1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger
|
|
|
- Philippa Lauritsen
- 10 år siden
- Visninger:
Transkript
1 Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University 2800 Lyngby Denmark Overview 1 enote 1: Simple plots og deskriptive statistik 2 enote2: Diskrete fordelinger 3 enote 2: Kontinuerte fordelinger 4 enote 3: Konfidensintervaller for én gruppe/stikprøve 5 enote 3: Hypotese tests for én gruppe/stikprøve 6 enote 3: Statistik for to grupper/stikprøver 7 enote 4: Statistik ved simulation 8 enote 5: Simpel lineær regressions analyse 9 enote 6: Multipel lineær regressions analyse 10 enote 8: Envejs variansanalyse (envejs ANOVA) 11 enote 8: Tovejs variansanalyse (ANOVA) 12 enote 7: Inferens for andele Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 1: Simple plots og deskriptive statistik enote 1: Simple plots og deskriptiv statistik Teknikker til at se på data! (deskriptiv statistik) Opsummerende beregningsstørrelser Gennemsnittet: x Empirisk standard afvigelse: s Empirisk varians: s 2 Median, øvre- og nedre kvartiler Empririsk korrelation Simple plots Scatter plot (xy plot) Histogram (empirisk tæthed) Kumulativ fordeling (empirisk fordeling) Boxplots, søjlediagram, cirkeldiagram (lagkagediagram) enote2: Diskrete fordelinger enote2: Diskrete fordelinger Grundlæggende koncepter: Stokastisk variabel (udfaldet af et endnu ikke udført eksperiment) Tæthedsfunktion: f(x) = P (X = x) (pdf) Fordelingsfunktion: F (x) = P (X x) (cdf) Middelværdi: µ = E(X) Standard afvigelse: σ Varians: σ 2 Specifikke distributioner: Binomial (terningekast) Hypergeometrisk (trækning uden tilbagelægning) Poisson (antal hændelser i interval) Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39
2 enote 2: Kontinuerte fordelinger enote 2: Kontinuerte fordelinger Grundlæggende koncepter: Tæthedsfunktion: f(x) (pdf) Fordelingsfunktion: F (x) = P (X x) (cdf) Middelværdi (µ) og varians (σ 2 ) Regneregler for stokastiske variabler Specifikke fordelinger: Normal Log-Normal Uniform Exponential t χ 2 F enote 3: Konfidensintervaller for én gruppe/stikprøve enote 3: Konfidensintervaller for én gruppe/stikprøve Grundlæggende koncepter Estimation Signifikans niveau α Konfidensintervaller (fanger rigtige prm. 1 α af gangene) Population og tilfældig stikprøve Stikprøvefordelinger (t og χ 2 ) Centrale grænseværdisætning Specifikke metoder, én gruppe/stikprøve: Konfidensintervaller for middelværdi (t-fordeling) og varians (χ 2 fordeling) Forsøgsplanlægning: beregn stikprøvestørrelsen n for den ønskede præcision Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 3: Hypotese tests for én gruppe/stikprøve enote 3: Hypotese tests for én gruppe/stikprøve enote 3: Statistik for to grupper/stikprøver enote 3: Statistik for to grupper/stikprøver Grundlæggende koncepter: Hypoteser p-værdi (sandsynlighed for teststørrelsen eller mere ekstremt, hvis H 0 er sand, e.g. P (T > t obs )) Type I fejl: (i virkeligheden ingen effekt, men H 0 afvises) P (Type I) = α Type II fejl: (i virkeligheden effekt, men H 0 afvises ikke) P (Type II) = β Testens styrke er β Specifikke metoder, én gruppe: t-test for middelværdiniveau Stikprøvestørrelse for ønsket styrke Normal qq-plot Specifikke metoder, to grupper: Test og konfidensintervaller for forskel i middelværdi (t-test) Forsøgsplanlægning: Beregn sample størrelsen for den ønskede styrke Specifikke metoder, to PARREDE grupper: "Tag differencen for hver måling" "statistik for én gruppe" Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39
3 enote 4: Statistik ved simulation enote 4: Statistik ved simulation Introduktion til simulering (Beregn statistik mange gange) Fejlforplantning (error propagation rules) (F.eks. igennem ikke-lineær funktion) Bootstrapping: Parametrisk (Simuler mange udfald af stokastisk var.) Ikke-parametrisk (Træk direkte fra data) Konfidensintervaller (og derfor også hypotesetest) Specifikke setups: (4 versioner af konfidensintervaller) Èn gruppe/stikprøve og to grupper/stikprøver data Parametrisk vs. ikke-parametrisk enote 5: Simpel lineær regressions analyse enote 5: Simpel lineær regressions analyse To variable: x og y Beregn mindstekvadraters estimat af rette linje Inferens med simpel lineær regressionsmodel Statistisk model: Y i = β 0 + β 1 x i + ε i Estimation af konfidensintervaller og tests for β 0 og β 1 Konfidensintervaller for linjen (95% gange ligger linjen indenfor) Prædiktionsintervaller for punkter (95% af nye punkter ligger indenfor) ρ, R og R 2 ρ er korrelationen (= sign R R) beskriver graden af lineær sammenhæng mellem x og y R 2 er andelen af den totale variation som er forklaret af modellen Afvises H 0 : β 1 = 0 så afvises også H 0 : ρ = 0 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 6: Multipel lineær regressions analyse enote 6: Multipel lineær regressions analyse Flere variabler: y, x 1, x 2,... (y afhængig/respons var. og x er er forklarende/uafhængige var.) Mindstekvadraters rette plan (et plan da der er >2 dimensioner) Inferens for en multipel lineær regressionmodel Statistisk model: Y i = β 0 + β 1 x 1,i + β 2 x 2,i ε i Estimation af konfidensintervaller og tests for β er Konfidensintervaller for modellen (For det forventede plan) Prædiktionsintervaller for nye punkter enote 8: Envejs variansanalyse (envejs ANOVA) enote 8: Envejs variansanalyse (envejs ANOVA) k UAFHÆNGIGE grupper Specifikke metoder, envejs variansanalyse: Test der sammenligner middelværdien af grupperne ANOVA-tabel: SST = SS(T r) + SSE F -test Post hoc test(s): parvise t-test med/uden Bonferroni korrektion R 2 er andelen af den totale variationen som er forklaret af modellen Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39
