læs mere

DM547 Diskret Matematik

DM547 Diskret Matematik DM547 Diskret Matematik Spørgsmål 1 (11%) Hvilke udsagn er sande? Husk, at symbolet betyder går op i. Which propositions are true? Recall that the symbol means divides. Svar 1.a: n Z: 2n > n + 2 Svar 1.b:

Læs mere

MM537 Introduktion til Matematiske Metoder

MM537 Introduktion til Matematiske Metoder MM537 Introduktion til Matematiske Metoder Spørgsmål 1 (11%) Hvilke udsagn er sande? Husk, at symbolet betyder går op i. Which propositions are true? Recall that the symbol means divides. Svar 1.a: n Z:

Læs mere