4 enote 8: Tovejs variansanalyse (ANOVA) enote 8: Tovejs variansanalyse (tovejs ANOVA) Blokdesign giver to faktorer ANOVA-tabel: SST = SS(T r) + SS(Bl) + SSE F -test SST, SS(T r) og SS(Bl) beregnes som ved envejs ANOVA SSE = SST SS(T r) SS(Bl) Post hoc test: parvise t-test med/uden Bonferroni korrektion enote 7: Inferens for andele enote 7: Inferens for andele Specifikke metoder, én, to og k > 2 grupper Binær/kategorisk respons Estimation og konfidensintervaller for andele Metoder til store stikprøver vs. til små stikprøver Hypoteser for én andel Hypoteser for to andele Analyse af antalstabeller (χ 2 -test) (Alle forventede antal > 5) Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Overview enote 7: Inferens for andele enote 1: Simple Graphics and Summary Statistics enote 1: Simple Graphics and Summary Statistics 1 enote 1: Simple plots og deskriptive statistik 2 enote2: Diskrete fordelinger 3 enote 2: Kontinuerte fordelinger 4 enote 3: Konfidensintervaller for én gruppe/stikprøve 5 enote 3: Hypotese tests for én gruppe/stikprøve 6 enote 3: Statistik for to grupper/stikprøver 7 enote 4: Statistik ved simulation 8 enote 5: Simpel lineær regressions analyse 9 enote 6: Multipel lineær regressions analyse 10 enote 8: Envejs variansanalyse (envejs ANOVA) 11 enote 8: Tovejs variansanalyse (ANOVA) 12 enote 7: Inferens for andele Look at data as it is! (descriptive statistics) Summary Statistics Sample mean: x Sample standard deviation: s Sample variance: s 2 Median, upper- and lower quartiles Sample correlation Simple graphics Scatter plot (xy plot) Histogram (empirical density) Cumulative distribution (empirical distribution) Boxplots, Bar charts, Pie charts Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39
5 enote 2: Discrete Distributions enote 2: Discrete Distributions General concepts: Random variable (Outcome of yet not carried out experiment) Density function: f(x) = P (X = x) (pdf) Distribution function: F (x) = P (X x) (cdf) Mean: µ = E(X) Standard deviation: σ Variance: σ 2 Specific distributions: The binomial distribution (Dice roll) The hypergeometric distribution (Draw without replacement) The Poisson distribution (Number of events in interval) enote 2: Continuous Distributions enote 2: Continuous Distributions General concepts: Density function: f(x) (pdf) Distribution: F (x) = P (X x) (cdf) Mean (µ) and variance (σ 2 ) Calculation rules for random variables Specific distributions: Normal Log-Normal Uniform Exponential t χ 2 F Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 3: One sample confidence intervals enote 3: One sample confidence intervals General concepts Estimation Significance level α Confidence intervals (Catches true value 1 α times) Population and a random sample Sampling distributions (t and χ 2 ) Central Limit Theorem Specific methods, one sample: Confidence intervals for the mean (t-distribution) and variance (χ 2 distribution) Design of experiments: calculating the sample size n for wanted precision enote 3: One sample hypothesis testing enote 3: One sample hypothesis testing General concepts: Hypotheses p-value (Probability for observing the test value or more extreme, if H 0 is true, e.g. P (T > t obs )) Type I error: (No effect in reality, but H 0 is rejected) P (Type I) = α Type II error: (In reality an effect, but H 0 is not rejected) P (Type II) = β Power of a test is β Specific methods, one sample: t-test for mean difference Sample size for wanted power Normal qq-plot Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39
6 enote 3: Two Sample statistics enote 3: Two Samples Specific methods, two samples: Test and confidence interval for the mean difference (t-test) Planning: calculating the sample size for wanted power Specific methods, two PAIRED samples: "Take difference" "One sample" enote 4: Statistics by simulation enote 4, Statistics by simulation Introduction to simulation (Calculate the statistic many times) Error propagation rules (e.g. through a non-linear function) Bootstrapping: Parametric (Simulate many outcomes of random var.) Non-parametric (Draw values directly from data) Confidence intervals (and hence also hypothesis testing) Specific situations: (4 versions of confidence intervals) One-sample and Two-sample data Parametric vs. non-parametric Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 5: Simple linear Regression Analysis enote 5: Simple linear Regression Analysis Two quantitative variables: x and y Calculating least squares line Inferences for a simple linear regression model Statistical model: y i = β 0 + β 1 x i + ε i Interval estimation and test for β 0 and β 1. Confidence interval for the line (95% times the line will be inside) Prediction interval for punkter (95% times new points will be inside) ρ, R og R 2 ρ is the correlation (= sign R R) describes the strength of linear relation between x and y R 2 is the fraction of the total variation explained by the model If H 0 : β 1 = 0 is rejected, then H 0 : ρ = 0 is also rejected Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 6: Multiple linear Regression Analysis enote 6: Multiple linear Regression Analysis Many quantitative variables: y, x 1, x 2,... (y is the dependent/response var. and x s are explanatory/independent var.) Calculating least squares plane (A plane since there are >2 dimensions) Inferences for a the multiple linear regression model Statistical model: y i = β 0 + β 1 x 1,i + β 2 x 2,i ε i Confidence interval estimation and test for the β s Confidence interval for the expected fit (fitted line) Prediction interval for new points R 2 expresses the proportion of the total variation explained by the linear fit Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39
7 enote 8: One-way Analysis of Variance enote 8: One-way Analysis of Variance enote 8: Two-way Analysis of Variance enote 8: Two-way Analysis of Variance Specific methods, k INDEPENDENT samples One-way analysis of variance Test for comparing the means of the groups ANOVA-table: SST = SS(T r) + SSE F -test Post hoc test: pairwise t-test with/without Bonferroni correction Block design - two-way analysis of variance ANOVA-tabel: SST = SS(T r) + SS(Bl) + SSE F -test. SST, SS(T r) and SS(Bl) calculated as one-way ANOVA SSE = SST SS(T r) SS(Bl) Post hoc test: pairwise t-test with/without Bonferroni correction Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39 enote 7: Inferences for Proportions enote 7: Inferences for Proportions Specific methods, one, two and k > 2 samples Binary/categorical response Estimation and confidence interval of proportions Large sample vs. small sample methods Hypotheses for one proportion Hypotheses for two proportions Analysis of contingency tables (χ 2 -test) (All expected > 5) Per Bruun Brockhoff ([email protected]) Introduktion til statistik, Forelæsning 13 Foråret / 39
Kursus 02402/02323 Introduktion til statistik. Forelæsning 13: Et overblik over kursets indhold. Klaus K. Andersen og Per Bruun Brockhoff
Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet
1 enote 1: Simple plots og deskriptive statistik. 2 enote 2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger
Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Peder Bacher DTU Compute, Dynamiske Systemer Building 303B, Room 017 Danish Technical University 2800 Lyngby
Kursus Introduktion til Statistik. Forelæsning 13: Summary. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 13: Summary Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Kursus 02323: Introducerende Statistik. Forelæsning 12: Forsøgsplanlægning. Peder Bacher
Kursus 02323: Introducerende Statistik Forelæsning 12: Forsøgsplanlægning Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)
Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable
Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Forelæsning 11: Envejs variansanalyse, ANOVA
Kursus 02323: Introduktion til Statistik Forelæsning 11: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model og hypotese. 3 Beregning - variationsopspaltning og ANOVA tabellen
Kursus 02402/02323 Introducerende Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Oversigt 1 Intro: Regneeksempel og TV-data fra B&O 2 Model og hypotese Per Bruun Brockhoff DTU Compute, Statistik
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet
Løsning til eksaminen d. 29. maj 2009
DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Forelæsning 9: Inferens for andele (kapitel 10)
Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Introduktion til Statistik. Forelæsning 12: Inferens for andele. Peder Bacher
Introduktion til Statistik Forelæsning 12: Inferens for andele Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected] Efterår
Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger
Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800
Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Kursus 02402/02323 Introducerende Statistik
Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen
Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Forelæsning 3: Kapitel 5: Kontinuerte fordelinger
Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Løsning til eksaminen d. 14. december 2009
DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,
Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff
Course 242/2323 Introducerende Statistik Forelæsning 3: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 22 Danmarks Tekniske Universitet 28 Lyngby Danmark
Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)
Kursus 02402/02323 Introducerende Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.
Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff
Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Forelæsning 1: Intro og beskrivende statistik
Kursus 02402 Introduktion til Statistik Forelæsning 1: Intro og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby
Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j
Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!
Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information
Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:
enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt
enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med
Løsning eksamen d. 15. december 2008
Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th
Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220
Eksamen Bacheloruddannelsen i Medicin med industriel specialisering
Eksamen 2016 Titel på kursus: Uddannelse: Semester: Forsøgsdesign og metoder Bacheloruddannelsen i Medicin med industriel specialisering 6. semester Eksamensdato: 17-02-2015 Tid: kl. 09.00-11.00 Bedømmelsesform
Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )
Statistik for MPH: 7 29. oktober 2015 www.biostat.ku.dk/~pka/mph15 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:
Forelæsning 11: Tovejs variansanalyse, ANOVA
Introduktion til Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.
Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller
Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)
Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus
Statistik for MPH: 7
Statistik for MPH: 7 3. november 2011 www.biostat.ku.dk/~pka/mph11 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:
Ikke-parametriske tests
Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference
Forelæsning 10: Statistik ved hjælp af simulering
Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Besvarelse af vitcap -opgaven
Besvarelse af -opgaven Spørgsmål 1 Indlæs data Dette gøres fra Analyst med File/Open, som sædvanlig. Spørgsmål 2 Beskriv fordelingen af vital capacity og i de 3 grupper ved hjælp af summary statistics.
Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese
Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet
Kursus 02402/02323 Introducerende Statistik. Forelæsning 6: Sammenligning af to grupper
Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
MPH specialmodul Epidemiologi og Biostatistik
MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:
Oversigt. 1 Motiverende eksempel - energiforbrug. 2 Hypotesetest (Repetition) 3 Two-sample t-test og p-værdi. 4 Konfidensinterval for forskellen
Kursus 02402/02323 Introducerende Statistik Forelæsning 6: Sammenligning af to grupper Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
Skriftlig eksamen Science statistik- ST501
SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.
Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................
Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher
Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: [email protected]
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
En Introduktion til SAS. Kapitel 5.
En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel
Generelle lineære modeller
Generelle lineære modeller Regressionsmodeller med én uafhængig intervalskala variabel: Y en eller flere uafhængige variable: X 1,..,X k Den betingede fordeling af Y givet X 1,..,X k antages at være normal
To-sidet varians analyse
To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),
Introduktion til Statistik. Forelæsning 5: Hypotesetest, power og modelkontrol - one sample. Peder Bacher
Introduktion til Statistik Forelæsning 5: Hypotesetest, power og modelkontrol - one sample Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark
Basal statistik. 30. januar 2007
Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Normalfordelingen og Stikprøvefordelinger
Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger
Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater
Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi
Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse
Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres
Basic statistics for experimental medical researchers
Basic statistics for experimental medical researchers Sample size calculations September 15th 2016 Christian Pipper Department of public health (IFSV) Faculty of Health and Medicinal Science (SUND) E-mail:
Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test
Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,
Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning
Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data
Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: [email protected] Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration
Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1
Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen
Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration
Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: [email protected] Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion
Fagplan for statistik, efteråret 2015
Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat
